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Abstract

A new approach to use the partially averaged Navier-Stokes (PANS) model
as a hybrid RANS-LES model is presented. It is evaluated in fully developed
channel flow and embedded LES in a hump flow. For the channel flow, the
two RANS-LES interfaces are parallel to the walls. In the URANS region,
fk is set to one. In the LES region, fk is set to a constant value (the baseline
value is fk = 0.4) or it is computed. It is found that the new model gives
good results for channel flow for a large span of Reynolds numbers (4 000 ≤
Reτ ≤ 32 000). In the channel flow simulations, three different grids are
used in the wall-parallel planes, 322, 642 and 1282, and the model yields
virtually grid-independent flow fields and turbulent viscosities. Embedded
LES is used for the hump flow which is well predicted. The RANS-LES
interface is normal to the flow from the inlet. RANS is used upstream of the
interface. Downstream this interface, RANS is used near the wall and LES
is used away from the wall.

Keywords: LES, PANS, 2G-RANS, Zonal model, Embedded LES, Hybrid
RANS-LES
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1. Introduction

Wall-bounded Large Eddy Simulation (LES) is affordable only at low
Reynolds number. At high Reynolds number, the LES must be combined
with a URANS treatment of the near-wall flow region. There are differ-
ent methods for bridging this problem such as Detached Eddy Simulation

Preprint submitted to Elsevier June 23, 2014



(DES) (Spalart et al., 1997; Spalart, 2000; Shur et al., 2008), hybrid LES/RANS
(Davidson & Peng, 2003; Temmerman et al., 2005) and Scale-Adapted Sim-
ulations (SAS) (Menter & Egorov, 2010; Egorov et al., 2010); for a review,
see Fröhlich & von Terzi (2008). The two first classes of models take the
SGS length scale from the cell size whereas the last (SAS) involves the von
Kármán lengthscale.

The DES, hybrid LES/RANS and the SAS models have one thing in com-
mon: in the LES region, the turbulent viscosity is reduced. This is achieved
in different ways. In some models, the turbulent viscosity is reduced indi-
rectly by increasing the dissipation term in the k equation as in two-equation
DES (Travin et al., 2000). In other models, such as in the two-equation X-
LES (Kok et al., 2004) and in the one-equation hybrid LES-RANS (Davidson
& Billson, 2006; Temmerman et al., 2005), it is accomplished by reducing the
length scale in both the expression for the turbulent viscosity as well as for
the dissipation term in the k equation.

In the partially averaged Navier-Stokes (PANS) model (Girimaji, 2006a)
and the Partially Integrated Transport Model (PITM) (Schiestel & Dejoan,
2005; Chaouat & Schiestel, 2005), the turbulent viscosity is reduced by de-
creasing the destruction term in the dissipation (ε) equation which increases
ε. This decreases the turbulent viscosity in two ways: first, the turbulent
viscosity is reduced because of the enhancement of ε, and, second, the tur-
bulent kinetic energy, k, decreases because of the increased dissipation term,
ε.

In the SAS model based on the k − ω model, the turbulent viscosity is
reduced by an additional source term, PSAS, in the ω equation. The source
term is activated by resolved turbulence; in steady flow it is inactive. When
the momentum equations are in turbulence-resolving mode, PSAS increases
which increases ω. This decreases the turbulent viscosity in two ways: first,
directly, because ω appears in the denominator in the expression for the
turbulent viscosity, νt, and, second, because k is reduced due to its increased
dissipation term β∗kω.

The PANS model and the PITM models are very similar to each other
although their derivations are completely different. The only difference in
the models is that in the PANS model the turbulent diffusion coefficients in
the k and ε equations are modified. These two models do not use the filter
width, and can hence be classified as URANS models. On the other hand, a
large part of the turbulence spectrum is usually resolved which is in contrast
to standard URANS models. PANS and PITM models have by Fröhlich
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& von Terzi (2008) been classified as second-generation URANS models, or
2G-URANS models.

The PANS model is used in the present work. In PANS, two new co-
efficients are introduced, fk and fε. The former denotes the ratio of the
modeled to the total turbulent kinetic energy, and the latter denotes the
corresponding ratio of the dissipation. Since small turbulent scales affected
by dissipation are not resolved in the present study, the coefficient fε is set
to one. The coefficient fk may vary from one (RANS) to zero (DNS). For
LES it should take values somewhere in between. When using PANS in
turbulence-resolving mode, fk is usually set to a constant value (both in
space and time). In Girimaji (2006b) they used a constant fk, mostly 0.4
and 0.5. Frendia et al. (2006) used a constant fk coefficient of 0.2 and set
fε = 0.5, 0.667 or 1.0. They found that fε = 0.667, i.e. fk/fε = 0.3, gave the
best results on the chosen grid. In Ji et al. (2011) and Ji et al. (2012) they
used constant values of fk for simulating cavitating flow around an hydrofoil
and a cavitating propeller. They found that the smaller fk, the higher the
shedding frequency. They recommend a value of fk = 0.2. In Girimaji &
Abdol-Hamid (2005) they used either a constant fk in space (in the range
0.4 < fk < 1) or they let fk vary. They compute it as 3(∆min/Lt)

2/3 where
∆min is the smallest grid cell size and Lt = (k + kres)

