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Abstract

Most of the low Reynolds turbulence models contain an ad hoc viscous
damping function in the eddy viscosity expression, which corrects the
improper asymptotic behavior of the eddy viscosity formulation when
approaching a solid wall. The damping function is often non-linear and
causes numerical stiffness. In the 	�

��� model – originally suggested
by Durbin – the use of damping function is avoided by choosing 	�
 (the
turbulence stress normal to the wall) to be the velocity scale rather
than � .

All the recent 	 
 ��� models are based on ����� model. Although
these models showed a good performance in many engineering appli-
cations, they still suffer from two drawbacks. The first drawback is
that they can be numerically unstable for grids with well resolved wall
region. The second is the uncertainty in specifying the wall boundary
condition of � . In the present thesis, a new 	�
���� model based on the
standard ����� model and referred to as ������� 	�
���� model is formulated
which has numerically appealing boundary condition for � . A new set
of model constants are determined by tuning the result to match the
DNS data of fully developed channel flow. The ������� 	�
 �!� model
showed quantitatively good results in a fully developed channel flow"$#�%�&('*)*)*),+

.
In order to validate the ���-�-� 	.
/�0� model, numerical simulations

of a well documented separated flow in asymmetric plane diffuser have
been preformed. The results obtained are discussed and a qualitative
comparison with the experimental data is made. The results are shown
to be in a good agreement with the experimental data.
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Chapter 1

Introduction

1.1 Turbulence
It is well known from experiments on fluids system that at values below
the so-called critical Reynolds number the flow is smooth and adjacent
layers of fluid slide past each other in orderly fashion. If the applied
boundary conditions do not change with time the flow is steady. This
kind of flow regime called laminar flow.

At values of the Reynolds number above the critical Reynolds num-
ber the flow behavior is totally different, and a complicated series of
events take place which leads to a radical change in the flow character.
In the final state the flow behavior is random and chaotic. The motion
becomes intrinsically unsteady even with constant imposed boundary
conditions. And the flow properties start to vary in random way. Such
kind of regime is called turbulent.

It is not an easy task to find a proper definition of turbulence. How-
ever, in 1937 Taylor and von Karman proposed the following definition:
”Turbulence is an irregular motion which is general makes it is appear-
ance in fluids, gaseous or liquid, when they flow past solid or surface
or even when neighboring streams of the same fluid flow past over one
another” [4].

1.2 Why do we need Turbulence Modeling
Although the well known Navier-Stokes (N-S) equations describe the
details of turbulent motions, it is too costly and often time consuming
for engineers to solve such complex and detailed equations (DNS). In-
stead, ensemble-averaged N-S equations are often sufficient and prac-
tical to describe the turbulent motion in engineering problems. Unfor-
tunately the averaging process generates additional unknown quanti-
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ties and the set of equations is unclosed due to the appearance of these
new unknowns. Hence modeling approach is needed to obtain closed
set of equations. In the present work the eddy viscosity concept is used.
This will be discussed further in details in this chapter.

1.3 Motivation and Objective
Although most of the two equation eddy viscosity models can be solved
all the way down to the wall, it does not give a quantitatively good
behavior in the near wall region . This is mainly because the two-
equations model have not been designed to account for the wall echo
effects. To take into account the influence of the wall, usually arbitrary
damping functions are introduced.

In order to simulate turbulent flows, taking into account anisotropy
non-local effects, the 	.
 � � model was introduced by Durbin [23]. In this
model the system of equations of the Reynolds stress tensor is replaced
by a transport equation for the velocity scalar 	�
 and an elliptic equa-
tion is introduced for a function � . The model represents the transport
suppression made by the wall in the normal direction. By represent-
ing this effects and choosing 	�
 �� as a velocity scale the damping of the
eddy viscosity is no longer needed. Figure 1.1 clarifies the role of the
damping function and explains the main motivation of working with
the 	.
 � � model. The figure shows the eddy viscosity computed from the
DNS data [25] using three different formulas. The DNS eddy viscosity
was computes as ��� & � � 	 ���
	��� , the � � � eddy viscosity was computed
as ��� &�
�� � 
 � � and the 	.
 � � was computed as ��� &�
�� 	 
 � � � . It is clear
as pointed by Durbin [23] that the � � � model fails to predict the true
eddy viscosity close to the wall because � 
 � � has the wrong profile of as
a function of ��� while the 	.
 ��� model almost reproduced the true eddy
viscosity near the wall. Thus if we can model 	�
 , the need for a damping
function can be avoided [23]. All the 	.
 ��� models of today are based
on � � � model. The 	.
 ��� model may be considered as a modification of
the � ��� model to account of near wall anisotropy effects. Although the
model had been used in several CFD problems and showed encourag-
ing results e.g. in aerospace configurations [9] and flows with adverse
pressure gradient [24], it has two major drawbacks. The first drawback
is associated with its boundary conditions for � which reads

� & � � ��.
���� ���
)��

During the iterative process the boundary value of � keeps on changing

2
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Figure 1.1: Normalized turbulent eddy viscosity for different � � closures
computed from DNS data. Solid line: DNS; � : � � � ; � : 	.
 � � .

due to the appearance of � which is also changing. Meanwhile the �
equation is highly diffusive in nature and very sensitive to the changes
in � . The coupling between � and � near the wall causes numerical
difficulties. The second drawback is that the model is very sensitive to
the quality of of the mesh, especially in the near-wall region [1].

These kinds of problems lead to the idea of formulating the � �� � 	 
 � � model, the main encouraging feature with this model is the
boundary condition of � which reads

� &
' �
	 � 
 � � � �

)��
� is fluid property and always constant, and for given mesh � is also

constant and hence the boundary condition of � is constant during the
iterative process.

