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Abstract
Machine Learning (ML) is used for developing

wall functions for Detached Eddy Simulations. I use
Improved Delayed Detached Eddy Simulations (ID-
DES, Shur et al. (2008)) in fully-developed channel
flow at a frictional Reynolds number of 5 200 to create
the database. This database is used as a training set
for the ML method (support vector regression, SVR,
in Python is used). The input (i.e. the influence pa-
rameters) is y+. The ML method is trained to predict
U+.

The trained ML model is saved to disk and it
is subsequently uploaded into the Python CFD code
pyCALC-LES (Davidson, 2021). IDDES is carried
out on coarse wall-function meshes. The wall-shear
stress (using the local y+ and ū) is predicted using
the developed ML model. The test cases are channel
flow at Reτ = 16 000 and flat-plate boundary layer at
Reθ = 2 550.

1 Introduction
Machine Learning (ML) is a method where known

data are used for teaching the algorithm to classify a
set of data. The data may be photographs where the
ML algorithm should recognize, for example, traffic
lights or traffic signs (Rao and Desai, 2021). Another
example may be ECG signals where the ML algorithm
should recognize certain unhealthy conditions of the
heart (Lindholm et al., 2022). A third example is de-
tecting fraud for credit card payments (Rachana et al.,
2021). ML methods such as Support Vector Machines
(SVM) and neural networks are often used for solving
this type of problems.

The examples above are classification problems
using supervised learning (i.e. learning to recognise a
traffic light, an unhealthy heart, learn what a customers
usual credit card payment looks like). However, in the
present work input and output are numerical values. In
this case, ML in the form of regression methods should
be used (Lindholm et al., 2022); I will use support vec-
tor regression (SVR) methods available in Python.

In SVR a regression multi-dimensional “surface”
is created which has as many dimensions as number
of influence parameters (in the present work I use one

Figure 1: : hyperplane; : ±ε; •: SVR predictions
with C = 0.15 and ε = 0.1. ζ: slack from
hyperplane−ε at X ' 0.

influence parameter). Let’s make a simple example.
In Fig. 1 there is one influence parameter, X , and one
parameter to predict, y. Two control parameters are
given to the SVR methods. The first is ε which deter-
mines the width of the tube around the hyperplane 1.
Points that lie inside this tube are considered as cor-
rect predictions and are not penalized by the algorithm.
The support vectors are the points that lie outside the
tube. The second parameter given to SVR models is
the C value. It controls the “slack” (ξ ), see Fig. 1,
which is the distance to points outside the tube. If C is
increased the size of the tube is increased so that some
or all of the data points are located inside the tube.

There are not many studies in the literature on ML
for improving wall functions. In Tieghi et al. (2020)
they use a time-averaged high-fidelity IDDES simu-
lation to train a neural network for improving the pre-
dicted modeled turbulent kinetic used in wall functions
(RANS). In Ling et al. (2017) they use neural network
to improve the predicted wall pressure to be used in
fluid-structure interactions. Their target is the wall
pressure spectrum and the input parameters are the
pressure power spectra above the wall. In Dominique
et al. (2022) they use neural network to predict the wall
pressure spectra. Their input data are boundary-layer
thicknesses (physical, displacement and momentum),

1A hyperplane is a plane whose number of dimension is the
same the number of influence parameters. For example, a two-
dimensional hyperplane has two influence parameters.
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Figure 2: IDDES database.

streamwise pressure gradient and wall shear stress
which are taken from experiments and high-fidelity
DNS/LES in the literature. In Bae and Koumoutsakos
(2022) they use an overly complicated neural network
to create a pre-multiplication factor of the velocity-
based wall model (VWM) and a log-law based wall
model (LLWM). Then they introduce a reward factor,
rn, at each time step n.

The paper is organized as follow: first, I present
the numerical model. It is followed by a description
on how to generate the target database. Then I present
to standard wall functions which are used for compar-
ison. Next, the new ML-based wall function is pre-
sented. It is followed by a presentation of the results
and in the final section I make some concluding re-
marks.