3/2/ε where k + kres
denotes modeled plus resolved turbulent kinetic energy. They obtained the
space-varying fk from a pre-cursor steady RANS simulation and then kept
it constant in time in the PANS simulations. The lowest constant value,
fk = 0.4, gave the best results. Lakshmipathy et al. (2011) used PANS for
vortex shedding around a circular cylinder at high Reynolds number. The
evaluated different constant fk values (0.5, 0.6, 0.7, 1.0) and they found that
fk = 0.5 gave best agreement with experiments. Basu et al. (2007) propose
a new form of varying fk. They present results also for constant fk using
0.3, 0.75 and 0.85. They show that the varying fk and fk = 0.3 give good
results. Furthermore, it is shown that when the varying fk method is used,
fk takes values between 0.2 and 0.4 in the turbulence-resolving regions. An
extension of PANS, based on a four-equation k − ε − ζ − f model, was re-
cently proposed (Basara et al., 2011). They compute fk as C

−1/2
µ (∆/Lt)

2/3

where ∆ = V 1/3 (V denotes cell volume). A near-wall low-Reynolds number
capability was added to PANS so that the equations can be integrated all
the way up to the wall (Ma et al., 2011). In that work, it was furthermore
shown that the PANS model is a good SGS model for wall-resolved LES at
low Reynolds numbers. It was found that a constant value of fk = 0.4 was
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appropriate. Davidson & Peng (2011, 2013) present embedded LES applied
to channel flow and the flow over a hump. Davidson (2012) used PANS in
LES mode of a developing boundary layer and the flow over a backstep. Dif-
ferent constant fk values were evaluated in these works. A value of fk = 0.4
was recommended.

In the present work, the PANS model is used as a zonal hybrid LES/RANS
model to simulate wall-bounded flow at high Reynolds number. fk = 1 in the
near-wall region, and fk < 1 in the LES region. Different constant values of
fk have been used in the literature, see above. A value of 0.4 ≤ fk ≤ 0.5 has
been shown to be best in most of the works, except in cavitating flow where
a value of 0.2 was found to be optimal. Based on the work in the literature,
a baseline value of fk = 0.4 is chosen for the LES region in the present work.
Constant fk values in the range 0.2 ≤ fk ≤ 0.6 are also evaluated. Although
most investigations in the literature have used a constant fk, it should con-
ceptionally be dependent on the grid size. A smaller fk should be used when
the grid is refined and vice versa. Hence, simulations are also carried out in
the present study using a variable fk in space where fk = C

−1/2
µ (∆/Lt)

2/3 as
proposed by Basara et al. (2011).

The paper is organized as follows: the equations and the modelling are
presented in the next section followed by a description of the numerical
method. The following section presents and discusses the results and conclu-
sions are drawn at the end of the paper.

2. Equations

2.1. Mean flow equations

The momentum equations with an added turbulent viscosity reads

∂ūi

∂t
+

∂ūj ūi

∂xj
= δ1i −

1

ρ

∂p̄

∂xi
+

∂

∂xj

(

(ν + νt)
∂ūi

∂xj

)

(1)

x

y

kint, εint

wall

yint

LES, fk < 1

URANS, fk = 1.0

Figure 1: The URANS and the LES regions.
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where the first term on the right side is the driving pressure gradient in the
streamwise direction, which is used only in the channel flow simulations.

2.2. The LRN PANS k − ε turbulence model

The low-Reynolds number partially averaged Navier-Stokes (LRN PANS)
turbulence model reads (Ma et al., 2011)

∂k

∂t
+

∂ūjk

∂xj
=

∂

∂xj

[(

ν +
νt
σku

)

∂k

∂xj

]

+ Pk − ε

∂ε

∂t
+

∂ūjε

∂xj

=
∂

∂xj

[(

ν +
νt
σεu

)

∂ε

∂xj

]

+ Cε1f1Pk
ε

k
− C∗

ε2

ε2

k

Pk = νt

(

∂ūi

∂xj

+
∂ūj

∂xi

)

∂ūi

∂xj

, C∗

ε2 = Cε1 +
fk
fε
(Cε2f2 − Cε1)

νt = Cµfµ
k2

ε
, σku ≡ σk

f 2
k

fε
, σεu ≡ σε

f 2
k

fε
, σk = 1.4, σε = 1.4

Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09, fε = 1

(2)

where the damping functions are defined as

f2 =

[

1− exp
(

−
y∗

3.1

)

]2{

1− 0.3exp

[

−
(Rt

6.5

)2
]}

fµ =

[

1− exp
(

−
y∗

14

)

]2
{

1 +
5

R
3/4
t

exp

[

−
( Rt

200

)2
]

}

x

y

Interface

P

S

As

∆y

Figure 2: Control volume, P , in the LES region adjacent to the interface.
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At walls, k = 0 is specified. For the dissipation rate, ε, the value at the
adjacent wall nodes with a wall distance of y is prescribed as

ε = 2ν
k

y2
(3)

For the hump flow, it was found that this boundary condition for ε gave
numerical problems. Instead, ε was computed as in the one-equation hybrid
LES-RANS model (Davidson, 2009)

ε =
k3/2

ℓ
, ℓ = κC−3/4

µ y[1− exp(−0.2k1/2y/ν)] (4)

with κ = 0.41.
Based on the discussion in Section 1, a baseline value of fk = 0.4 is

chosen. The range of 0.2 < fk < 0.6 is evaluated. Furthermore, a variable
fk = C

−1/2
µ (∆/Lt)

2/3, see Section 4.1, as suggested by Girimaji & Abdol-
Hamid (2005); Basara et al. (2011).