In order to validate the model a test case with experimental data is
needed. The main objective of this work is to formulate the � � � � 	 
 �� model, test its performance on separated flow in asymmetric plane
diffuser and compare the results to two sets of experimental data by
Obi. et. al [22] and Buice & Eaton [2].
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Chapter 2

Governing equations

The fluid motion is governed by two equations, the continuity equation
and the the momentum equation which read

�� ��� �������
	 ���� � ������
 ��� & � � ����
 � 	 � �������������
 � (2.1)

� � ������	 ���� � ����
 � � 	 �� � ������
 � & ) (2.2)

Tilde denotes that the instantaneous value of the variable.
If he fluid is Newtonian, the viscous stress can be related to the fluid

motion via the molecular viscosity.����������� & ���
� �� ���
� �! ��#"$"&% ����' (2.3)

The rate of strain tensor
�� ��� is defined by�� ��� & �� �

� ������
 � 	 � ������
 � ' (2.4)

Considering incompressible fluids (the density is independent of the
pressure) all derivatives of

�� is zero and the governing equations are
simplified to � � �������(	 ���� � ��)���
 � � & �*�� � ����
 � 	 � � 
 ������
 
� (2.5)� ������
 � &�) (2.6)
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2.1 Reynolds Averaging
When measuring flow quantities we are usually interested in the mean
values rather Reynolds than the time histories. Therefore we intro-
duce statistical tools to study turbulence and to decompose the instan-
taneous variables into a mean value and fluctuating value���� & � � 	 ����� � & � 	 � (2.7)

This averaging concept was introduced by Reynolds and is referred to
as Reynolds decomposition.
Inserting equation (2.7) into equation (2.5) and equation (2.6) and time
averaging we obtain Reynolds Averaged Navier-Stokes equation (RANS)� � � ���� 	 � � � � ���
 � � & � �� � ���
 � 	 � � 
 � ���
 
� � ���
 � ��� ��� (2.8)� � ���
 � & ) (2.9)

A new term �)� ��� appears on the right hand side of equation (2.8) which
is called the Reynolds stress tensor. It represents all effects of tur-
bulent fluid motion on the averaged flow field. The averaging process
generated six unknowns terms (Reynolds stress tensor). Now the num-
ber of unknowns (three velocities, pressure and six Reynolds stresses)
is greater than the number of equations (three components of Navier-
Stokes equation and the continuity equation). This is called the clo-
sure problem. In order to obtain a closed set of equations the Reynolds
stresses must be related to other known variables. In the present work
the eddy viscosity concept is used to model the Reynolds stresses.

2.2 Eddy viscosity
In a turbulent flow the generation of Reynolds stresses is proportional
to the mean rate of strain. If we assume that the turbulence responds
rather quickly to changes in the mean flow we would expect the Reynolds
themselves to be related to the mean rate of strain.

In the eddy viscosity turbulence models the Reynolds stresses are
linked to the velocity gradient via the turbulent viscosity. This rela-
tion is called Boussinesq assumption, where the Reynolds stress ten-
sor from the time averaged Navier-Stokes equation is replaced by the
turbulent viscosity multiplied by velocity gradient

�)� ��� & � � � ��� � � 	 �! � % ��� (2.10)

6
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The eddy viscosity is treated as a scalar quantity and given by

� � & 
�� 	 
 � (2.11)

where 	 and
�

are a turbulent velocity scale and a time scale, respec-
tively.


 �
is supposed to be a universal constant. Choosing a proper

velocity scale and time scale depends on which turbulence model we
are using.

7
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Chapter 3

Numerical methods

3.1 CALC-BFC Solver
The in-house incompressible finite volume code CALC-BFC (Boundary
Fitted Coordinates) [18] is employed to carry out the computations in
this work. The code utilizes the collocated variable arrangement. The
governing equations are written in a non-orthogonal coordinates sys-
tem. The finite volume method is used to transform the partial dif-
ferential equations to algebraic relations. The TDMA (Tri-Diagonal
Matrix Solver) is employed to solve the obtained algebraic relation.
To approximate the fluxes three differencing schemes are available:
the hybrid scheme, the van Leer scheme and the Quick scheme. The
linkage of the velocities and pressure is handled by SIMPLEC. Rhie
& Chow interpolation method is used to overcome the pressure field
oscillations.

3.2 The finite volume method
Let � be any dependent scalar variable. The transport equation of �
reads ���� " � � + 	 ���
 � � � ����� �����

�
���
 � ' & � � (3.1)

Defining the convective and diffusive flux as

� � & � �)��� �����
�
���
 � (3.2)

For steady state the term involving time derivative vanishes. Using
equation (3.2), equation (3.1) can be written as� � ���
 � & � � (3.3)

9
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Integration of equation (3.3) over a control volume in the physical space,
using Gauss’ theorem ��� � � ���
 ����� & ��� � �
	 �
yields � � � � � 	 � & � � � ��� (3.4)

The integral above yields the discretized equation.�
�������� " � ��	 � + 
������ & � % � (3.5)

Equation (3.5) is rearranged using the differencing scheme for
� � , to the

standard form. ���
�
� & � ��� � ���

�

��� 	 � % � (3.6)

Equation (3.6) is solved with the iterative methods to obtain the ap-
proximate solution of the transport equation (3.1).

3.3 The differencing schemes
The differencing scheme is introduced to calculate the convective and
diffusive flux in-order to solve the discretized equation. In the collo-
cated grid arrangements all the variables are stored at the nodes, while
the fluxes are calculated at the faces of the control volumes. Interpo-
lation function is needed to obtain the variables on the faces. This
interpolation function is known as differencing scheme. In the follow-
ing section the differencing schemes used in CALC-BFC are described.
Since we are working with the finite volume method all the differencing
schemes are conservative.

3.3.1 The central differencing scheme
The central differencing scheme approximates the face value by using
linear interpolation.

� � & " � � � � + � � 	 � �"!$#
where

� � & % 
 � �% 
 � #
10
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Figure 3.1: Grid nomenclature. Small letters denote the faces of the
control volumes and the capital letters denote the nodes.

The central differencing scheme has two major drawbacks. The first
one is that it is unbounded (possibility of negative coefficient) which
can lead to oscillations and numerical problems. The second one is
that it is not transportive which means it is unable to identify the flow
direction.

3.3.2 The upwind differencing scheme
In this scheme the face values are set equal to the upwind nodes as:

� � & � �����
� ��� )

� � & � # ���
� ��� )

The upwind differencing scheme is bounded and transportive. The only
drawback is that it is first order accurate.

3.3.3 The hybrid differencing scheme
The hybrid differencing scheme of Spalding is a blend of central and
upwind differencing scheme. The central differencing scheme is used
when the Peclet number is small

� % � � , and the upwind differencing
scheme is used for large Peclet numbers

� % � � .
� � & � �����

� ��� � � �	��

� % � 
 � )

� � & � # ���
� ��� � � �
��


� % � 
 � )
� � & ��� � # 	 " � � ��� + ! ������� 


� % � 
 � �
The Peclet number is defined as the ratio of the convective flux to the
diffusive flux.

� %�& � � � � �% 
 '
The major drawback of hybrid scheme is that the convection is always
dominating so that the scheme becomes first order accurate.

11
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3.3.4 The van Leer scheme
This scheme of van Leer is of second order accuracy accuracy except
at local minima and maxima where the accuracy is of first order. One
advantage of this scheme is that it is bounded.

