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Abstract

The partially averaged Navier-Stokes (PANS) model, proposed in [1], allows

to simulate turbulent flows either in RANS, LES or DNS mode. The PANS

model includes fk which denotes the ratio of modeled to total kinetic energy. In

RANS, fk = 1 while in DNS it tends to zero. In the present study we propose an

improved formulation for fk based on the H-equivalence introduced by Friess

et al. (2015). In this formulation the expression of fk is derived to mimic

Improved Delayed Detached Eddy Simulation (IDDES). This new formulation

behaves in a very similar way as IDDES, even though the two formulations use

different mechanisms to separate modeled and resolved scales. They show very

similar performance in separated flows as well as in attached boundary layers.

In particular, the novel formulation is able to (i) treat attached boundary layers

as properly as IDDES, and (ii) “detect” laminar initial/boundary conditions,

in which case it enforces RANS mode. Furthermore, it is found that the new

formulation is numerically more stable than IDDES.
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1. Introduction

The Partially Averaged Navier-Stokes (PANS) approach was originally pro-

posed by Girimaji [1], based on the scale separation between resolved and un-

resolved parts of the turbulent fluid motion, making use of the parameter fk,5

which represents the modeled-to-total turbulent kinetic energy ratio. The way

of prescribing fk has been subject of a huge research effort. Recently, Klap-

wijk et al. [2] made a comparative review of differents ways of prescribing fk,

distinguishing two categories: static and dynamic formulations. Almost simul-

taneously with PANS, Partially Integrated Transport Model (PITM, see e.g.10

[3, 4]), was derived from multiscale approaches in spectral space, but also using

the modeled-to-total turbulent kinetic energy ratio fk.

Detached Eddy Simulation was developed almost a decade earlier, based on

rather empirical fundaments, by Spalart et al. [5]. Their approach turned out

to be very efficient in predicting unsteady features of flows out of equilibrium,15

but less so in flows involving thick boundary layers or shallow separations. A

first improvement of DES was Delayed Detached Eddy Simulation (DDES) [6],

able to overcome the aforementioned issues. More recently, the DES community

formulated Improved Delayed Detached Eddy Simulation (IDDES) [7], designed

to act as a proper (i) wall-modeling approach for LES and (ii) RANS model when20

no turbulent content is provided in initial/boundary conditions.

Friess et al. [8] established an equivalence criterion between DES and other

seamless hybrid RANS/LES approaches like PANS and PITM and formulated

a postulate of equivalence: “Two hybrid approaches based on the same closure,

but using a different method of control of the energy partition, yield similar low-25

order statistics of the resolved velocity fields provided that they yield the same

level of subfilter energy.”. A by-product of that work is a new hybrid method,

taking the shape of a DES designed with the energy ratio fk instead of the

explicit grid step ∆. Later, Davidson & Friess [9] used this result the other way

around, proposing a way to prescribe fk in PANS (as well as in PITM) derived30

from the so-called “DES97” methodology. The model is denoted D-PANS. This
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formulation showed several interesting features (behaviour very similar to that

of actual DES, self-adaptivity, better performance than PANS with fixed fk

. . . ) The present project aims at developing an improved formulation for fk,

gathering the interesting features of IDDES enumerated above, and the strong35

theoretical background of PANS.

The paper is organized as follows. First, the rationale of PANS, IDDES

and the derivation of their equivalence criterion, is presented in Sec. 2. This

derivation leads to a new approach, that will be called IDD-PANS. The solver

used for the computations is presented in Sec. 3. In Sec. 4, IDDES and IDD-40

PANS, along with the D-PANS approach, are compared in three different flows

(channel flow, hump flow and hill flow). Some conclusions are drawn in the final

section.

2. Rationale

In this section, the PANS and IDDES models are presented. They use differ-45

ent cutoff functions, to perform the separation between resolved and unresolved

scales. Note that the unresolved scales correspond to the subgrid scales in LES

mode, and to the modeled scales in RANS.

• PANS controls the destruction of unresolved dissipation, through the adap-

tive coefficient C∗

ε2. Moreover, in PANS, diffusion coefficients are also50

tuned according to the cutoff. The idea is to damp modeled turbulent

kinetic energy as the resolution gets finer.

• Though using the same idea of damping the modeled turbulent kinetic

energy as above, DES and IDDES act in a more direct way. The sink term

entering the unresolved turbulent kinetic energy equation is multiplied by55

an adaptive coefficient ψ.

Details are given below.
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2.1. The PANS model

The low-Reynolds number Partially-Averaged Navier-Stokes (LRN PANS,

see [10]) uses the AKN k − ε turbulence model [11] as parent RANS and reads60

Dku
Dt

=
∂

∂xj

[(

ν +
νtu
σku

)
∂ku
∂xj

]

+ Pku − εu

Dεu
Dt

=
∂

∂xj

[(

ν +
νtu
σεu

)
∂εu
∂xj

]

+ Cε1Pku
εu
ku

− C∗

ε2

εu
2

ku

νtu = Cµfµ
ku

2

εu
, Pku = 2νtus̄ij s̄ij , s̄ij =

1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

C∗

ε2 = Cε1 +
fk
fε

(Cε2f2 − Cε1), σku ≡ σk
f2
k

fε
, σεu ≡ σε

f2
k

fε

σk = 1.4, σε = 1.4, Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09

(1)

where D/Dt = ∂/∂t+ v̄j∂/∂xj denotes the material derivative. The damping

functions are given by

f2 =

[

1− exp
(

−
y∗

3.1

)]2{

1− 0.3exp

[

−
(Rtu
6.5

)2
]}

fµ =

[

1− exp
(

−
y∗

14

)]2
{

1 +
5

Rt
3/4
u

exp

[

−
(Rtu
200

)2
]}

Rtu =
ku

2

νεu
, y∗ =

Uεy

ν
, Uε = (εuν)

1/4 (2)

The subscript u refers to the unresolved motion. The functions fk and fε denote

the ratio of modeled to total kinetic energy and modeled to total dissipation,65

respectively. For flows at high Reynolds numbers (as in the present work),

the dissipation is modeled which means that fε = 1. In the PITM model,

σku ≡ σk and σεu ≡ σε. Note that, in PANS, C∗

ε2 is the control parameter for

the resolution, with ψ = 1 (its RANS value).