The Reynolds number is high in the test cases evaluated in the present
study. This means that the cut-off length scale is in the inertial subrange, so
that the subgrid dissipation is equal to the viscous dissipation. Hence the fε
is set to one, i.e. fε = 1 (Lakshmipathy et al., 2011).

The key element in the present use of the PANS model is that the C∗

ε2

coefficient includes fk. When fk in the C∗

ε2 coefficient is equal to one, the
model acts as a standard k − ε model. When fk is decreased to, say, 0.4,
the destruction term is decreased, which increases ε. This reduces the mod-
eled turbulent kinetic energy, k, and the turbulent viscosity and the model
switches to an SGS (subgrid-scale) model.

It may be noted that the PANS model is very similar to the PITM
model (Schiestel & Dejoan, 2005; Chaouat & Schiestel, 2005). In the PITM
model, the expression for Cε2 is the same as in the PANS model with fε = 1

CPITM
ε2 =

3

2
+

k

k + kres

(

Cε2 −
3

2

)

= Cε1 + fk (Cε2 − Cε1) (5)

where kres denotes the resolved turbulence. The final expressions used (Schi-
estel & Dejoan, 2005; Chaouat & Schiestel, 2005) involve the ratio of the
filter width to the integral length scale where the latter is taken as a frac-
tion of the wall distance. However, the diffusion coefficients in the k and ε
equations are not modified in PITM. The use of fk in the diffusion coefficient
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implies that the diffusion transport of k and ε is related to a RANS viscosity
rather than to an SGS viscosity (Ma et al., 2011). The inclusion of fk in the
diffusion of k and ε was found to be negligible in the present channel flow
simulations (see Section 4.1) as well as in hump flow simulations (Davidson
& Peng, 2011, 2013) and in hill flow simulations (Ma et al., 2011). The in-
fluence on the modeled viscosity was non-negligible in the latter two flows,
but the resolved turbulence was much larger than the modeled one leading
to negligible difference in the mean flows.

2.2.1. The interface conditions

The interface plane separates the URANS region near the wall and the
LES region in the outer region. In the former region, the turbulent viscos-
ity, νt, should be a RANS viscosity and in the latter region it should be an
SGS viscosity. Hence νt must decrease rapidly when going from the URANS
region to the LES region. This is achieved by setting the usual convection
and diffusion fluxes of k at the interface to zero. New fluxes are introduced
in which the interface condition is set to kint = fkkRANS, where kRANS is
the k value in the cell located in the URANS region adjacent to the inter-
face. Unless otherwise stated, no modification is made for the convection
and diffusion of ε across the interface. The implementation is presented in
some detail below. We write the discretized equation in the y direction (see
Figs. 1 and 2) as (Versteegh & Malalasekera, 1995)

aPkP = aNkN + aSkS + SU , aP = aS + aN − SP

where aS and aN are related to the convection and diffusion through the south
and north face, respectively, and SU and SPkP include the production and
the dissipation term, respectively. For a cell in the LES region adjacent to the
interface (cell P ), aS is set to zero, setting the usual convection and diffusion
fluxes to zero. New fluxes, including fk, are incorporated in additional source
terms as

SU = (Cs +Ds)fkkS, SP = −(Cs +Ds)

Cs = max (v̄sAs, 0) , Ds =
µtotAs

∆y

(6)

where Cs and Ds denote convection (first-order upwind) and diffusion, re-
spectively, through the south face, and As is the south area of the cell. As
can be seen, the kS is multiplied by fk and hence the new convective flux is
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a factor fk smaller than the original one. Also the diffusion flux is smaller;
it is Ds(fkkS − kP ) compared with the original flux Ds(kS − kP ).

The interface is in the present work defined along gridlines. The ap-
proach presented above is also applicable when the location is automatically
computed where the extent of the RANS region varies along the wall. The
convective and diffusive fluxes are modified in exactly the same way.

The present method of adding a new flux in the k equation is similar to
the method proposed in Girimaji & Wallin (2013). In that work they take
into account the spatial variation of fk. A decrease of fk in space – as occurs
at the interface in Fig. 1 – means that the turbulent kinetic energy should be
transferred from modeled to resolved. This is done by introducing a sink term
in the k equation which decreases the turbulent viscosity. Girimaji & Wallin
(2013) also add a turbulent diffusion term in the momentum equation which
appears as a source term in the equation for turbulent resolved kinetic energy.
No source term is used in the momentum equations in the present method. A
further difference is that the present method modifies the equations only in
the LES region (in which k is reduced), not in the RANS region. The reason
is that this effect is believed to be the most critical; it is important that
the resolved turbulence on the LES side of the interface is activated as soon
as possible (i.e. as close as possible to the interface). The total turbulent
kinetic energy across the interface is not conserved in the present method,
but as shown below, the total turbulent kinetic energy that is lost across the
interface is not large.

3. Numerical Method

An incompressible, finite volume code is used (Davidson & Peng, 2003).
The numerical procedure is based on an implicit, fractional step technique
with a multigrid pressure Poisson solver and a non-staggered grid arrange-
ment. For the momentum equations, central differencing is used in space in
the channel flow simulations; in the hump flow simulations 5% upwinding is
employed using the second-order van Leer (1974) scheme.