For the east face it can be written as:

� ��� ) � �
� � & � � ��� 
 � # � � � � 	 !�� 
 � 
 � # ��� � 

� � & � � 	 � ����� ��� � � ����� ��	 �� � � � � ��

��� ��� � � �

� ��� ) � �
� � & � # ��� 
 � ��� � � # 	 !$#$# 
 � 
 � ��� � #$# 

� � & � # 	 � ����� ��� � � ����� ����� ������ � #$# ��
���� ��� � � �

3.4 SIMPLEC algorithm
The solution of the discretized equations depends on the pressure dis-
tribution, which must be solved together with the velocity fields. In in-
compressible flow there is no equation for the pressure and some kind
of velocity coupling is needed. In CALC-BFC the pressure velocity cou-
pling is introduced by the SIMPLEC method (Semi-Implicit Method for
Pressure-Linked Equations, Consistent) [27].

The method has its origin in staggered grid methodology and is
adapted to collocated grid methodology through the use of Rhie & Chow
interpolation. For simplicity the derivation of SIMPLEC will be carried
out only for the staggered control volume

%
(face

%
in the collocated grid

arrangement).
Defining the pressure and velocity corrections, ��� and � �� , as the dif-

ference between the pressure and the velocity field, � and � � , at the
current iteration and the pressure and velocity field at the previous
iteration, ��� and � �� . � & � � 	 � ��� ��� & � �� 	 � �� (3.7)

The discretized momentum equation for the velocity of the previous
iteration reads. � � � �� � & � �����

� �� ��� 	 " � �� � � �# + 	 � � 	! � (3.8)

where  � is the momentum source term.
The discretized momentum equation for the velocity of the new itera-
tion reads: � � ��� � & � �����

��� ��� 	 " � ��� � # + 	 � � 	! � (3.9)

By subtracting equation (3.8) from equation (3.9) we obtain.� � � �� � & � �"���
� �� ��� 	 " � � � � � � # + 	 � � (3.10)

12
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Subtracting the term � �����
� �� � from both sides of equation (3.10) yields.� � � � � �"�����

� �� � & � ����� " � �� ��� � � �� � + 	 " � � � � � � # + 	 � � (3.11)

The omission of the term � ����� " � �� ��� � � �� � + yields:

� �� � & 	 � �� � ��� �"��� " � � � � � � # + (3.12)

where
� � & � � � ��� and

�
is the velocity underrealxation factor.

By inserting equation (3.12) into equation (3.7) we obtain the final ex-
pression of the new (at the current iteration) face velocity:

��� � & � �� � 	 � � " � � � � � � # + (3.13)

where

� � & 	 � �� � � � �����
Inserting the corrected velocities into the discretized continuity equa-
tion of collocated control volumes yields� �	� 
 " � ��� ��� 	 � ��� + &�)
Identifying coefficients gives a discretized equation for the pressure
correction (in 1D form).��� � � � & � # � � # 	 � � � � � 	  ��� � (3.14)

where � � & � # 	 � �
� # & � � 	 
�� � �
� �����
� � & ��� 	 
�� � ��� �����

 � � � & � � �	� 
 " � � �� ��� 	 � ��� +
This Poisson equation for the pressure correction is solved using

� ���
and � �� ��� values from the momentum equations. The

�����
values are ob-

tained from linear interpolation of
� � values and ��� ��� values are ob-

tained by Rhie & Chow interpolation of � � � values. Then the new pres-
sure field is obtained from equation (3.7) and the velocities are cor-
rected according to equation (3.13).

13
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3.5 Rhie & Chow interpolation
As mentioned before, CALC-BFC utilizes a collocated grid arrange-
ment. The Rhie & Chow interpolation is introduced to obtain the con-
vection through the faces needed in the pressure correction equation.
A brief description of this interpolation is given below.

Usually the face velocity is always obtained by linear interpolation.
For the east face it reads.

��� � & �� " ��� # 	 ��� � +
In the collocated grid arrangement, however, this may lead to pressure
oscillations. To avoid this, the face velocities are calculated by subtract-
ing and adding the pressure gradient.

��� � & �� " �)� # 	 ��� � + � � �
� ���
 � � �� � ' � 	 � � � ���
 � � �� � ' �

The pressure terms in this expression are calculated in different ways.
The first is calculated as the mean value of the pressure gradient in
the

�
and � nodes.

� � � ���
 � � �� � ' � & � �� � � #$# � � �% 
 � � #$# 	 � # � � �% 
 � � # ' � % �� � ' �
The second is calculated on the face.

� � � ���
 � � �� � ' � & � � � # � � �% 
 � � # ' � % �� � ' �
And for equidistant grid.

��� � & �� " ��� # 	 ��� � + 	 �% 
 � � # � % �� � ' � " � #$# � ! � # 	 ! � � � � � +
In the case of non-equidistant grids, the first term is calculated as a
weighted average and the second term is included as it is.

3.6 TDMA Solver
The discretization process applied on the governing equations of the
fluid flow results in linear algebraic equations which need to be solved.
Mainly there are two families of solution techniques : direct methods
and indirect or iterative methods. One of the most interesting features

14
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in the iterative methods is that only non-zero coefficient of the equa-
tions need to be stored in core memory.

The TDMA is a direct method for one dimensional cases, but at the
same time it can be applied iteratively in a line-by-line fashion to solve
multi dimensional problems. It is computationally inexpensive and re-
quires a minimum amount of storage.

CALC-BFC employed the segregated TDMA as a matrix solver which
is described below (for 2D case for simplicity).
The 2D discretized equation for property ! reads� � ! � & � # ! # 	 � � !�� 	 � � ! � 	 � 
 ! 
 	 � 	 (3.15)

Equation (3.15) can be written in the form� � ! � &  � ! � ��� 	�� � ! ��� � 	 � � (3.16)

where � � & � � �  � & � # � � � & � �
� � & �

� ! � 	 � 
 ! 
 	 � 	
Again we can rewrite equation (3.16) as! � & � � ! � ��� 	 � � (3.17)

In order to put equation (3.16) in the form of equation (3.17) we need
to write equation (3.16) in a matrix form and apply elimination tech-
niques. Equation (3.16) in matrix form reads����

�
�

 �  
 ) � � �

� �	� � � �  
� ) � � �) � �
� � � �  
� ) � � �
...

...
...

...
...

...

��



�

����
�
! 
! �! �
...

��



� &

����
�
� 
 	�� 
 ! �� �� �...

��



� (3.18)

Divide the first row by
�

����

�
� � � 
 ) � � �
� �	� � � �  �� ) � � �) � �
� � � �  �� ) � � �

...
...

...
...

...
...

� 



�

����
�
! 
! �! �
...

� 



� &

����
�
� 
� �� �...