4



2.2. The IDDES model70

The aforementioned LRN model can be transposed to an IDDES form, also

based on the AKN k − ε turbulence model as parent RANS:

Dku
Dt

=
∂

∂xj

[(

ν +
νtu
σku

)
∂ku
∂xj

]

+ Pku − ψεu

Dεu
Dt

=
∂

∂xj

[(

ν +
νtu
σεu

)
∂εu
∂xj

]

+ Cε1Pku
εu
ku

− Cε2f2
εu

2

ku

νtu = Cµfµ
ku

2

εu
, Pku = 2νtus̄ij s̄ij , s̄ij =

1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

σk = 1.4, σε = 1.4, Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09

(3)

The damping functions are the same as in the LRN PANS model (given by

Eq. (2)).

Note that, in (ID)DES, ψ is the control parameter for the resolution, while Cε275

is set to its RANS value. The function ψ may be more or less sophisticated. In

all cases, we write ψ as:

ψ =
lu

l̃
. (4)

Let us define three length scales:

• lu, the characteristic (local and instantaneous) length scale of the unre-

solved scales,80

• lc, the characteristic length scale of the cutoff,

• l̃, the reference length scale.

Those length scales read

lu =
k
3/2
u

εu
, (5)

and

lc = CDES∆ . (6)

The key difference between DES and IDDES lies in the prescription of l̃85

entering Eq. (4). In original DES, the reference length scale l̃ simply reads:

l̃ = min (lu; lc) . (7)

In IDDES, it is more sophisticated. The grid step ∆ is also chosen in a more

complex way. These differences are discussed below.
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2.2.1. Cut-off length scale

The cut-off length scales is defined as:90

lc = ΨCDES∆ , (8)

where Ψ is a low-Reynolds number correction (see Eq. 10), and ∆:

• the maximum grid step hmax in DES,

• a corrected grid step, designed to improve the WMLES (wall-modeled

LES) capabilities of DES. It reads:

∆ = min {max [Cwdw;Cwhmax;hwn] ;hmax} , (9)

where95

– Cw = 0.15 is a constant, presumably independent of the turbulent

closure,

– dw is the distance to the closest wall,

– hwn is the grid step in the wall normal direction.

The low-Reynolds correction Ψ (see e.g. [7, 6]) depends on the turbulent closure,100

and is set so that at equilibrium (neither convection nor diffusion in the closure

equations), the eddy viscosity obeys a Smagorinsky-like law, in LES mode. This

correction is only needed for closure models using some low-Reynolds features,

which is the case of the model used here, and summarized in Eq. (1), and Ψ

reads:105

Ψ = min
{

10; (f2fµ)
−3/4

}

(10)

where f2 and fµ are given by Eq. 2.1 and the limiting value of 10 is added

to ensure reasonable behavior of Ψ in the “DNS limit”, i.e. νtu < ν/100, as

prescribed in [6]. Details on the calibration of Ψ are given in Appendix A.

2.2.2. Reference length scale

In contrast with its formulation given by Eq. (7) in DES, the reference110

length scale l̃ is, in IDDES, a blending between lu and lc. It reads:

l̃ = f̃d (1 + fe) lu +
(

1− f̃d

)

lc , (11)
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where lu is defined by (5) and lc by (8). The blending functions f̃d and fe read:

f̃d = max {(1− fdt) ; fB} , (12)

fe = max {(fe1 − 1) ; 0}Ψfe2 , (13)

where Ψ is given by Eq. (10) and the functions fdt and fB entering Eq. (12) are

given by:115

fdt = 1− tanh
[

(8rdt)
3
]

, (14)

fB = min
{
2 exp

(
−9α2

)
; 1
}
, (15)

with

α = 0.25− dw/hmax . (16)

The functions fe1 and fe2 in Eq. (13) read:

fe1 =







2 exp
(
−11.09α2

)
if α ≥ 0

2 exp
(
−9α2

)
if α < 0

, (17)

and

fe2 = 1−max {ft; fl} , (18)

where the functions ft and fl are given by:120

ft = tanh
[(
c2t rdt

)3
]

, (19)

fl = tanh
[(
c2l rdl

)10
]

. (20)

The constants ct and cl above, depend on the background RANS model. They

were originally tuned in [7] for the SA model, and later in [12] for the k−ω SST

model. The chosen values are ct = 1.87 and cl = 5.

The quantities rdt (also entering Eq. 14) and rdl, are defined as follows:

rdt =
νt

κ2d2wmax {S; 10−10}
, (21)

rdl =
ν

κ2d2wmax {S; 10−10}
, (22)

where125

S =

√
√
√
√
∑

ij

(
∂ui
∂xj

)2

. (23)
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In what follows, we derive a relationship between the cutoff control functions ψ

of IDDES and fk (or equivalently, C∗

ε2) of PANS.