2 Numerical method
The finite volume code pyCALC-LES (Davidson,

2021) is used. It is written in Python and is fully vec-
torized (i.e. no for loops). Second-order central dif-
ferencing is used in space for the momentum equa-
tions and Crank-Nicolson is used in time. For k and
ε, the hybrid central/upwind scheme is used together
with first-order fully-implicit time discretization. All
discretized equation (i.e. the sparse-matrix system) are
solved on the GPU using the Algebraic MultiGrid li-
brary pyAMGx (Olson and Schroder, 2018) based on
AMGX.

3 Creating the database
To create a database which can be used for training

the SVR, I carry out simulations using IDDES of fully-
developed channel flow. The equations read
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reads (Abe et al., 1994)
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The size of the channel is xmax = 3.2 (streamwise,
x or x1), ymax = 2 (wall normal, y or x2) and zmax =
1.6 (spanwise, z or x3). The mesh has 96 × 96 × 96
cells and the Reynolds number is 5 200 based on the
friction velocity, 〈uτ 〉 (〈·〉 denotes average in time, x1

and x3), and the half-channel width, δ. DNS was used
in Davidson (2022a) on a much finer mesh and a lower
Reynolds number. However, the accuracy of IDDES is
consider to be sufficient in the present study.

Figure 4 in Davidson (2022b) presents comparison
of the predicted velocity field and RSM fluctuations
with DNS and it is found that the agreement is reason-
able.

The instantaneous velocity, ū, is stored at nine lo-
cations in the database along with the friction veloc-
ity at the same (x, z) position. It may be noted that
in Davidson (2022a) ū was integrated over 2∆y, see
Fig. 2 (giving Ū ) where 2∆y was relevant for the wall-
normal cell size when using wall functions. At the end
of Davidson (2022a), it was found that the correlation
between Ū and the friction velocity is very low and it
was concluded that integrating in y is not a good idea.

The grid in the wall-parallel plane is finer than in a
typical wall-function mesh. Hence, the instantaneous
ū velocities and the friction velocities are integrated
over ∆X and ∆Z where ∆X and ∆Z correspond to
typical cell size in a wall-function mesh. ∆X and ∆Z
are set to 0.1 and 0.05, respectively. The nine locations
of the first cell are given in Table 1. The locations of
the second and third cells are shown in Fig. 2. The Ū
velocity at the second and the third cells are stored in
order to be able to compute the first and the second
velocity derivative which could be used as additional
input (i.e. influence) parameters. However, they are
not used in the present work.

4 Standard wall functions
The ML wall functions will be compared to wall

functions based on Reichardt’s law
ūP
uτ
≡ U+ =

1

κ
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〈∆y+〉
Location 1 12
Location 2 31
Location 3 49
Location 4 66
Location 5 76
Location 6 88
Location 7 135
Location 8 155
Location 9 207

Table 1: IDDES database for wall functions. ∆y is defined
in Fig. 2. The locations of the second and the third
cell are obtained from Fig. 2.

The friction velocity is then obtained by re-writing this
equation and solving the implicit equation

uτ − ūP {ln(1− 0.4y+)/κ+

7.8[1− exp
(
−y+/11

)
−(y+/11) exp

(
−y+/3

)
]}−1 = 0 (2)

using the Newton-Raphson method
scipy.optimize.newton in Python. ūP
and y+ denote the wall-parallel velocity and non-
dimensional wall distance, respectively, at the first,
second or third wall-adjacent cells. Unless otherwise
stated, the first wall-adjacent cells are used.

The ML wall functions will also be compared to
the standard log law, i.e.

ūP
uτ

=
1

κ
ln
(
Ey+

)
⇒ uτ =

κūP
ln (Euτδy/ν)

where E = 9.0 and δy is the distance to the wall from
the cell center of the wall-adjacent cells. For x+

2 ≤
11.63, the friction velocity is computed from the linear
law

uτ =

(
ν
ūP
δy

)1/2

5 A new wall function based on Machine
Learning (ML)

The ML method (Support Vector Regression,
SVR) consists of a learning part and a testing part. In
the learning part, the ML method is trained and in the
testing part it is tested. The svr package in Python is
used.