� 



� (3.19)

where
� 
 &  
�



� � 
 & � 
 	�� 
 ! ��
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In order to eliminate the � � � multiply the first row by � � , add it to the
second row and then divide the second row by

� � � ��� � 
 .����
�
� � � 
 ) � � �) � � � � ) � � �) � �
� � � �  �� ) � � �
...

...
...

...
...

...

��



�

����
�
! 
! �! �
...

��



� &

����
�
� 
� �� �...

��



� (3.20)

where
� � &  ��� � � �	� � 
 �

� � & � � 	��	� � 
� � � �	� � 

Now equation (3.20) becomes an recursive equation for

� � and
� � on the

form
� � &  �� � � � � � ��� � � � � & � � 	�� � � ��� �� � � � � � ��� �
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Chapter 4

Turbulence models

The Reynolds averaging introduced in chapter � results in appearance
of new unknown terms (Reynolds stresses) which need to be modeled.
A turbulence model is a computational procedure to close the system
of the mean flow equations. For a turbulence model to be useful in a
general purpose CFD code it must have wide applicability, be accurate,
simple and economical to run. According to Versteeg [13], the most
common turbulence models are classified to:

� Classical models.

1. Zero equation model.

2. Two equation model.

3. Reynolds stress equation model.

4. Algebraic stress model.

� Large eddy simulation.

The computations in the present thesis have mainly been carried
out using two different 	.
 � � models. However the standard � � � and� � � models (under the two -equation model category) are introduced
below because they form the basis for the advanced 	 
 ��� models. And
also they have been used to provide the initial solution for the 	 
 ���
models.

4.1 Two-equation models
Researchers in turbulent flow have long felt that the length scale in
turbulence models should depend on upon upstream history of the flow
and not just local flow conditions (as in algebraic mixing-length model).
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An obvious way to provide more complex dependence of the length scale�

on he flow is to derive a transport equation for the variation of
�
. The

equation from which the length scale is obtained is a partial differential
equation and the model is then referred to as a two-equation model.

Although a transport partial differential equation can be developed
for a length scale, the terms in this equation are not easily modeled,
and some workers have experienced better success by solving a trans-
port equation for a length scale related parameter rather than the
length scale itself, i.e, � and � as in � � � and � � � models.

4.1.1 The standard ����� model
����� model is the most popular two-equation model. The model had
been developed by many turbulence researchers such as Chou and Davi-
dov. Jones and Launder [14] introduced the standard � � � model.

The model is based mainly on the exact transport equation of the
kinetic energy � and the dissipation rate � . The � equation was chosen
to determine the turbulent length scale

�
as it appears naturally in the� equation. The turbulent eddy viscosity is obtained by choosing � ��� 
 to

be the velocity scale and � � � to be the time scale. The model equations
read

� � � ���
 � & ���
 � � � � 	 � �
� " ' � ���
 � ' 	 � " � � (4.1)

� � � ���
 � & ���
 � � � � 	 ���
�
	 ' � ���
 � ' 	 
 	 � � "� �


 	 
 �� (4.2)

The eddy viscosity is given by

��� & 
�� � 

� (4.3)

The length scale is given by
� & ��� �

� (4.4)

The closure coefficients
�
 � & � ����� � 
�
 
 & � ��� � � 
�� & )�� )�� � � " & � � ) � �
	 & � � !
� boundary condition

One could derive the wall boundary condition of � by examining equa-
tion (4.1) in the near wall region. As ��� )

, all terms vanish except the
viscous diffusion term and the dissipation term.

� � 
 �� � 
 � � &�) (4.5)
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which directly gives

� & � � � 
 �� � 
 ' � ����� (4.6)

This type of boundary condition can be numerically unstable, since it
relies on the evaluation of a second derivative at the wall [17].

An alternative wall boundary conditions for � could be obtained by
applying Taylor expansion to the fluctuating velocities.

� & � � 	 � � � 	 � 
 � 
 	 � � �	 &  � 	! � � 	  
 � 
 	 � � �� & � � 	�� � � 	�� 
 � 
 	 � � � (4.7)

At the wall the fluctuating velocities
& )

due to the no-slip condition,
which gives

� � &  � & � � & )
. Furthermore, at the wall

� � � ��
 &� � � ��� &�)
and the continuity gives

� 	 � � � &�)
. Therefore  � & )

. The
behavior of Reynolds stress component at the wall is found by squaring
and averaging equation (4.7)

� 
 & � 
 � � 
 	 � " � � +
	 
 &  

 � � 	 � " �	� +� 
 & � 
 � � 
 	 � " � � +
� & ) ��
 " � 
 	 	 
 	 � 
 +& ) ��
 " � 
 � 	 � 
 � + 	 � " � � + (4.8)

The dissipation is defined as

� & � � �����
 � � �����
 � (4.9)

Very close to the wall
� � ��


and
� � ���

terms are negligible. By using
equation (4.7) the dissipation close to the wall can be rewritten as

� & �
� � � �� � ' 
 	 � � �� � ' 
�
& � � � 
 � 	 � 
 �

� 	 � " � + (4.10)

Equation (4.10) together with equation (4.8) give the new boundary
condition for �

� � � � �� 
 as � � )
(4.11)
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4.1.2 The standard ����� model
The model was suggested by Wilcox [5] and is commonly referred to as
the standard � � � model. In addition to the � equation a new equation
for the specific dissipation rate � is derived to determine the turbulent
length scale. The turbulent velocity scale is � ��� 
 and time scale is � � � .
The model equations read

� � � ���
 � & ���
 � � � � 	 ���
� " ' � ���
 � ' 	 � " � 	 � �
� (4.12)

� � � ���
 � & ���
 � � � � 	 � �
��� ' � ���
 � ' 	�� � � � " � 	 � 
 (4.13)

The eddy viscosity is given by

� � & �
� (4.14)

The length scale is given by

� & � ��� 

� (4.15)

The closure coefficients

	 &�)�� )�� 
 � 	 � &�)�� )�� � � & 

� � � " & � � ��� & �

� boundary condition

The boundary condition of � is obtained by studying equation (4.13)
in the near wall region where all the terms are negligible except the
viscous diffusion and the dissipation terms.

� � 
 �� � 
 � 	 � 
 &() (4.16)

which directly gives

� � ����� & ' �
	 ��
 (4.17)

4.2 � � � � models
In the 	 
 � � model two new equations are solved together with the orig-
inal equations of the two -equation model ( � , and � equation). These
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new equations are 	.
 equation which represents the generic wall nor-
mal fluctuation component, and � equation. The first 	�
 � � model
was originally suggested by Durbin [23]. In this model 	 
 ��� 
 is chose to
be the turbulent velocity scale rather than ����� 
 as in the two-equation
model. The model equations read (in addition to equation (4.1) and
equation (4.2)).