2.3. Equivalence between PANS and DES/IDDES

Friess et al. [8] made a first attempt in bridging DES and PITM. They

derived equivalence criteria in three major cases:130

• homogeneous equilibrium layers,

• inhomogeneous flows,

• allowing filter-induced modifications of the unresolved dissipation rate

(while the two previous cases assume that it is not affected by the en-

ergy partition).135

In that aim, they considered infinitesimal perturbations in the equilibrium of the

ensemble-averaged ku − εu system, when introducing δψ for DES and δC∗

ε2 for

PITM, given that in RANS mode, ψ = fk = 1 and C∗

ε2 = Cε2. Then, integrating

the result between RANS and an arbitrary state, yields a relationship evaluating

ψ for a given fk.140

More recently, Davidson & Friess [9] used the aforementioned relationship

in a reverse way, in order to obtain some new way to define the fk factor for

PANS, ψ being given by DES (see Eqs. (5)-(7) in the present paper). However,

their work was a first attempt, as (i) they just considered the homogeneous

equilibrium layer case in their derivation and (ii) they restricted their study to145

DES. In [13], they showed that this method works pretty much like DES.

Now, in the present work, we consider inhomogeneous flows, which are more

relevant in engineering. Let us define kM and εM such as:

kM = 〈ku〉 (24)

εM = 〈εu〉 (25)

where 〈.〉 denotes the ensemble average. Along mean streamlines, kM and εM

are assumed to be in equilibrium, which yields, when describing both PANS and150
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(ID)DES:

DkM
Dt = P k +Dk − ψεM = 0 (26)

DεM
Dt = Cε1

εM
kM
P k +Dε − C∗

ε2
ε2M
kM

= 0 (27)

where P k denotes the production of kM and Dk and Dε the diffusion terms of

kM and εM respectively.

In order to perform the perturbation analysis, some assumptions are needed.

First, since in Sec. 2.1, we assumed that fε = 1, it yields:155

δεM = 0 (28)

Following [8], we add the heuristic assumption that the relative variation δkM/kM

does not vary in space, which allows to state:

∂ (kM + δkM )

∂xj
=

(

1 +
δkM
kM

)
∂kM
∂xj

(29)

∂2 (kM + δkM )

∂xj∂xj
=

(

1 +
δkM
kM

)
∂2kM
∂xj∂xj

(30)

Furthermore, by definition,

fk = kM/ktot (31)

where ktot is the total (resolved + modeled) turbulent kinetic energy.

2.3.1. PANS equations160

For the PANS method (ψ=1), the equations for infinitesimal perturbations

of Eqs (26)-(27) are:

δP k + δDk = 0 (32)

Cε1
εM
kM
P k
(
δPk

Pk − δkM
kM

)

− C∗

ε2
ε2M
kM

(
δC∗

ε2

C∗

ε2

− δkM
kM

)

+ δDε = 0 (33)

At sufficiently high Reynolds number, the diffusion terms Dk and Dε can be

written:

Dk =
∂

∂xj

[
C

σkf2
k

k2M
εM

∂kM
∂xj

]

(34)

Dε =
∂

∂xj

[
C

σεf2
k

k2M
εM

∂εM
∂xj

]

(35)
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Using Eqs. (28)-(31) to differentiate Eqs. (34) and (35), it can be shown that:165

δDk

Dk
=

δkM
kM

(36)

δDε

Dε
= 0 (37)

Thus, the following relation is obtained:

δC∗

ε2 = (C∗

ε2 − Cε1)
δkM
kM

(38)

2.3.2. (ID)DES equations

The same procedure is done with the (ID)DES system (C∗

ε2 = Cε2). The

equations for infinitesimal perturbations of Eqs (26)-(27) are:

δP k + δDk + εMδψ = 0 (39)

Cε1
εM
kM
P k
(
δPk

Pk − δkM
kM

)

+ Cε2
ε2M
kM

(
δkM
kM

)

+ δDε = 0 (40)

At sufficiently high Reynolds number, the diffusion terms Dk and Dε can be170

written:

Dk =
∂

∂xj

[
C

σk

k2M
εM

∂kM
∂xj

]

(41)

Dε =
∂

∂xj

[
C

σε

k2M
εM

∂εM
∂xj

]

(42)

Note that, contrary to PANS, there is no fk correction in the diffusivity. Like

for PANS above, we use Eqs. (28)-(31) to differentiate Eqs. (41) and (42). As

a result, it can be shown that

δDk

Dk
= 3

δkM
kM

(43)

δDε

Dε
= 2

δkM
kM

(44)

As a result, the following relation is obtained:175

δψ = 3
(Cε1ψ − Cε2)

Cε1

δkM
kM

(45)
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Figure 1: The geometry of the hump.
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Figure 2: The geometry of the hill.

Now, equalizing δkM/kM in Eqs. (38) and (45) and integrating the obtained

relation between RANS (C∗

ε2 = Cε2 and ψ = 1) and an arbitrary state, yields:

∫ C∗

ε2

Cε2

x

x− Cε1
=

∫ ψ

1

−
Cε1dy

3Cε1y − Cε2
⇒

ln

(
C∗

ε2 − 1

Cε2 − 1

)

=
1

3
ln

(
Cε1ψ − Cε2
Cε2 − Cε1

) (46)

As a consequence, when ensuring that 0 ≤ fk ≤ 1 we get

fk = min

[

1,max

(

0,

(
Cε2 − Cε1ψ

Cε2 − Cε1

)1/3
)]

(47)

It is worth mentioning that the relationship (47) was derived without assuming

the way of defining ψ, i.e. regardless of whether ψ is defined in a DES or an180

IDDES way. However, since we aim at building a formulation of PANS that

is equivalent to IDDES, we will consider the latter, (i.e. ψ is defined through

Eqs. (4), (5), (8) and (11)).