First, I need to determine which input variable
(influence parameters) that should be used. In stan-
dard wall functions, the input parameters are the wall-
parallel velocity, ūP , and the non-dimensional wall
distance, y+ (which includes the friction velocity, uτ );
the output is the friction velocity. Hence, the friction
velocity is used both as input and output. In order
to avoid this, I chose – in my first attempt (David-
son, 2022a) – the local Reynolds number, ūpy/ν,

the non-dimensional velocity gradient and the time-
averaged non-dimensional wall distance, 〈y+〉 as in-
fluence parameters. This ML wall function gave fairly
good results in fully-developed channel flow (David-
son, 2022a) but it was later found that it fails in flat-
plate boundary layers.

Hence, I decided to pick a different set of influence
and output parameters. I take guidance from the tra-
ditional wall laws (the linear law, the log law and the
Reichard’s law) which all three are written on the form
U+ ≡ ū

uτ
= f (y+) ≡ f

(
uτy
ν

)
. In the present work,

I choose to use the same output and input in the ML
wall functions, i.e. y+ as influence parameter (input)
and U+ as output parameter. The potential drawback
is that uτ appears both in the input and output parame-
ter which could necessitate an iterative procedure pre-
dicting U+ a couple of times with updated y+. In the
results section it is found that that is not needed.

Next, I train the ML method using IDDES data at
Reτ = 5 200. I use 300 independent, instantaneous
samples at each of the nine locations (Table 1). I pick
80% of the data randomly and define that as the train-
ing set. The remaining 20% is then used for testing,
i.e. predicting. The error, e, between the predicted U+

(testing samples) using svr and the IDDES database
is 9% (Davidson, 2022b).

The predicted friction velocity is used – both in the
ML model, and Reichardt’s law and the log/linear wall
functions – for setting k = C

−1/2
µ u2

τ and ε =
u3
τ

κδy in
the wall-adjacent modes. The friction velocity is also
used to set τw = u2

τ (i.e. boundary condition for the
ū1 equation) at the walls.

6 Results using the ML wall function
The Python code pyCALC-LES is used for all

simulations together with the IDDES model. The
Reynolds number in the channel flow isReτ = 16 000
based on the friction velocity and channel half width.
The extent of the domain in the x and z direction is
3.2 and 1.6, respectively, covered by 32 cells in each
direction.

First, I use a typical wall-function mesh (Ny =
66, stretching 11%) placing the wall-adjacent cells at
y+ = 34. The velocity profiles are shown in Fig. 3a
and the agreement with Reichardt’s law near the wall
is excellent. However, when the stretching is increased
to 14.7% the agreement near the wall deteriorates, see
Fig. 3b. The reason for the poor agreement is proba-
bly that the cells further away from the wall (2nd, 3rd
. . . cell) are too coarse.

Since the grid seems to be too coarse away from
the wall in Fig. 3b a new grid strategy is proposed.
Figure 4 presents two distributions of grid lines in the
wall-normal direction. A low-Reynolds grid used in
RANS and IDDES in Fig. 4a with stretching of 15%.
Figure. 4b present the new grid in which a number of
near-wall cells in the low-Reynolds grid are merged



(a) Ny = 66, stretching 11%.

(b) Ny = 68, stretching 14.7%.

Figure 3: Channel flow. svr. Reτ = 16 000. Velocity.

(a) Low-Re number IDDES grid.

(b) Wall function grid. New grid strategy.

Figure 4: Different grids. : grid lines; •: cell center for
traditional wall function grid.

into one large wall-adjacent cell where the cell center
should be located at 10 ≤ y+ ≤ 100. This strategy
was used in Bäckar and Davidson (2017) for channel
flow and impinging jets (RANS). The new grid strat-
egy is used in all simulations presented below.

Figure 5 presents the predicted velocity profiles
for two different grids using three different wall func-
tions where the friction velocity is computed using
ML, the log-law/linear law and Reichardt’s law. The
ML wall function gives slightly better agreement than
Reichardt’s law and much better than the standard
log/linear law. The markers show the location of the
cell centers (compare Fig. 4b). The ratio of the cell
size of the second wall-adjacent cell to the first is given
in the caption.