� � � 	 
��
 � & ���
 �
� � � 	 ���

� " ' � 	 
��
 � 
 	 � � � 	.
� � (4.18)

� 
 � 
 ���
 
� � � & 
 �� � 	 

� � �! 
 � 
 


� "
� � �� � 	 


� � �! 
 (4.19)

The eddy viscosity � � & 
�� 	 
 � (4.20)

To avoid singularity problems near the wall (as � � )
), Durbin sug-

gested a lower boundary for the time and length scale by not letting
them go down the Kolmogorov scales.
The time scale. � &��

� � � � � � 
���� �
� ' (4.21)

The length scale � & 
����
� � � � � � 
� � 

	 � � � �� ��� � ' (4.22)

The closure coefficients


 	 � & � � �
�
� 	 � � � �

	 





 	 
 & � ��� � 
�� &�) � � � � �
	 & � � ! � � " & � � ) � 
 � & � ���

 
 &()�� ! � 
�� & )�� ! � 

	 & � ) � 
��
&�' � � � &�)�� ) � 


� boundary condition

The boundary condition of � is derived by examining 	�
 equation in
near wall region, which is of the form.

� � 
 	 
� � 
 � 	 
 �� 	 � � & ) (4.23)
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Replacing � using equation (4.11), equation (4.23) is rewritten as� 
 	 
� ��
 � � 	 
��
 	 �*�

� � 
 � 

&()

(4.24)

Very close to the wall � and � are constant with respect to � . And the
solution of equation (4.24) is

	 
 & 	 � 
 	�� � � � � � �
� ) � 
 (4.25)

From the previous Taylor expansion we know that near the wall 	�

behaves as

� " � � + . To let 	.
 to have its right behavior, the constants 	
and � in equation (4.25) must equal zero. Hence, � boundary condition
is

� & � �
) � 
 	 

� � � (4.26)

The strong coupling of � , 	.
 and � in the wall boundary condition of� can make the model numerically unstable. Kalitzin [9] and Lien &
Kalitzin [8] modified the model by deriving new boundary condition for� which makes the model more stable. In this thesis the 	�
 ��� model
given in Kalitzin [9] is used and it is described below.

4.2.1 � � � � � � ��� model
In order to derive new boundary condition for � , we need to start by
writing down the definition of � �

��� & ! 
 
 � � 
 
 	 	 
� � (4.27)

According to Mansour et. al. [21] the behavior of ! 
 
 and � 
 
 near walls
is ! 
 
 � � � 	 
� � � � 
 
 � � 	 


� � � as ��� )
(4.28)

Inserting equation (4.28) in equation (4.27) yields

� � � � � 	 
� � �
� 	 

� � 	 	 
� � & � 
 	 


� � as ��� )
(4.29)

Equation (4.29) together with equation (4.11) give

� � � 
 	 
� � � � � ) � 
 	 
� � � as ��� )
(4.30)
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To enforce the behavior of � � near the wall to have the form of � � �)
as � � )

, Lien and Kalitzin [8] added the term
� � 
 	 
 � � � � to equa-

tion (4.27) and subtracted the same term from equation (4.18) in-order
to maintain the balance. They also introduced a similar change in �
equation to maintain the properties of the original model. The model
equations as in Kalitzin [9] read

� � � ���
 � & ���
 � � � � 	 ���
� " ' � ���
 � ' 	 � " � � (4.31)

� � � ���
 � & ���
 � � � � 	 ���
�
	 ' � ���
 � ' 	 �� " 
 	 � � " � 
 	 
 � + (4.32)

� � � 	.
��
 � & ���
 �
� � � 	 � �

� " ' � 	 
��
 � 
 	 � � � ' 	 
 �� (4.33)

� 
 � 
 ���
 
� � � & 
 �� � 	 

� � �! 
 � 
 


� "
� � �� � 
 	 


�



(4.34)

The closure coefficients

 	 
 & � ��� � 
�� &�) � � � � �
	 & � � ! � � " & � � ) � 
 � &�) ���

 
 & )�� ! � 
�� &�)�� � ! � 

	 & � ) � 
��
& ' � � � & )�� ) � 


4.2.2 Modified � � ��� model
Since 	 
 equation reduces the 	 
 as the walls are approached, 	 
 should
be smaller than the other normal stresses . Hence 	 
 � � � � � ! . In order
to satisfy this condition, Davidson et. al. [19] suggested the modifica-
tion described below.

In the original model far away from the wall 	�
 � � � � � ! and the
main reason of this is that the Laplace term in � equation, namely� 
 � � � � 
 , is not negligible in that region as it was assumed. One way to
get around this problem is to set an upper bound on the source term � �
in 	 
 equation as

	 
 � ����� ��� & � � � � � � � � �� � " 
 � � ' 	 
 � �! � " 
 � � � + � 	 
 
 � " ' (4.35)

This modification had been applied on both � ��� � 	�
 �(� model and� �0�0� 	 
 � � model and the results would be presented and discussed
in the following chapter.
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4.2.3 Formulation of � � ��� � � � � model
The main idea of this model is to solve the standard � ��� model along
with the 	 
 � � model of Lien and Kalitzin [8]. The model equations are
obtained simply by replacing the dissipation rate � with the specific
rate of dissipation � . The model is described in the following section.

The specific rate of dissipation � is connected to the dissipation rate� through � & 	 � �
� (4.36)
A modification is needed for the equations of which the dissipation rate� is involved. Namely equation (4.33), equation (4.21) and equation
(4.22). Inserting equation (4.36) in the mentioned equations yields

� � � 	 
��
 � & ���
 �
� � � 	 ���

� " ' � 	 
��
 � 
 	 � � � ' 	 
 	 � � (4.37)

The time scale � & �
� � � �	 � � � 
�� � �

	 � �
� ' (4.38)

The length scale � & 
��
�
� � � � ��� 
	 � � � 

	 � � � �" 	 � �
� + ��� � ' (4.39)

Finally the full set of � ��� � 	.
 � � model equations read
� � � ���
 � & ���
 � � � � 	 ���

� " ' � ���
 � ' 	 � " � 	 � �
� (4.40)

� � � ���
 � & ���
 � � � � 	 � �
��� ' � ���
 � ' 	�� � � � " � 	 � 
 (4.41)

� � � 	 
��
 � & ���
 �
� � � 	 ���

� " ' � 	 
��
 � 
 	 � � � ' 	 
 	 � � (4.42)

� 
 � 
 ���
 
� � � & 
 �� � 	 

� � �! 
 � 
 


� "
� � �� � ' 	 


� � �! 
 (4.43)

Determining the closure coefficients

��

constant

In the log-layer the most important terms in equation (4.40) are the
production term and the dissipation term

� � � � �� � ' 
 � 	 � �
� &�) (4.44)
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In the log region the turbulent shear stress equal to the wall shear
stress. � � � ' � ����� & � � 	 & ��� � �� � & � 
 � (4.45)

Using equation (4.45), equation (4.44) is rewritten as

� � � & ��� 	 � �
� (4.46)

Finally using equation (4.20) and equation (4.38), we rewrite equation
(4.46) as


�� & � � 
 �� ' 
 �	 
 (4.47)

It is well known from the experiments that in the log-law of the bound-
ary layer � 
 � � ��� ) � !