3. Numerical solver

An incompressible, finite volume code is used [18]. The convective terms185

in the momentum equations are discretized using central differencing. Hybrid
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Figure 3: Channel flow, Reτ = 5200. : D-PANS; : IDD-PANS; : IDDES;

Markers: DNS [14]
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Figure 4: Channel flow, Reτ = 5200. : D-PANS; : IDD-PANS; : IDDES;

Markers: DNS [14]

central/upwind is used for the ku and εu equations. The Crank-Nicolson scheme

is used for time discretization of all equations. The numerical procedure is based

on an implicit, fractional step technique with a multigrid pressure Poisson solver

[19] and a non-staggered grid arrangement.190

The filtered momentum equations with an added turbulent viscosity νtu to

account for the effect of the unresolved scales on the resolved motion, read

∂v̄i
∂t

+
∂v̄j v̄i
∂xj

= βδ1i −
1

ρ

∂p̄

∂xi
+

∂

∂xj

(

(ν + νtu)
∂v̄i
∂xj

)

(48)

where the first term on the right side is the driving pressure gradient in the

streamwise direction, which is used in the fully-developed channel flow simula-

tions and for the hill flow.195
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Figure 5: Channel flow. fk. Reτ = 5200. : D-PANS; : IDD-PANS; : IDDES.
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Figure 7: Channel flow, Reτ = 2000. : D-PANS; : IDD-PANS; : IDDES;

Markers: DNS [14]

4. Results

In order to validate the IDDES capabilities of the approach developed in Sec.

2, denoted IDD-PANS, we will now perform a comparison of IDD-PANS with

actual IDDES, using the same turbulent closure model (AKN). In IDDES, we

compute ψ and its related coefficients using Eqs. (4) to (23). In IDD-PANS, the200

same ψ is used to prescribe fk,tar following Eq. (47) . For the sake of performance

comparison, results obtained with the D-PANS approach (also using the AKN

closure model) are shown as well. It is worth recalling that there is a distinction

to make between fk,obs, the observed energy ratio defined as:

fk,obs =
kM
ktot

(49)

and fk,tar, the targeted (or prescribed) energy ratio. In IDD-PANS fk,tar = fk205

(computed in Eq. 47) is used, but there is usually a discrepancy between fk,obs
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10
0

10
2

0

5

10

15

20

25

30

y+

〈U
+
〉

(a) Velocity.

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

y+

〈ν
tu
/
ν
〉

(b) Unresolved turbulent viscosity.

Figure 9: Channel flow with steady initial conditions. Reτ = 5200. : IDD-PANS;

: 1D AKN RANS; Markers: DNS [14]
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PANS; : IDDES; markers: Experiments [15, 16].
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Figure 11: Hump flow. Streamwise velocities. : D-PANS; : IDD-PANS; :

IDDES; markers: Experiments [15, 16].

and fk,tar (see e.g. [20] and [9] for discussion). Meanwhile, fk,obs can be obtained

from postprocessing, using its definition in Eq. (49).

The comparison is performed upon three test cases: the fully developed channel

flow, the hump flow (see Fig. 1), and the hill flow (see Fig. 2).210

The comparison is performed regarding various quantities:

• streamwise velocity,

• turbulent kinetic energy and shear stress: total moments, along with their
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Figure 12: Hump flow. Total turbulent kinetic energy. : D-PANS; : IDD-PANS;

: IDDES; markers: Experiments [15, 16].

repartition between modeled and resolved parts,

• fk,obs and fk,tar,215

along with case-specific quantities.

4.1. Channel flow

We consider a periodic channel flow at Reτ = uτδ/ν = 5 200 and 2 000,

where δ denotes half channel height and uτ is the friction velocity. The stream-

wise, wall-normal and spanwise directions are denoted by x, y and z, respec-220
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Figure 13: Hump flow. Total turbulent shear stress τ12. : D-PANS; : IDD-PANS;

: IDDES; markers: Experiments [15, 16].

tively. The size of the domain is xmax = 3.2, ymax = 2 and zmax = 1.6. Two

distinct meshes are used (see Table 1). The grid used for the Reτ = 2 000 case

is a fine, LES-like grid. Periodic boundary conditions are used in the x and z

directions. Therefore, these two directions are considered statistically homoge-

neous. A precursor DES computation is used as initial condition. The driving225

pressure gradient (first term on the right hand side in Eq. 48) is used with β = 1.

For the sake of numerical stability, a lower limit of 0.05 is used when computing

fk,tar from Eq. (47). Two options on initial conditions, are considered:

19



0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

x/c = 0.65

y
/
c

〈fk,tar〉

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x/c = 1.1

y
/
c

〈fk,tar〉

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x/c = 1.3

y
/
c

〈fk,tar〉

Figure 14: Hump flow. fk,tar. : D-PANS; : IDD-PANS.

Reτ Nx = Nz Ny ∆x+ ∆z+ ∆y+wall ∆y+center

5200 32 96 520 260 0.5 677

2000 64 96 100 50 0.5 213

Table 1: Channel flow: mesh specifications.

• turbulent content (fluctuating),

• no turbulent content (steady),230

4.1.1. Fluctuating case

Figure 3(a) presents the mean velocity profile. As can be seen, IDD-PANS

is able to match the IDDES profile, and thus performs better than D-PANS.