Next, I present predictions of a flat-plate boundary
layer. The flat-plate boundary layer is Reθ = 2 550.
The mean inlet profiles are taken from a 2D RANS
solution and synthetic fluctuations (Shur et al., 2014;
Carlsson et al., 2022) are superimposed. The mesh
has 315 × 82 × 32 cells (x, y, z). The domain size is
8.5×4.6×3.2. The first term on the right-side of Eq. 1
is omitted. From the second wall-adjacent cell, the
grid is stretched by 10% for ∆y < 0.51 and y > 2.3
but ∆y is not allow to exceed 0.1. In the streamwise
direction ∆xin = 0.086 and a 0.1% stretching is used.
The inlet boundary-layer thickness is δin ' 0.8.

Figure 6 presents the skin friction and the mean
velocity. All three wall functions over-predict the skin
friction. However, when y+ is taken at the third wall-
adjacent cell (Figure 7), the predictions are improved.
As for the channel flow, the ML model performs bet-
ter than the Reichardt’s law and the standard log/linear
wall functions.

7 Conclusions
A Machine Learning (ML) method (svr) is pro-

posed for wall functions. IDDES is used for creating
the training data. The IDDES is also used when do-
ing the wall-function simulations. Good results are ob-
tained for channel flow and flat-plate boundary for the
Machine-Learning-Based wall functions, slightly bet-
ter than wall functions based on Reichardt’s law and
much better than the shandard log law. In the channel-
flow simulation the results are insensitive if y+ used
for obtaining U+ is taken at the first, second or third
wall-adjacent cells. For the flat-plate boundary layer,
better results are obtained by placing using Ū and y+

at the third wall-adjacent cell than at the first.
Instantaneous IDDES data have been used for

training svr (green markers in Fig. 8a) and the pre-
dicted svr data (ML model) are shown with red
markers; the svr data follow the time-averaged ID-
DES data (blue line in Fig. 8a)). If I’m inter-
ested in predicting the instantaneous uτ , I could
find try to find nearest neighbour using Python’s
scipy.spatial.KDTree (shown by • in Fig. 8b).
The error between the svr predicted data and the ID-



(a) Ny = 78. y+
1 = 35. (∆y)1

(∆y)2
' 6.

(b) Ny = 92. y+
1 = 11. (∆y)1

(∆y)2
' 5.

Figure 5: Channel flow. Reτ = 16 000. Velocity.

(a) •: 2
(

ln(Reθ)+4.127
0.384

)−2
; : ±6%.

(b) Velocity at Reθ = 4 000. ◦: DNS (Sillero et al., 2014)

Figure 6: Boundary layer flow. y+
1 = 24.

(∆y)1/(∆y)2/ ' 8.4.

(a) •: 2
(

ln(Reθ)+4.127
0.384

)−2
; : ±6%.

(b) Velocity at Reθ = 4 000. ◦: DNS (Sillero et al., 2014)

Figure 7: Boundary layer flow. The input, y+, for all wall
functions are taken at the the thrird wall-adjacent
cells.

(a) : 〈ū〉, IDDES; H: svr: •: IDDES, target data. 9% normal-
ized error.

(b) Nearest neighbor using Python’s scipy.spatial.KDTree H:
KDTree; •: IDDES, target data; 0.7% normalized error.

Figure 8: Conmparing Ktree and svr



DES data is then reduced from 9% (svr, Fig. 8a) to
0.7%, Fig. 8b). I call this model a data-driven wall
function. I have evaluated this model for the present
test cases and the predicted results are almost identical
to those presented above.

An alternative could be to train the ML using time-
averaged data rather than instantaneous. In this case
many time-averaged 〈ū〉 (and 〈p̄〉) profiles can be used
for training, both in attached and separated flows. I
have evaluated this model for the present test cases and
the predicted results are almost identical to those pre-
sented above.

I’m currently creating databases at Reτ = 2 000
of flow in diffusers using well-resolved LES with the
WALE model. Inlet boundary conditions are taken
from a pre-cursos LES of channel flow. The upper
boundary of the diffuser is a slip wall with opening
angles between 2 and 10 degrees. The plan is that the
databases will be used for training ML a wall function
using y+ and the streamwise pressure gradient as in-
put.
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