, and from the DNS data of Moser et. al. [25] the
value of � � 	 
 in the log region is found to be approximately 3. Hence
�� &�)�� � � .

The time and the length scales constants

In the literature the method of determining the time and the length
scales constants


 � � 
�� and


	

was not clear. Using the same constants
value of the � ��� � 	 
 �!� model showed that the shifting from Kol-
mogorov scales to the normal scales took place far away from the wall.
The constants were re-tuned to achieve the scales shifting at the same
value of � � as in � ��� � 	 
 �(� ( at � � & 


for the time scale and at
� � & ! 
 for the length scale). The value of the new constants is found
to be 
�� & )�� 
 � 

	 & � 
 � 
���&()���

� Prandtl Number ( � � )
Choosing ��� & � as in the standard � ��� model moves the peak of �
and consequently � away from the wall and results in poor prediction
of the mean velocity profile. The constant is re-tuned to get the best fit
with the DNS data [25]. The constant value is found to be � � & � .

The rest of constants are unchanged. The model constants are given
in the table below, the method of obtaining each constant is also in-
cluded.
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The Coefficient Value Method of determining the coefficient	 � 0.09 standard	
0.075 standard

� 5/9 standard
 � 1.4 standard
 
 0.3 standard� " 2.0 standard��� 1.0 modified
��
0.27 calculated using the DNS data
��
0.5 modified

	
1.5 modified
��
0.5 modified

4.3 The performance of the � � � � models in
channel flow

The performance of four 	�
��0� models – the ���-��� 	.
��0� , the modified� � � � 	 
 ��� , the � � � � 	 
 ��� , and the modified � � � � 	 
 ��� – is
examined in fully developed channel flow. The Reynolds number based
on the friction velocity is

#�%
�
& ! � 


. The number of control volumes
used to cover half of the channel is

' �
, and a geometric stretching factor

of � � )�� is used. The results are compared to the DNS data
#�%

�
& ! � 


[25].
Figure (4.1(a)) shows the predicted mean velocity. It is clear that

all models over-predict the mean velocity after � � & �*)
. This mainly

could be associated with the under-prediction of the eddy viscosity in
the same region as shown in figure (4.1(g)). The modified � � � � 	�
��0�
model continues to over-predict the mean velocity after � � & � )*) for
values even higher than the other models due to it is small value of the
eddy viscosity. For all models, the higher values of the eddy viscosity
is balanced by the low values of the mean velocity gradients result in a
good prediction of the Reynolds shear stress, figure (4.1(c)), with excep-
tion of the ������� 	.
��0� and the modified ����� � 	.
��0� where the � 	 is
under-predicted for


 � � � � 
 )
. From figure (4.1(e)) it can be seen that

the turbulent kinetic energy is over-predicted by the � � � � 	�
 � � and
the modified � � � � 	.
 � � , while it is under-predicted by the � � � � 	�
 � �
and the modified � � ��� 	.
 � � . This mismatch is balanced by the pre-
diction of 	.
 , figure (4.1(f)), in the eddy viscosity expression, equation
(4.20).

The performance of the models is also analyzed for a higher Reynolds
number,

#�%
�
& ' )*)*)

. The results are shown in figure (4.2). These re-
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sults are shown to have the same trend of the previous results, which
confirms the consistency of the � � ��� 	�
 � � model.
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Figure 4.1: Turbulent quantities of fully developed channel flow com-
pared to the DNS data

#�%
�
& ! � 


. Solid line: DNS data; dotted line:
Log law; dashed dotted line: � ����� 	�
 � � ; dashed line: � � � � 	.
 � � ;	 : modified � �0� � 	 
 � � ; � : modified � � � � 	.
 � � .
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Figure 4.2: Turbulent quantities of fully developed channel flow
#�%

�
&' )*)*)

. Dotted line: Log law; dashed dotted line: � � � � 	 
 ��� ; dashed
line: ���-�
� 	 
 �0� ; 	 : modified ��� �-� 	 
 �0� ; � : modified ���-� � 	 
 � � .
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Chapter 5

Results

No doubts that the validation of turbulence models plays a key role as
the final quality control mechanism. It is impossible to assess the valid-
ity of the models or the accuracy of its final results by any means other
than a comparison with experimental data. Validation of turbulence
models requires detailed information concerning the boundary condi-
tions of a test case and generates a large volume of results. To validate
the models in a meaningful way it is necessary to produce experimental
data of similar scope to compare with.

In the previous chapter the performance of the ���0� � 	�
 � � model
in 1D fully developed flow was assessed. However the model requires
additional testing since the model is intended for computing complex
engineering flows. In the this chapter the results of numerical simula-
tions of a well documented separated flow in asymmetric plane diffuser
will be presented and discussed.

5.1 Experimental Test Case
The experimental test case presented in this thesis is a separated flow
in an asymmetric plane diffuser. This flow is of considerable interest to
turbulence modelers due to it is simple geometry and the availability
of two sets of experimental data [22] [2]. The flow has several desir-
able features which make it good test case for validation. According to
Kaltenbrach [12] the most important features are:

� The flow experiences pressure-driven separation from a smooth
wall. Many technical devices are designed to operate under these
conditions .

� The flow exhibits rich flow physics, such as the combined effects of
adverse pressure gradient and convex curvature near the diffuser
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inlet.

� The inlet duct has a length of more than 100 duct heights, thereby
guaranteeing that the inlet flow is fully developed turbulent chan-
nel flow.

In such flow, determining the separation line depends on the correct
modeling of the shear stress and normal stresses, while the reattach-
ment point mainly depends on the magnitude of the shear stress in a
free shear layer. The major challenges of turbulence models in such a
flow are:

� To predict the correct time scale.

� To predict the correct anisotropy of the Reynold stress tensor.

The test case geometry is shown in figure 5.1. The geometry is di-
vided into three regions: the inlet, the diffusing section and the outlet.
The diffusing section has a length � � �

, where
�

is the inlet channel
height, and an overall expansion ratio of

� � �
. The inlet plane is lo-

cated at

 � � & � 


and the exit plane is located at

 � � & � 


. The
Reynolds number based on the bulk velocity

� �
at the inlet section

and
�

is
#�% � & � �*) )*) , which matches the experimental configuration.