For both flows, the Crank-Nicolson scheme is used in the time domain
and the first-order hybrid central/upwind scheme is used in space for solving
the k and ε equations.

This numerical method has been shown to give accurate results for DNS
of channel flow at Reτ = 500 with a 64× 64× 64 mesh (Davidson & Billson,
2006).

8



4. Results

4.1. Channel flow

Reτ ∆y+ ∆x+ ∆z+ Ny

4 000 2.2− 520 200 100 80
8 000 1.5− 1 050 400 200 96
16 000 0.3− 2 100 800 400 128
32 000 0.6− 4 200 1 600 800 128

Table 1: Grids. fy = 1.15 (stretching).

Fully developed channel flow is computed for Reynolds numbers Reτ =
uτδ/ν = 4 000, 8 000, 16 000 and 32 000, where δ denotes half channel width.
The baseline mesh has 64 × 64 cells in the streamwise (x) and spanwise (z)
directions, respectively. The size of the domain is xmax = 3.2, ymax = 2 and
zmax = 1.6. A simulation with twice as large domain in the x − z plane
(xmax = 6.4 and zmax = 3.2) with 128 × 128 cells was also made for Reτ =
4 000, and identical results were obtained as for the smaller domain. The
number of cells in the y direction varies between 80 and 128 cells depending
on the Reynolds number, see Table 1. The baseline position for the interface
is at y+ ≃ 500 for all grids unless otherwise stated.

The velocity profiles and the shear stresses are presented in Fig. 3. As can
be seen, the predicted velocity profiles are in good agreement with the log-
law. Figure 3b presents the resolved shear stresses. The interface is shown by
thick dashed vertical lines; it moves towards the wall for increasing Reynolds
number since it is located at y+ ≃ 500 for all Reynolds numbers. In the same
way, the region where the modeled and viscous shear stresses are important
decreases for increasing Reynolds number, see Fig. 3c.

Figures 4 and 5 present the velocity and shear stress profiles on coarse
meshes (half as fine in x and z) and fine meshes (twice as fine in x and
z), respectively. The results are almost the same as on the baseline mesh
(the velocity profile on the coarse mesh for the highest Reynolds number is
slightly worse).

In the region of the interface, the contribution of both the resolved and the
modeled shear stresses are significant. This raises the question whether the
total turbulent kinetic energy might be overpredicted in this region. Figure
6 shows how the modeled, resolved and total turbulent kinetic energy vary
for different Reynolds numbers. As can be seen, the total turbulent kinetic

9



1 100 1000 30000
0

5

10

15

20

25

30

y+

U
+

(a) Velocity. +: 1

0.4
ln y+ + 5.2

0 0.05 0.1 0.15 0.2
−1

−0.8

−0.6

−0.4

−0.2

0

y/δ

〈ū
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Figure 3: Velocity and shear stress. (Nx × Nz) = (64 × 64) : Reτ = 4 000; :
Reτ = 8 000; : Reτ = 16 000; : Reτ = 32 000. Vertical thick dashed lines show the
interface line between the URANS and the LES region.

energy (Fig. 6b) agrees fairly well with DNS data at Reτ = 2000, except for
the highest Re numbers for which it is strongly overpredicted near the wall.

Figure 7 presents how the kinetic energies vary across the interface. As
can be seen, the sum of the modeled and turbulent kinetic energy show
an nonphysical drop when going from the RANS region to the LES region
(Fig. 7a). The reason for this drop is the sharp drop in the modeled kinetic
energy (see the lines at the bottom of Fig. 7a). The total kinetic energy
(Fig. 7b) exhibits a monotonic increase with y, but there is a small reduction
in the gradient across the interface. As mentioned in Section 2.2.1, the
turbulent kinetic is in the present approach not conserved across the interface.
One way to improve the conservation of the total turbulent kinetic energy
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Figure 4: Velocity and shear stress. (Nx ×Nz) = (32× 32). For legend, see Fig. 3.

could be to add resolved kinetic energy on the LES side as proposed by
Girimaji & Wallin (2013).

It was shown in Yakhot et al. (2010) that the turbulent kinetic energy
should be independent of Reynolds number provided that Re2h > 105 (Reτ &

2000). Figure 6 shows that this is well satisfied in the outer region (y > 0.1)
where the total kinetic energies also agree nicely with DNS data.

Figure 8 compares the baseline PANS with RANS (fk = 1 everywhere).
The modeled content in the URANS region with zonal PANS is very small
compared to what is seen in steady RANS. Why is this so? In the URANS
region, the PANS model is operating in full RANS mode, i.e. fk = 1. As
expected, the RANS simulation gives a much larger turbulent viscosity in the
LES region than the PANS simulation does. But as can be seen, this is also
true for the URANS region. The dissipations for the PANS simulation and
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〈ū
′
v̄
′
〉+

(b) Resolved shear stress

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

y/δ

τ
ν
,+

1
2

+
τ
t,
+

1
2

(c) Modeled and viscous shear stress

Figure 5: Velocity and shear stress. (Nx ×Nz) = (128× 128). For legend, see Fig. 3.