Figures 3(d) shows the ratio between production and dissipation rate of the to-

tal turbulent kinetic energy. A small logarithmic zone appears for all three ap-235

proaches. This is consistent with the total turbulent kinetic energy ktot (Fig. 3b)
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Figure 15: Hump flow. fk,obs. : D-PANS; : IDD-PANS; : IDDES.

and shear stress τ12,tot (Fig. 3c): both quantities exhibit peaks in this logarith-

mic region of the flow. However, it is worth noticing that the D-PANS ktot

profile exhibits a secondary peak. Accordingly, Figs. 4(a) and 4(b), showing re-

spectively modeled and resolved k, show a stronger peak mismatch for D-PANS,240

than for the other two approaches. For their part, IDD-PANS and IDDES are

in good agreement, even with the reference DNS.

Figs. 4(c) and Figs. 4(d) show respectively modeled and resolved parts of

the turbulent shear stress τ12. As about k, IDDES and IDD-PANS are in

remarkable accordance, while D-PANS differs significantly from the two other245

approaches. This is consistent with the theoretical background leading to the

equivalence criterion between IDD-PANS and IDDES developed in Sec. 2.3;

in an equilibrium case like the channel flow, IDD-PANS and IDDES must be

equivalent. Eventually, it is also worth noticing that τ12 is overall more resolved

than k. In other words, if we defined a τ12-equivalent of fk, called f12, we would250
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Figure 16: Hump flow. Turbulent kinetic energy: modeled part (left) and resolved part (right).

: D-PANS; : IDD-PANS; : IDDES.

have f12 < fk, especially toward the center of the channel.

Figure 5(a) compares the target energy ratio fk,tar between D-PANS and

IDD-PANS. Note that there is no fk,tar for the IDDES. The shape of the IDD-

PANS profile is more complex than D-PANS. This can be explained by the fact

that the construction of ψIDDES is more elaborate than ψDES , since IDDES255

is a further evolved version of DES. This complex shape of the IDD-PANS

fk,tar profile generates strong wall-normal gradients of fk,tar. Interestingly,

the lowest plateau of IDD-PANS fk,tar, near the wall, corresponds to the area
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Figure 17: Hump flow. Turbulent shear stress: modeled part (left) and resolved part (right).

: D-PANS; : IDD-PANS; : IDDES.

where IDDES differs the most from IDD-PANS. Moreover, the aforementioned

sharp wall-normal gradients of fk,tar seem diffused, such that the IDD-PANS260

fk,obs profile is more regular (see Figure 5b). The latter shows the profiles of

the observed energy ratio fk,obs between D-PANS, IDD-PANS and IDDES. As

previously with total quantities, one can see that the IDD-PANS profile is very

close to that of IDDES, illustrating again that IDD-PANS is able to mimic

IDDES, however only approximately.265

Figure 6(a) presents the mean velocity profile for the channel case at Reτ =
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Figure 18: Hill flow. Velocities. : D-PANS; : IDD-PANS; : IDDES; mark-

ers: LES [17]

.

2 000. As for the Reτ = 5 200 case, IDD-PANS is able to match the IDDES

profile, but performs only slightly better than D-PANS. However, IDDES and

IDD-PANS do not match the DNS profile at all. This might be due to the

fact that one assumption made earlier (all dissipation is contained in the mod-270

eled scales) is no longer valid in LES. Accordingly, Figure 6(c) presents similar

discrepancies between DNS and the three hybrid approaches, on the total tur-

bulent shear stress profiles. Figure 6(d) shows the ratio between production and
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Figure 19: Hill flow. Total turbulent kinetic energy. : D-PANS; : IDD-PANS; :

IDDES; markers: LES [17]

.

dissipation rate of the total turbulent kinetic energy. A really tiny logarithmic

zone appears for all three approaches. This is qualitatively consistent with the275

fact that Reτ is lower than previously. Figure 6(b) shows total turbulent ki-

netic energy profiles. Similarly as previously with the shear stress, IDDES and

IDD-PANS are in good mutual accordance, but they differ from the reference

DNS, but not as much as D-PANS, particularly in the near-wall region.

Figs. 7(c) and (d) show respectively modeled and resolved parts of the tur-280
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Figure 20: Hill flow. Total turbulent shear stress. : D-PANS; : IDD-PANS; :

IDDES; markers: LES [17]

.

bulent shear stress τ12. Figs. 7(a) and (b) show the same repartition, but for

the turbulent kinetic energy. As previously with the Reτ = 5 200 channel case,

the repartition between modeled and resolved scales is remarkably similar be-

tween IDD-PANS and IDDES, while D-PANS is clearly different. Moreover,

τ12 is again overall more resolved than k. In other words, if we defined a τ12-285

equivalent of fk, called f12, we would have f12 < fk, especially toward the center

of the channel.
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Figure 21: Hill flow. fk,tar. : D-PANS; : IDD-PANS.

Figure 8(a) compares the target energy ratio fk,tar and between D-PANS

and IDD-PANS, and Figure 5(b) shows the profiles of the observed energy ratio

fk,obs between D-PANS, IDD-PANS and IDDES. It is worth noticing that even290

though the fk,tar fields are not low enough to perform well-resolved LES in

the sense of Pope (less than 20% of the energy must be modeled) in the full

channel, the observed energy ratio fk,obs matches the aforementioned criterion,

in more than 90% of the channel, for both IDDES and IDD-PANS. Moreover, it

seems that D-PANS acts more like a basic hybrid RANS/LES, with a significant295

modeled part of energy near the wall, while IDD-PANS and IDDES seem to

rather adopt the desired behaviour of wall modeled LES. Another interesting

fact is that IDD-PANS and D-PANS exhibit similar fk,tar fields toward the

middle of the channel, which results in a global accordance in fk,obs, also with

IDDES. This tendency makes sense at first sight, but it was not observed with300

Reτ = 5 200.
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Figure 22: Hill flow. fk,obs. : D-PANS; : IDD-PANS; : IDDES