The corresponding Reynolds number based on the friction velocity � � is#�%
�
& 
 )*)

.
Obi et. al. [22] investigated the flow using two component laser

Doppler anemometry (LDA) in a wind tunnel. The aspect ratio of the
configuration was � � ! 
 while for the outflow it was � � � � � which is
not sufficient to ensure two-dimensional flow. They measured mean
velocity profiles and Reynolds stresses at stations between


 � � & ! � �
and

 � � & � 
 � � . The pressure was only measured along the flat wall.

The same experiment was repeated by Buice & Eaton [2] with care-
ful attention to eliminate the side wall effects. The pressure level in
the facility was raised through the exit blockage in order to control
the sidewall boundary layer leakage. The velocity was measured with
hot-wire technique. They were unable to obtain measurements in the
recirculating flow. However, they extend the coverage of flow devel-
opment downstream, and added skin-friction coefficients and surface
pressure on the inclined wall to the data set.

The flow was reported to separate from the inclined wall at

 � � &

� ��

and to reattach at


 � � & � � .
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Figure 5.1: The computational domain

5.2 Computational Domain
The computational domain is the asymmetric plane diffuser of Obi et.
al. [22] (figure 5.1). The domain extended from


 � � & � � � to

 � � &�'*)

.
The mesh was generated using FORTRAN program by D.D Apsley [6]
specially written for the asymmetric plane diffuser. Mesh size of � �*) x� � ) control volumes is employed. The near wall grid sizes were chosen
to obtain ��� & � at the cell centers.

5.3 Boundary Conditions
Inlet and outlet boundary condition

It is more reliable to obtain the inlet boundary conditions from the
experimental data. However, sometimes it is experimentally rather
difficult to obtain the profiles of some turbulent quantities such as �
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Figure 5.2: The diffuser mesh

and � . Due to such difficulties, another approach was used in this
thesis to obtain the inlet boundary condition.

As mentioned before, the diffuser inlet section was long enough
to ensure fully developed turbulent flow at the inlet, hence the inlet
boundary condition was obtained by computing a fully developed chan-
nel flow of

#�%
�
& 
 )*)

using the same turbulence model that will be used
of the diffuser computations.

At the outlet the Neumann condition was used for all variables.

Wall boundary condition

Due to the no-slip condition on the wall, the wall boundary condition of
the velocity components and the turbulent kinetic energy.

��& � &�� & � &()
The wall boundary condition of the remaining parameters is.

� � ����� & � � ��.

� � � � � & � '

	 �.

� &()

5.4 Grid Independence
The grid independence is studied for the � � � � 	�
 ��� model and the� �-� � 	 
 ��� model employing two types of grids with different values
of ��� to examine the sensitivity of � and � boundary conditions.

36



CHAPTER 5. RESULTS

� Coarse mesh � �*) x
'*)

with � � & � .
� Fine mesh � �*) x � � ) with � � & � .
� Fine mesh � �*) x � � ) with � � & � .
� Fine mesh � �*) x � � ) with � � & 


.

� Fine mesh � �*) x � � ) with � � & )���
 .

In addition, the effect of the inlet boundary condition is also studied
by employing the DNS data of fully developed channel flow (

#�%
�
& 
 )*)

)
of Moser et. al. [25] as inlet condition. In all computations, the van
leer scheme was used due to its higher order accuracy. The effect of the
differencing scheme is also investigated in terms of the Hybrid scheme.
For the modified � �0� � 	.
 � � and the modified � � �-� 	.
/� � , only the
first two types of mesh are studied.

Figures 5.3(a), 5.3(b), 5.4(a) and 5.4(b) show the mean velocity pro-
file and the Reynolds shear stress computed by the � � ��� 	�
 � � and the
modified � � � � 	 
 ��� respectively. And figures 5.5(a), 5.5(b), 5.6(a) and
5.6(b) show the same parameters computed by the � � � � 	�
 ��� and
the modified � �-� � 	 
 ��� respectively. All the obtained quantities are
plotted in the middle of the diffusing section (after the separation point
and beyond the reattachment point at


 � � & �
). The results showed

that the adopted grid for both models was sufficient for the numeri-
cal accuracy. This is also confirmed by the results of Hybrid scheme. A
large deviation was observed when employing � �*) x � � ) control volumes
with � � & 


, and no separation was detected. This is mainly because
the boundary conditions are assigned on the edge of the viscous layer.
The results also showed that the ���-��� 	 
 �0� model is not sensitive to
the inlet boundary condition while the � � � � 	�
 � � is highly sensitive.

It was concluded from the mesh dependence study that the � � � �	 
 �(� model is highly sensitive to the inlet boundary condition. Fig-
ure 5.7 illustrates the difference between the the different boundary
conditions used in the computations.
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(b) Reynolds shear stress

Figure 5.3: Mean velocity profile and Reynolds shear stress at

 � � & �

computed by the � �0� � 	.
 � � model. Dotted line: 280x60 � � & � ; solid
line: 280x120 ��� & � ; dashed line: 280x120 ��� & � ; x: 280x120 � � & 


;
� : 280x120 � � & )�� 


; � : 280x120 ��� & � – DNS inlet B.C; � : 280x60
��� & � Hybrid scheme.
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(b) Reynolds shear stress

Figure 5.4: Mean velocity profile and Reynolds shear stress at

 � � & �

computed by the modified � ��� � 	.
 ��� model. � : 280x60 � � & � ; � :
280x120 ��� & � .
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(b) Reynolds shear stress

Figure 5.5: Mean velocity profile and Reynolds shear stress at

 � � & �

computed by the ������� 	.
�� � model. Dotted line: 280x60 � � & � ; solid
line: 280x120 ��� & � ; dashed line: 280x120 ��� & � ; x: 280x120 � � & 


;
� : 280x120 � � & )�� 


; � : 280x120 ��� & � – DNS inlet B.C; � : 280x60
��� & � Hybrid scheme.
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(b) Reynolds shear stress

Figure 5.6: Mean velocity profile and Reynolds shear stress at

 � � & �

computed by the modified � ��� � 	.
 ��� model. � : 280x60 � � & � ; � :
280x120 ��� & � .
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Figure 5.7: Comparison of different inlet boundary conditions. Solid
line: DNS data (

#�%
�
& 
 )*)

); dashed line: fully developed channel flow
computed by the � ��� � 	.
 � � model.
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5.5 Results and Discussions
The results of the ��� � � 	.
 ��� , the modified ����� � 	.
�� � , the ������� 	.
*��� ,
and the modified � � � � 	.
 � � are plotted together with the experimental
data and presented in this section. It is organized as follows. First the
results of the � � � � 	 
 � � and the modified � � � � 	 
 � � will be
presented and discussed, then the results of the � � � � 	 
 � � and the
modified � ��� � 	 
 � � .