the RANS simulation are very similar in the URANS region, see Fig. 8c. The
reason for the low modeled content in the URANS region when using PANS
is the low modeled turbulent kinetic energy, see Fig. 8b. The low k values
are created by the interface condition in Eq. 6: the instantaneous convection
of k (the diffusion is much smaller) leaving the URANS region is reduced by
a factor or fk which reduces k in the LES region. When the instantaneous
convection is in the direction towards the wall, it brings small k values into
the URANS region which reduces k – and the turbulent viscosity – in the
URANS region. Results of a simulation where no interface condition on k is
used (i.e. Eq. 6 is not used) are also included in Fig. 8 (see also Fig. 17).
This illustrates the critical influence of the interface condition. Without the
interface condition, the modeled turbulent kinetic and the turbulent viscosity
become too high which results in a poorly predicted velocity profile (not
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Figure 6: Turbulent kinetic energies. (Nx × Nz) = (64 × 64). For legend, see Fig. 3. ◦:
DNS at Reτ = 2000 (Hoyas & Jiménez, 2006)
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Figure 7: Kinetic energies near the interface. (Nx × Nz) = (64 × 64). For legend, see
Fig. 3. Markers show the computational cell centers. The vertical thick dashed lines show
the location of the interface.

shown).
The baseline value of the position of the interface is y+ ≃ 500. Figure 9

presents the sensitivity to the position of the interface. The peak in the
viscosity profiles is located approximately in the middle of the URANS region.
It can be seen that, as the interface is moved closer to the wall, the peak of
the turbulent viscosity gets smaller. At the innermost location (y+ = 130),
the velocity profile is poorly predicted, but, if the location is in the region of
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Figure 8: Comparison between RANS (fk = 1) and zonal PANS. Reτ = 4 000. :
PANS (baselines case) : RANS; : PANS, no interface condition on k (Eq. 6 is not
used). Vertical thick dashed lines show the interface line between the URANS and the
LES region.

500 < y+ < 1000, the velocity profile is well predicted. It is not obvious why
poor results are obtained with the interface at y+ = 130. It has been reported
in the literature that locating the interface too close to the wall inhibits the
flow on the LES side to evolve efficiently into turbulence-resolving mode.
This was found in Piomelli et al. (2003) who put the interface at y+ = 130
and in Davidson & Dahlström (2005) and Davidson & Billson (2006) who
defined the interface at y+ = 60. Forcing at the interface was used in these
works to stimulate growth of resolved turbulence on the LES side. It may be
that the method proposed in Girimaji & Wallin (2013) could also act as a
stimulator of resolved turbulence since they add a source in the momentum
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Figure 9: Velocity and total viscosity. Reτ = 8 000. Interface location at : y+ = 130
: y+ = 500 : y+ = 980 .
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Figure 10: Instantaneous velocity profiles. Reτ = 8 000. The horizontal dashed thick line
shows the interface.

equations with the object of adding resolved turbulence.
Instantaneous velocity profiles around the interface region are shown in

Fig. 10. As can be seen, the interface is sometimes visible in the profiles,
sometimes not. The resolved fluctuations, ū′, are clearly visible and 〈ū′2〉
makes an important contribution to kres in Fig. 6a.

Figure 11 presents the effect of fk on the predicted velocity and turbulent
viscosity at Reτ = 16 000. The turbulent viscosity increases, as expected,
for increasing values of fk. The velocity profile is very well predicted with
fk = 0.5 and rather well with fk = 0.2 and fk = 0.3. For fk = 0.6 the velocity
profile is poorly predicted and the flow in the LES region is somewhere in
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Figure 11: Velocity, total viscosity and resolved shear stress. Reτ = 16 000. Influence of
fk. : fk = 0.2 : fk = 0.3 : fk = 0.5 : fk = 0.6

between steady mode (RANS) and turbulence-resolving mode (LES); the
result is a poorly turbulence-resolved flow with too large turbulent viscosity
(too much damping). It it possible that the method proposed in Girimaji &
Wallin (2013) or some kind of forcing (Batten et al., 2004; Piomelli et al.,
2003; Davidson & Dahlström, 2005; Davidson & Billson, 2006) could induce
the flow to go into turbulence-resolving mode. At Reτ = 8 000 the flow goes
steady on all three grids with fk = 0.6 (not shown).

The turbulent viscosity profiles are shown in Fig. 12 for three different
resolutions in the x − z plane. It is interesting to note that the turbulent
viscosity is not affected by the grid resolution. Hence, the model yields grid
independent results. Note that the ratio of the filter width, ∆ = (∆V )1/3, on
the fine grid (128× 128) to that on the coarse (32× 32) grid is 161/3 ≃ 2.5.
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Figure 13: Total viscosity. Reτ = 8 000. (Nx ×Nz) = (32 × 32); : σku and σεu from
Eq. 2; : σku = σk and σεu = σε.

Hence, an SGS model based on ∆ would give a 2.5 larger viscosity on the
coarse mesh than on the fine mesh. The same effect was seen in hump
flow simulations carried out by Davidson & Peng (2011, 2013) using PANS
(fk = 0.4 everywhere): a grid refinement (doubling the number of cells in
the spanwise direction) gave no reduction in the turbulent viscosity.

It can be seen that the turbulent viscosity (Fig. 12) is sharply reduced
when moving across the interface from the URANS region to the LES region.
This is achieved by the modified interface convection and diffusion fluxes in
the k equation, see Eq. 6. This is an essential feature of the present approach
(see Fig. 8) since the small viscosity on the LES side of the interface is helpful
in stimulating a rapid growth of resolved turbulence, thereby promoting the
transition from modeled mode (RANS) to turbulence-resolving mode (LES).
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Figure 15: Production, destruction and RMS of convection terms in the k and ε equations.
Inner scaling. Left vertical axes: inner (URANS) region; right vertical axes: outer (LES)
region. Reτ = 4 000. (Nx ×Nz) = (64× 64).