4.1.2. Steady case

In this case, the initial conditions are fully steady. The friction Reynolds

Reτ is 5 200. Figure 9(a) presents the mean velocity against the DNS results

of [14]. There is a good accordance with the DNS reference. Figure 9(b) shows305

the unresolved eddy viscosity profile, compared with that obtained from a 1D

RANS computation, using the same closure model (AKN). The profiles match

perfectly, suggesting that in absence of fluctuating initial content, IDD-PANS

is able, just like IDDES, to enforce a proper RANS mode. This is confirmed by

the fact that IDDES gives fk,tar = 1 (not shown).310

4.2. Hump flow

The Reynolds number of the hump flow is Rec = 936 000, based on the

hump length, c = 1, and the inlet mean velocity at the centerline, Uin,c. In

the present simulations, the values of ρ, c and Uin,c have been set to unity.
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Figure 23: Hill flow. Turbulent kinetic energy: modeled part (left) and resolved part (right).

: D-PANS; : IDD-PANS; : IDDES.

The configuration is given in Fig. 1. Experiments were conducted by [15, 16].315

The maximum height of the hump, h, and the channel height, H , are given by

h/c = 0.128 and H/c = 0.91, respectively. The mesh has 648×108×64 cells and

is taken from the NASA workshop.1 The spanwise extent is set to Zmax/c = 0.3.

Initially, a time step of 0.002 c/Uin,c was used which worked fine for D-PANS and

IDD-PANS; for IDDES, however, the simulation was numerically unstable and320

1https://turbmodels.larc.nasa.gov/nasahump val.html
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Figure 24: Hill flow. Turbulent shear stress: modeled part (left) and resolved part (right).

: D-PANS; : IDD-PANS; : IDDES.

diverged. A smaller time step of 0.001 c/Uin,c was chosen for all three turbulence

models. The inlet is located at x/c = −2.1 and the outlet at x/c = 4.0. A

periodic boundary condition is applied in the spanwise direction z. Therefore,

this direction is considered statistically homogeneous.

The conditions (U , V , k and ε) are taken from a 2D RANS simulation with325

the same momentum thickness as the experimental velocity profiles. The AKN

k−ε turbulence model [11] is used coupled to the EARSM model [21]. Synthetic

isotropic fluctuations are superimposed on the 2D RANS velocity field. The
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(a) Channel flow, Q = 10 (uτ/h)
2

(b) Hill flow, Q = (Ub/H)2

(c) Hump flow, Q = 3 (Uin,c/c)
2

Figure 25: IDD-PANS: isocontours of Q-criterion colored by respective instantaneous velocity

magnitude.

synthetic fluctuations are scaled with the RANS shear stress profile. To reduce

the inlet k, prescribed from 2D RANS, a commutation term ∂fk/∂x is used. For330

more detail on inlet synthetic fluctuations and the commutation term, see [22].

For the sake of numerical stability, a lower limit of 0.2 is used when computing

fk,tar from Eq. (47).
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The simulations are initialized as follows [23]: first the 2D RANS equations

are solved. Anisotropic synthetic fluctuations, (V ′

i)m, are then superimposed to335

the 2D RANS field which gives the initial LES velocity field. In order to compute

(V ′

i)m, synthetic fluctuations, v′i,synt, are computed plane-by-plane (y−z) in the

same way as prescribing inlet boundary conditions. The synthetic fluctuations

in the y − z planes are coupled with an asymmetric space filter

(V ′

i)m = a(V ′

i)m−1 + b(v′synt,i)m (50)

where m denotes the index of the x1 location and a = exp(−∆x1/Lint) and340

∆x1 and Lint denote the grid size and the integral length scale, respectively

(Lint = 0.2).

Figure 10(a) compares the profiles of the pressure coefficient Cp. The three

models, IDDES, IDD-PANS and D-PANS offer very similar performance, ex-

cept over the hump at x/c = 0, where D-PANS fails in predicting the strong345

longitudinal gradient of Cp, while IDD-PANS and IDDES succeed. Figure 10(b)

shows the skinfriction coefficient Cf profiles. IDDES gives a better agreement

with experiment in the boundary layer (x < 0), whereas IDD-PANS shows a

better agreement than IDDES and D-PANS in the recirculation region.

Figure 11 shows the streamwise velocity profiles at several locations of the350

domain, starting from nearly the middle of the hump, to positions located down-

stream the hump, before and after reattachment. As expected for a flow exhibit-

ing massive separation, the three approaches have a very similar behaviour,

except downstream reattachment (x/c ≥ 1.1), where IDD-PANS shows some

superiority over D-PANS.355

Figures 12 (resp. 13) show the total turbulent kinetic energy (resp. shear

stress τ12) at the same six locations as above. Before reattachment (x/c =

0.65, 0.8 and 0.9), all three approaches overestimate ktot and τ12,tot, especially

before separation (x/c = 0.65). This might be due to poor resolution of the thin

accelerating boundary layer at the upstream part of the hump. One can also360

notice that there is an overall surprisingly good agreement between IDD-PANS

and D-PANS, rather than with IDDES, on those total quantities. They both
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capture well the peaks of ktot downstream reattachment, but not those of τ12,tot,

also they do better than IDDES. On the other hand, all three approaches fail at

predicting ktot in the near wall region, but perform better on τ12,tot, especially365

downstream reattachment (x/c ≥ 1.1).

Figure 14 compares the targetted values of the energy ratio, fk,tar, between

IDD-PANS and D-PANS, taken at three locations: slightly before separation

(x/c = 0.65), and downstream reattachment (x/H = 1.1 and x/H = 1.3).