5.5.1 � � � � � � ��� Model
Figures 5.8(a) and 5.8(b) show the mean velocity profile along the dif-
fuser. In the recirculating region, the velocity was very good predicted
with the the � ��� � 	.
 � � model, while it was over predicted by the
modified � ��� � 	.
 ��� model. However both models over-predict the
velocity after the reattachment point. As indicated earlier, the predic-
tion of separation point depends on the proper prediction of Reynolds
stresses. Figures 5.9(a), 5.9(b), 5.10(a), 5.10(b), 5.11(a) and 5.11(b)
show the Reynolds stresses � � , 	 	 and � 	 respectively. A peak for all
the stresses was found in the center region due to the adverse pressure
gradient. The stresses predicted with both models are shown to be in
a good agreement with the experimental data. The pressure coefficient
 �

on the plane wall is presented in figure 5.12(a). This parameter re-
flects the shape of the recirculating region. It is clear that the depth of
the recirculating flow is much better predicted with the � � � � 	 
 ���
model. The skin-friction coefficient


 
 is presented in figure 5.12(b). It
is an important parameter to indicate the separation and reattachment
points. The recirculating region is identified by the negative values of
 
 . The separation was captured by both models. Again the �/� � � 	�
,� �
model was able to predict the separation and reattachment points very
close to the experiment.

5.5.2 � � ��� � � � � Model
The mean velocity profile is shown in figure 5.13(a) and figure 5.13(b).
The results of the � �0� � 	 
 � � fairly agree with the experiment espe-
cially in the recirculating region, while over-prediction of the velocity
was recorded when employing the modified � � � � 	�
 ��� (this is consis-
tent with the previous results of the channel flow). Figures 5.14(a),
5.14(b), 5.15(a), 5.15(b), 5.16(a) and 5.16(b) represent the Reynolds
stresses � � , 	 	 and � 	 respectively. The stresses are fairly well pre-
dicted with both models. However, the modified � � � � 	 
 � � showed
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The Model Separation point

 
 � �

Reattachment point

�� � �

� � � � 	 
 � � 
 � �
Modified � � ��� 	.
 � � ����
 ! )
� � ��� 	 
 � � ! � �
Modified � � ��� 	 
 � � � ��
 � �

Table 5.1: Summary of separation point and reattachment point.

a moderate degree of over-prediction of 	 	 and � 	 . The pressure co-
efficient


 �
presented in figure 5.17(a) revealed that the depth of the

recirculating region is much better predicted by the � � � � 	 
 � � . Both
models captured the separation as it is shown in figure 5.17(b). The
models predicted the separation point too early, on the other hand the
prediction of reattachment point agrees well with the experiment. An
interesting feature is observed in the results of both models. They pre-
dict a tiny region of recirculation right at the corner (at the inlet to the
diffusing section), the same feature also revealed by the LES data [20],
although both experimental data were not able to clarify this.

The performance of the four models in terms of the separation point
and reattachment point is summarized in the table 5.1.
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(a) Mean velocity profile
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(b) Mean velocity profile

Figure 5.8: Mean velocity profile. Solid line: � �-�
� 	�
 �0� ; dashed line:
modified � � � � 	.
 � � ; � : experimental data [2].
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(a) Reynolds stress 
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(b) Reynolds stress 
�


Figure 5.9: Reynolds stress � � . Solid line: � � � � 	�
 ��� ; dashed line:
modified � � � � 	.
 � � ; � : experimental data [2].
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(a) Reynolds stress � �
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(b) Reynolds stress � �

Figure 5.10: Reynolds stress 	 	 . Solid line: � � ��� 	�
 � � ; dashed line:
modified � � � � 	.
 � � ; � : experimental data [2]; � : experimental data
[22]. 47
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(a) Reynolds shear stress 
 �
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(b) Reynolds shear stress 
 �

Figure 5.11: Reynold shear stress � 	 . Solid line: � � � � 	�
 � � ; dashed
line: modified � ����� 	.
 � � ; � : experimental data [2]; � : experimental
data [22]. 48
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(a) The pressure coefficient ���

0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

PSfrag replacements

���


 � �

(b) The skin friction coefficient �	�

Figure 5.12: Pressure coefficient and skin-friction. Solid line: � ��� �	 
 � � ; dashed line: modified � � � � 	 
 � � ; � : experimental data [2].
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(a) Mean velocity profile
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(b) Mean velocity profile

Figure 5.13: Mean velocity profile. Solid line: � � � � 	�
 ��� ; dashed
line: modified � �0� � 	.
 � � ; � : experimental data [2].
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(a) Reynolds stress 
�
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(b) Reynolds stress 
�


Figure 5.14: Reynolds stress � � . Solid line: � �0�0� 	�
 � � ; dashed line:
modified � ��� � 	.
 � � ; � : experimental data [2].
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(a) Reynolds stress � �
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(b) Reynolds stress � �

Figure 5.15: Reynolds stress 	 	 . Solid line: � �0� � 	�
 � � ; dashed line:
modified � �0� � 	 
 � � ; � : experimental data [2]; � : experimental data
[22]. 52
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(a) Reynolds shear stress 
��
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(b) Reynolds shear stress 
��

Figure 5.16: Reynolds shear stress � 	 . Solid line: � ��� � 	�
 � � ; dashed
line: modified � � � � 	 
 � � ; � : experimental data [2]; � : experimental
data [22]. 53
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(a) The pressure coefficient ���
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(b) The skin friction coefficient �	�

Figure 5.17: pressure coefficient and skin-friction. Solid line: � � � �	 
 � � ; dashed line: modified � � � � 	 
 � � ; � : experimental data [2].
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Conclusions

In the present work, a new � � � � 	 
 ��� model which has more appealing
boundary condition of � had been developed. The model constants were
determined by tuning the results to match the DNS data of fully devel-
oped channel flow. The results of a fully developed channel flow suggest
that the model is more viscous as it under-predicts the Reynolds shear
stress in the near-wall region.

The mesh dependence study revealed the sensitivity of the model to
the inlet boundary condition and the wall boundary condition of � .

As the model is intended for computing complex engineering flows,
the performance of the model has been assessed by computing a sepa-
rated flow in an asymmetric plane diffuser. The results are shown to
be in good agreement with the experimental data. The model was able
to capture the separation from the inclined wall. The separation point
was detected too early in comparison with experimental data. This
suggests that a modification is needed to predict the proper behavior of
Reynolds stresses.
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