In Section 1 is was mentioned that the inclusion of fk in the turbulent
diffusion coefficient for k and ε has a negligible effect. This is shown in Fig. 13
in which the turbulent viscosity is presented (there is no effect on the mean
flow). When σk = σku and σε = σεu the diffusion of k and ε decreases by
a factor of six when fk = 0.4 (see Eq. 2) compared to the baseline PANS
model. The result is that the peaks in k and ε (and hence also νt) are less
smeared out compared to the baseline model. This was also seen in hill flow
simulations (Ma et al., 2011).

It is shown in Fig. 12 that the turbulent viscosity is independent of the
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grid. The production term, 〈Pk〉, also stays fairly constant when the grid is
refined or coarsened, see Fig. 14, at least for y/δ & 0.3. As expected, the k
equation is in the LES region in local equilibrium, i.e.

〈Pk〉 = 〈ε〉, (7)

see Fig. 15a. Interestingly, the time-averaged production and destruction
terms in the ε equation are in the LES region also in balance, see Fig. 15b,
i.e.

〈

Cε1
ε

k
Pk

〉

−

〈

C∗

ε2

ε2

k

〉

+ 〈Dε〉 ≃
〈

Cε1
ε

k
Pk

〉

−

〈

C∗

ε2

ε2

k

〉

= 0 (8)

where Dε denotes diffusion of ε (the time-averaged convection, 〈Cε〉 = 0).
The diffusion term, Dε, is entirely negligible in the LES region (not shown).
It seems that both relations in Eqs. 7 and 8 cannot be satisfied since Cε1 6=
C∗

ε2. It is found that the instantaneous convective terms in the k and the
ε equations are of the same order as the production and dissipation terms
(although the time average of the convective terms is zero), see Fig. 15.
Hence, instantaneously, the production, destruction and convection terms are
the important terms in the k and the ε equations, but when the equations
are time-averaged the production and destruction terms balance each other.

But one question remains: how can the time-averaged production and
destruction terms in both the k and ε equations (Eqs. 7 and 8) be in balance?
The reason is that although

Cε1
〈ε〉

〈k〉
〈Pk〉 6= C∗

ε2

〈ε〉2

〈k〉
(9)
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Figure 17: Velocity, total viscosity and resolved shear stress. Reτ = 4 000. (Nx ×Nz) =
(64 × 64). Influence of Cs in Eq. 11. : Cs = 0.1; : Cs = 0.5; : no interface
condition on ε; : no interface condition on ε or k.

(because 〈Pk〉 = 〈ε〉 and Cε1 6= C∗

ε2), Fig. 15b shows that

Cε1

〈 ε

k
Pk

〉

= C∗

ε2

〈

ε2

k

〉

(10)

It is a general feature of any two (or three as in Eq. 10) fluctuating quantities,
A = 〈A〉+A′ and B = 〈B〉+B′, that 〈AB〉 6= 〈A〉〈B〉. In the case of Eq. 10,
the correlation between ε, k−1 and Pk (left side) is stronger than that between
ε2 and k−1 (right side), as shown in Fig. 16.

No special treatment was used for the ε equation at the interface in the
simulations presented above. Initially, simulations were made in which the
convection and the diffusion in the ε equation were modified in the same way
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as for the k equation, see Eq. 6. The ε value that was transported from the
URANS region to the LES region was set from the Smagorinsky model in
the same way as in embedded LES (Davidson & Peng, 2011, 2013)

εS = C3/4
µ k

3/2
S /ℓsgs, ℓsgs = Cs∆ (11)

where ∆ = (∆V )1/3, and ∆V is the volume of the cell adjacent to the
interface. A value of Cs = 0.07 was found to be suitable for embedded
LES (Davidson & Peng, 2011, 2013). Figure 17 presents simulations using
different values of Cs. The results when using

• no interface for ε, interface condition for k

• no interface condition for k and ε

are also included for reference. First, it can be noted that when using no
interface condition in the k equation, the turbulent viscosity in the LES re-
gion becomes much too large (Fig. 17b). As a result, all resolved turbulence
is killed (Fig. 17c), and as a consequence the velocity profile is poorly pre-
dicted (Fig. 17a). A value of Cs = 0.1 gives good agreement with the log-law
(Fig. 17a) and Cs = 0.05 gives almost identical results (not shown). These
small Cs values succeed in strongly reducing the turbulent viscosity in the
LES region adjacent to the interface. Figure 17c shows that when a large
Cs = 0.5 is used, the magnitude of the resolved shear becomes smaller (too
small) which results in an overshoot of the velocity profile in the LES region
near the interface, see Fig. 17a. When making these tests it was realized that
the best and most accurate treatment of the ε equation at the interface is to
do nothing at all. It turns out that a value of Cs = 0.11 is obtained when
computing Cs from Eq. 11 when post-processing data for which no interface
condition on ε was used.