The shape of the IDD-PANS fk,tar is somewhat more complex than that of370

D-PANS. Again, this suggests that IDD-PANS inherits the fact that IDDES is

more elaborate than DES, as observed for the channel flow. However, the overall

values of fk,tar are similar in IDD-PANS and D-PANS, except at x/c = 1.3 where

the near-wall region is treated nearly in RANS mode by D-PANS (fk,tar ≈ 0.8),

while better resolved by IDD-PANS (fk,tar ≈ 0.2 at its lowest).375

Figure 15 shows profiles of the observed energy ratio, fk,obs, compared be-

tween IDDES, D-PANS and IDD-PANS, at the same locations as in Fig. 14.

Surprisingly, the profiles are very close to each other. The small discrepancies

observed, occur in the near wall region. But the most important observation

is that, in spite of a moderately resolved input fk,tar, the fk,obs are very low,380

suggesting an overall LES mode. This is caused by the fact that the large re-

solved scales dominate this out-of-equilibrium flow, as suggested by Figs. 16

(resp. 17). Those latter show the repartitions between modeled and resolved

parts of the turbulent kinetic energy (resp. shear stress) at the same three lo-

cations. They clearly show that at all of the three locations, the modeled k and385

τ12 are significantly smaller than their resolved counterparts. Accordingly, the

latter exhibit a very qualitative agreement, through similar shapes and peak

locations, however with various values. In the near wall region and downstream

reattachment, the three approaches exhibit significantly different behavior of

the modeled quantities, particularly for kM . This is counterintuitive, since the390

near wall region is the closest to the RANS mode, thus the three models should

behave more similarly, since they share the same parent RANS closure. Finally,

before separation (x/c = 0.65), one can see that the three approaches agree

33



quite well, regarding modeled as well as resolved quantities.

4.3. Hill flow395

The domain is shown in Fig. 2. The size of the domain is 9H×3.035H×4.5H

in the streamwise (x), wall-normal (y) and span-wise direction (z), respectively.

The grid has 160× 80× 32 cells in the x, y and z direction. Periodic boundary

conditions are used in the x and z directions. The z direction is considered

statistically homogeneous. Slip conditions are prescribed at the upper wall.400

The Reynolds number is Re = 10 600 based on the hill height and the bulk

velocity Ub at the top of the hill. An initial velocity field is prescribed from

a 2D RANS solution with the correct bulk Reynolds number. Furthermore,

the same technique for synthetic turbulence as for the hump flow (see Eq. 50),

is used to add initial fluctuations. The bulk velocity is then kept constant by405

adjusting β in Eq. 48 at each time step by ensuring that the sum of the forces at

the wall (wall shear stress and pressure on the lower wall) balances the driving

pressure gradient [24, 25, Section 4.5].

Figure 18 shows the streamwise velocity profiles at several locations of the

domain: on the top of the hill before separation (x/H = 0.05 and 0.5), in the410

expanded area after separation x/H = 1, on the bottom of the domain before

and after reattachment (x/H = 3 and 5), and in the constricted area (x/H = 8).

As observed in the previous section with the hump flow, the three approaches

have a very similar behaviour, except downstream reattachment (x/H ≥ 5),

where IDD-PANS is closer to IDDES than D-PANS.415

Figures 19 and 20 show the total turbulent kinetic energy (resp. shear stress

τ12) at the six same locations as above. The three hybrid RANS/LES approaches

exhibit various behaviors in this flow, but they reasonably capture peaks and

inflection points. IDD-PANS seems in overall good agreement with the refer-

ence LES of [17], especially regarding τ12,tot. The performance of IDDES is420

more debatable, especially upstream reattachment. Surprisingly, D-PANS does

not perform as well as the other two approaches on ktot, further downstream

separation x/H ≥ 3, but performs reasonably good on τ12,tot.
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Figure 21 compares the targetted values of the energy ratio, fk,tar, between

IDD-PANS and D-PANS, at three locations: on the top of the hill (x/H =425

0.05), in the recirculation bubble (x/H = 2) and downstream reattachment

(x/H = 6). As observed with the other two flows, it is worth noticing that

the shape of the IDD-PANS fk,tar profile is slightly more complex than that of

D-PANS. Again, this suggests that IDD-PANS inherits the fact that IDDES is

more elaborate than DES. However, the overall values of fk,tar are similar in430

IDD-PANS and D-PANS, except at x/H = 2 where the region near y/H = 1

is treated nearly in RANS mode by IDD-PANS (fk,tar ≈ 0.8), while better

resolved by D-PANS (fk,tar ≈ 0.45).

Figure 22 shows profiles of the observed energy ratio, fk,obs, compared be-

tween IDDES, D-PANS and IDD-PANS, at the same locations as in 21. In-435

terestingly, the fk,obs profiles do not vary much along the domain. The small

discrepancies observed are consistent with those observed with modeled k on

Fig. 23 and occur mainly close to the walls.

Figures 23 (resp. 24) show repartitions between modeled and resolved parts

of the turbulent kinetic energy (resp. shear stress) at the same three locations440

as above. As for the hump flow, one can notice that at all of the three lo-

cations, the modeled k and especially τ12 are significantly smaller than their

resolved counterparts, which makes sense for a flow exhibiting massive separa-

tion, dominated by the large-scale turbulent motion. But contrary to the hump

flow, there is no qualitative agreement between the three hybrid RANS/LES445

approaches, regarding resolved quantities, except on peak and inflection point

locations. This is also observed with modeled quantities, however in a less clear

way.