Constant values of fk were used in all predictions presented above. The
fk can also be computed as proposed in Girimaji & Abdol-Hamid (2005);
Basara et al. (2011). The smallest resolved length scale should be related to
the modeled (SGS) dissipation and the modeled (SGS) turbulent viscosity.
Dimensional analysis gives (cf. the Kolmogorov length scale η = (ν3/ε)1/4)

ℓres,min =

(

ν3
t

εsgs

)1/4

=

(

ν3
t

ε

)1/4

(12)
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The expression of νt in Eq. 2 into Eq. 12 gives

ℓres,min =

(

C3
µk

6

ε3ε

)1/4

= C3/4
µ

k3/2

ε
(13)

In eddy-viscosity models, the viscosity is estimated as the product of a tur-
bulent velocity scale, U = uτ , and a turbulent length scale, L = U3/ε = u3

τ/ε.

Using uτ = C
1/2
µ k1/2 we get

νt = UL = uτ
u3
τ

ε
= uτC

3/4
µ

k3/4

ε

Hence the modeled length scale, L, and the minimum resolved length scale,
ℓres,min, are equal

ℓres,min = L = C3/4
µ

k3/2

ε
= C3/4

µ

(fk(k + kres))
3/2

ε

where fk = k/(k+kres) was used to obtain the right side. Both length scales
must be larger than the grid scale, i.e. ℓmodel = L ≥ ∆, which give

fk ≥ C−1/2
µ

(∆ε)2/3

k + kres
= C−1/2

µ

(

∆

Lt

)2/3

, Lt =
(kres + k)3/2

ε

This is the minimum fk which the grid size ∆ can support. If fk is larger,
we are in theory wasting some of the turbulence-resolution capability of the
grid. The fk is set from the lower limit, i.e.

fk = C−1/2
µ

(

∆

Lt

)2/3

(14)

Figure 18 shows the velocity and turbulent viscosity for different meshes
when computing fk from Eq. 14. As can be seen, the velocity profiles agree
well with the log-law for the fine and the baseline meshes, but the coarse
grid gives poor agreement; the turbulent viscosity becomes much too large
because of a large computed fk and as a result all resolved turbulence is
killed (not shown). Hence, for the coarse grid a constant fk is much better
than computing fk from Eq. 14.

Contrary to when constant fk is used in the LES region, the turbulent
viscosity increases when the mesh is coarsened (18b). The reason is that
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Figure 18: Velocity and total viscosity. Reτ = 8 000. fk is computed using Eq. 14. For
legend, see Fig. 14.
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Figure 19: fk (Eq. 14) and ratio of modeled to total kinetic turbulence. Reτ = 8 000.
: fk, (Nx × Nz) = (64 × 64); : fk, (Nx × Nz) = (128 × 128). ▽: k/(k + kres),

(Nx ×Nz) = (64× 64). ◦: k/(k + kres), (Nx ×Nz) = (128× 128).

fk increases when the mesh is coarsened, see Fig. 19; for the coarse mesh
fk = 1 everywhere since all resolved turbulence is killed. Figure 19 compares
fk to the ratio k/(k+ kres). The latter is, as can be seen, much smaller than
the former. Recall that the computed fk is the minimum fk that the grid
supports, see the discussion leading to Eq. 14. The question can nevertheless
be posed: what happens if fk is computed as fk = k/(k + kres)? Figure 20
presents velocity and turbulent viscosity when fk is computed in this way,
but fk is taken from the 64 × 64 simulation shown in Fig. 19 (i.e. fk is
constant in time and only a function of y). As can be seen, the result is poor
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Figure 20: Velocity and total viscosity. Reτ = 8 000. (Nx ×Nz) = (64× 64). In the LES
region fk = 〈k/(k + kres)〉 is taken from Fig. 19.

agreement with the logarithmic law. The turbulent viscosity becomes much
smaller than for the baseline case, fk = 0.4, see Fig. 9.

4.2. Hump flow

As a second test case the flow over a hump is presented, see Fig. 21. The
hump flow has been studied previously using LES (Avdis et al., 2009; Saric
et al., 2006) and DES (Saric et al., 2006). Wall functions were used by Avdis
et al. (2009), whereas the near-wall flow was resolved in Saric et al. (2006)
with a refined mesh in the wall-normal directions. This flow was also studied
in the ATAAC project (Schwamborn, 2012) where DES and embedded LES
were used. The present author recently presented results using embedded
LES (Davidson & Peng, 2011, 2013).

The Reynolds number of the hump flow is Rec = 936 000, based on the
hump length, c, and the inlet mean velocity at the centerline, Uin,c. Experi-
ments are presented in Greenblatt et al. (2004, 2005). The maximum height
of the hump, h, and the channel height, H , are given by H/c = 0.91 and
h/c = 0.128, respectively. The baseline mesh has 312 × 120 × 32 cells with
Zmax = 0.2c. The grid was created by the group of Prof. Strelets in St.
Petersburg and was the mandatory grid in the ATAAC project. The x − y
grid is shown in Fig. 21. The interface between URANS and LES is defined
at two different gridline numbers, j = 32 and j = 36 which correspond to
y+ = 220 and y+ = 380, respectively, at the inlet. Neumann conditions are
used at the outflow section located at x/c = 4.2. Slip conditions are used at
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the upper wall and symmetric boundary conditions are used on the spanwise
boundaries.

In the present work embedded LES is carried out locating the inlet at
x/c = 0.6 in the same way as in the ATAAC project and in Davidson & Peng
(2011, 2013). In the ATAAC project, ANSYS Germany made embedded-LES
calculation using ANSYS Fluent. The mean velocity profiles at x/c = 0.6
from that simulation is used as inlet boundary conditions in the present study.
Anisotropic synthetic fluctuations are superimposed on the mean profiles,
see Fig. 22; for details on how the synthetic fluctuations are generated, see
Davidson (2007) and Davidson & Peng (2011, 2013). The inlet k and ε are
set as

kin = fkkRANS, ℓsgs = CS∆ (15)

where kRANS is taken from the 2D RANS simulation; for more detail, see David-
son & Peng (2011, 2013). The differences in the present work compared to
the work in Davidson & Peng (2011, 2013) are:

• zonal PANS is used (in Davidson & Peng (2011, 2013) full PANS with
fk = 0.4 everywhere was used);

• fk is computed in the LES region using Eq. 14 or it is set to 0.4;

• the synthetic inlet fluctuations are scaled with (k/kmax)RANS (in David-
son & Peng (2011, 2013) no scaling was used);

• different mean inlet profiles;

• the mesh has only 32 cells in the spanwise direction (in Davidson &
Peng (2011, 2013) 64 cells were used).

Figure 23 compares the predicted skin friction with experiments. The
agreement is good although the recirculation is slightly too weak. The
predicted velocity profiles are in excellent agreement with experiments, see
Fig. 24. A small deviation between predictions and experiments can be seen
near the wall for 1.0 ≤ x/c ≤ 1.1. In Figs. 23 and 24 two different ways to
prescribe fk in the LES region are compared: either it is set to a constant
(0.4) or it is computed using Eq. 14. As can been, both ways give very similar
result, although the recovery rate is somewhat too slow when fk is computed
with Eq. 14.
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The resolved and modeled shear stresses are presented in Fig. 25. Note
that the modeled stresses are plotted with opposite sign to enhance readabil-
ity. The shear stresses are somewhat overpredicted. Again, the effect of how
fk is prescribed (constant 0.4 or computed from Eq. 14) has a very small
effect. It can be seen that the modeled shear stresses are negligible. The
results shown in Figs. 23 – 25 are as good – or slightly better – as those in
Davidson & Peng (2011, 2013) although the mesh in the present work is half
as fine.

Figure 26 presents fk and the ratio of modeled to total turbulent kinetic
energy. First, it can be seen that 0.1 ≤ fk ≤ 0.2 in the turbulence-affected
region (i.e. y − ywall . 0.1), which are rather small values for LES. Second,
as in the channel flow simulations (Fig. 19), the ratio k/(k + kres) is much
smaller than fk computed from Eq. 14. It should be noted here that –
as in the channel flow simulations, see Fig. 20 – if fk were set to values
corresponding to k/(k + kres) ≃ 0.01 (see Fig. 26) all modeled turbulence
would be dampened and the result would be a very poorly resolved DNS
simulation.
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experiments.
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Figure 24: Hump flow: Mean velocity, 〈ū〉. For legend, see Eq. 23. ◦: 2D PIV experiments;
+: 3D PIV experiments.

5. Conclusions

A new approach for using PANS as a zonal hybrid RANS-LES model has
been presented. It has been evaluated for channel flow at different Reynolds
numbers (4 000 ≤ Reτ ≤ 32 000) and gives good agreement with the log-law.
Furthermore, it was found that the model gives virtually grid-independent
results when refining the grid in the wall-parallel planes (Nx×Nz = 32× 32,
64× 64 and 128× 128). When using a constant fk, the turbulent viscosities
obtained on these three grid are nearly the same. An SGS model using the
cell size as a turbulent length scale would give a 161/3 ≃ 2.5 smaller turbulent
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Figure 25: Hump flow: resolved and modeled (opposite sign) turbulent shear stresses. For
legend, see Fig. 24.
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Figure 26: Hump flow: fk and ratio of modeled to total kinetic turbulence. fk computed
and interface at gridline j = 36. : k/(k + kres); : fk computed from Eq. 14.

lengthscale on the finest mesh compared to the coarsest mesh.
The new model has also been evaluated in embedded LES for the flow

over a hump. Good agreement with experiments were obtained.
Two ways are used to prescribe fk in the LES region: either a constant

value is used (baseline value 0.4 proved to be best) or it is computed as

fk = C
−1/2
µ (∆/Lt)

2/3, see Eq. 14. The computed fk fails on the coarse grids
in the channel flow simulations; it gives much too large a turbulent viscosity
which kills all resolved turbulence. In the hump flow, the constant fk = 0.4
gives slightly better agreement with experiments than when computing fk.

It was found that the ratio of modeled to total turbulent kinetic energy,
k/(k + kres), is much smaller than fk from Eq. 14 in both flows. fk is pre-
scribed as k/(k + kres) for channel flow using the baseline mesh, and it is
found that the small fk makes the modeled turbulence much too small in the
LES region, see Fig. 20.
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What is the advantage of using PANS in LES region and not LES? First,
if we would use a standard SGS model, such as the Smagorinsky model,
in the LES region, it would be difficult to prescribe reasonable interface
conditions for k and ε; the result would be a poor prediction of the RANS
region. Second, we believe that the PANS model can support coarser grids
in the LES region than the Smagorinsky model. When fk is larger than the
theoretical lower limit in Eq. 14, the PANS model does indeed model a larger
part of the turbulence than the Smagorinsky model.
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