Figure 25(a), (b) and (c) show isocontours of the Q-criterion defined by:

Q =
1

2

(
S̄ : S̄− W̄ : W̄

)
(51)

with450

S̄ =
1

2

(
∇v̄ +∇T v̄

)
and W̄ =

1

2

(
∇v̄ −∇T v̄

)
(52)

Q is normalized by relevant time scales, and colored by the instantaneous
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velocity magnitude. Figure 25(a) shows IDD-PANS isocontours of Q for the

lower half of the channel flow at Reτ = 5 200. Figure 25(b) shows IDD-PANS

isocontours of Q for the hill flow, and Figure 25(c) for the hump flow. Quite

intuitively, one can observe the finest structures in the hump flow. The hill flow,455

also dominated by the large-scale motion, which is reasonably resolved, exhibits

fine streaks as well. The channel flow, which is the least resolved of the three

cases studied here, logically exhibits the coarsest streaks.

5. Concluding remarks

A novel version of PANS, able to behave as IDDES, has been derived theoret-460

ically, following the analysis of Friess et al. [8] leading to a low-order statistical

equivalence they called “H-equivalence”. A quantitative relationship has been

determined between their respective cutoff functions, namely fk for PANS and ψ

for IDDES, in the framework of stationary and inhomogenous flows, at sufficient

high Reynolds number, such that the resolved dissipation rate can be assumed465

negligible compared to its unresolved counterpart. In the present paper, the

analysis is limited to one turbulent closure model, but can be applied to any

other.

Though the scale partitioning is less rigorously equivalent than for PITM and

DES (see [8]), the main features of IDDES are qualitatively mimicked by the470

present approach. First, the log-layer mismatch, frequent in attached boundary

layer flows, is no longer observed. The IDD-PANS approach gives a better

prediction of the mean streamwise velocity than D-PANS, and is very close to

the profile predicted by IDDES. Secondly, the approach is able to respond to

non-fluctuating inlet or initial conditions, thus able to behave in a proper RANS475

mode when needed. In particular, the present IDD-PANS approach is able to

set the target energy ratio fk,tar to 1 when no turbulent inlet or initial content

is provided. However, it is worth noticing that for the hump flow, IDD-PANS

turned out to be more stable than IDDES, since the timestep had to be reduced

for the latter.480
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Nevertheless, IDD-PANS does not perfectly match IDDES. The discrepan-

cies between IDDES and IDD-PANS may be due to unadapted assumptions

in the derivation of the equivalence criterion. In particular, the assumption

that the relative variation of modeled turbulent kinetic δkM/kM is constant

throughout the fluid domain, is very strong and not really suitable for flows485

where fk exhibits strong gradients. Moreover, the dissipation rate ε is assumed

to be totally modeled (i.e. fε = 1), since at high Reynolds numbers, energetic

and dissipative scales are sufficiently separated. But (i) near walls, the local

Reynolds number is smaller, such that dissipation may occur at resolved scales

and (ii) with a sufficiently fine mesh, e.g. in a true LES mode, resolved dissipa-490

tion must be non negligible. Besides, it is worth noticing that the equivalence

between IDDES and IDD-PANS is stronger in the case of the channel flow, than

for the two other cases studied here. This can be explained by the fact that the

initial “H-equivalence” in [8] was derived for equilibrium flows. The hump and

hill flows exhibit massive separation, and thus fall out of this framework.495

Further work will focus on calibrating IDD-PANS for other turbulent closures

like k − ω, and will be tested with explicit algebraic-like models as well. The

effect of accounting for fε 6= 1 will be investigated as well.
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Appendix A. Calculation of the low-Reynolds correction Ψ580

Here we detail the derivation of the low Reynolds number correction Ψ en-

tering Eq. (8). To that aim, we follow the methodology explained in [26].

The function Ψ is introduced so that the unresolved eddy viscosity νtu keeps

a Smagorinsky-like shape, even at low Reynolds number, i.e.:

νtu = C2∆2S (A.1)

where C = ΨCDES is a constant, independent of the ratio νtu/ν. In other585

words, the role of Ψ is to de-activate the damping functions.
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Let us consider the IDDES system ku − εu (Eq. (3)) involving the damping

functions fµ and f2 given by Eq. (2). We define S2 = 2s̄ij s̄ij . In that case,

assuming local equilibrium between production and destruction terms in the

transport equations for ku and εu respectively yields :590

νtuS
2 =

k
3/2
u

ΨCDES∆
(A.2)

νtuS
2 =

Cε2
Cε1

f2εu (A.3)

The unresolved dissipation εu can be eliminated from Eq. (A.3) by linking it to

νtu and ku :

νtu = Cµfµ
ku

2

εu
⇒ εu = Cµfµ

ku
2

νtu
(A.4)

Putting Eqs. (A.4) and (A.3) together yields:

νtuS
2 =

Cε2
Cε1

f2Cµfµ
ku

2

νtu
⇒ ku = νtuS

√

Cε1
Cε2Cµfµf2

(A.5)

And if we use Eq. (A.5) to express ku in Eq. (A.2), we obtain:

νtu =

(
Cε2Cµfµf2

Cε1

)3/2

Ψ2C2
DES

︸ ︷︷ ︸

C2

∆2S (A.6)

Now, to make C independant of the damping functions fµ and f2, we must595

have:

Ψ2 = (fµf2)
−3/2 ⇒ Ψ = (fµf2)

−3/4 (A.7)

It is worth noticing that this calibration of Ψ is performed only for IDDES, not

for IDD-PANS explicitly. Indeed, through Eq. (47), the parameter fk inherits

all (ID)DES features, thus the low Reynolds number correction Ψ.
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