Non-orthogonal Finite Volume Method for Heat Conduction

Lars Davidson
Thermo and Fluid Dynamics
Chalmers University of Technology
S-412 96 Gothenburg, Sweden
E-mail: lada@tfd.chalmers.se

1 Equation

The 2D equation reads

$$
\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+S=0
$$

or in vector notation

$$
\begin{equation*}
\nabla \cdot(k \nabla T)+S=0 \tag{1}
\end{equation*}
$$

2 Discretization

Integrate Eq. 1 over a control volume

$$
\int_{V}[\nabla \cdot(k \nabla T)+S] d V=0
$$

Rewrite the divergence term using Gauss' law

$$
\int_{A}(k \nabla T) \cdot \mathbf{d A}+\int_{V} S d V=0 .
$$

where $\mathbf{d A}$ is the (vector) area bounding the volume V. Using $\mathbf{d A}=\mathbf{n}|\mathbf{d} \mathbf{A}|=$ $\mathbf{n} d A$, where \mathbf{n} is the unit normal vector of $\mathbf{d} \mathbf{A}$ we get

$$
\begin{equation*}
\underbrace{\int_{A}(k \nabla T) \cdot \mathbf{n} d A}_{1}+\underbrace{\int_{V} S d V}_{2}=0 \tag{2}
\end{equation*}
$$

Now we concentrate on the area integral (term $\left.1=T_{1}\right)$. Write out the dot product so that

$$
T_{1}=\int_{A}(k \nabla T) \cdot \mathbf{n} d A=\int_{A} k\left(\frac{\partial T}{\partial x} n_{x}+\frac{\partial T}{\partial y} n_{y}\right) d A
$$

Going from the continuous level (integral) to the discrete level (sum) we can write

$$
T_{1}=\sum_{i=e, w, n, s}\left\{k\left(\frac{\partial T}{\partial x} n_{x}+\frac{\partial T}{\partial y} n_{y}\right) A\right\}_{i}
$$

Term T_{1} is a (negative) heat flux, i.e.

$$
\begin{equation*}
T_{1}=\sum_{i=e, w, n, s}-\dot{Q}_{i} \tag{3}
\end{equation*}
$$

Let us look at the heat flux at the east face e

$$
\begin{equation*}
-\dot{Q}_{e}=\{\underbrace{k \frac{\partial T}{\partial x} A n_{x}}_{I}+\underbrace{k \frac{\partial T}{\partial y} A n_{y}}_{I I}\}_{e} \tag{4}
\end{equation*}
$$

In term I we need to express $\partial T / \partial x$. In order to do that we use Gauss' law over a control volume centered at face e (dashed control volume in Fig. 1). To compute $\partial T / \partial x$ we use the x-component of the normal vector $\mathbf{n}=\left(n_{x}, n_{y}\right)$, i.e.

$$
\int_{V} \frac{\partial T}{\partial x} d V=\int_{A} T n_{x} d A
$$

Assuming that $\partial T / \partial x$ is constant in the volume V we obtain

$$
\frac{\partial T}{\partial x}=\frac{1}{V} \int_{A} T n_{x} d A
$$

For the east we we can write (see Fig. 1)

$$
\begin{array}{r}
\left(\frac{\partial T}{\partial x}\right)_{e}=\frac{1}{V_{e}} \sum_{i=E, n e, P, s e}\left(T n_{x}^{e} A\right)_{i}= \\
\frac{1}{V_{e}}\left\{\left(T A n_{x}^{e}\right)_{E}+\left(T A n_{x}^{e}\right)_{n e}+\left(T A n_{x}^{e}\right)_{P}+\left(T A n_{x}^{e}\right)_{s e}\right\}
\end{array}
$$

The high index e (in n_{x}^{e} for example) denotes that the normal vector is related to the control volume centered at e. The dashed control volume in Fig. 1 is

Figure 1: Control volume. Temperature T and konductivity k are stored at nodes (P, E, \ldots). Coordinates x, y are given at the corners ($n e, n w, \ldots$). Solid lines shows the ordinary control volume. Dashed line shows the control volume centred at face e which is used when computing $(\partial T / \partial x)_{e}$ and $(\partial T / \partial y)_{e}$.
chosen so that $\left(n_{x}^{e} A\right)_{E}=-\left(n_{x}^{e} A\right)_{P}=\left(n_{x} A\right)_{e}$, and $\left(n_{x}^{e} A\right)_{n e}=-\left(n_{x}^{e} A\right)_{\text {se }}$, which gives

$$
\begin{equation*}
\left(\frac{\partial T}{\partial x}\right)_{e}=\frac{1}{V_{e}}\left\{\left(A n_{x}\right)_{e}\left(T_{E}-T_{P}\right)+\left(A n_{x}^{e}\right)_{n e}\left(T_{n e}-T_{s e}\right)\right\} \tag{5}
\end{equation*}
$$

We derive an analogous expression for $(\partial T / \partial y)_{e}$ as

$$
\begin{equation*}
\left(\frac{\partial T}{\partial y}\right)_{e}=\frac{1}{V_{e}}\left\{\left(A n_{y}\right)_{e}\left(T_{E}-T_{P}\right)+\left(A n_{y}^{e}\right)_{n e}\left(T_{n e}-T_{s e}\right)\right\} \tag{6}
\end{equation*}
$$

and insert Eqs. 5, 6 into Eq. 4 we get
$-\dot{Q}_{e}=\frac{k_{e} A_{e}}{V_{e}}\left\{\left(n_{x e}^{2}+n_{y e}^{2}\right)\left(T_{E}-T_{P}\right) A_{e}+\left[n_{x e}\left(A n_{x}^{e}\right)_{n e}+n_{y e}\left(A n_{y}^{e}\right)_{n e}\right]\left(T_{n e}-T_{s e}\right)\right\}_{e}$
Since \mathbf{n} is a unit vector $n_{x e}^{2}+n_{y e}^{2}=1$, it can be written

$$
\begin{equation*}
-\dot{Q}_{e}=\frac{k_{e} A_{e}}{V_{e}}\left\{\left(T_{E}-T_{P}\right) A_{e}+\left[n_{x e}\left(A n_{x}^{e}\right)_{n e}+n_{y e}\left(A n_{y}^{e}\right)_{n e}\right]\left(T_{n e}-T_{s e}\right)\right\} \tag{8}
\end{equation*}
$$

Having derived \dot{Q}_{e}, we derive \dot{Q}_{w}, \dot{Q}_{n} and \dot{Q}_{s} in the same way and insert the heat fluxes into Eq. 3 and include the source term (term II in Eq. 2), we arrive at the discretized equation

$$
\begin{aligned}
a_{P} T_{P} & =a_{E} T_{E}+a_{W} T_{W}+a_{N} T_{N}+a_{S} T_{S}+b \\
a_{E} & =\frac{k_{e} A_{e}^{2}}{V_{e}} \\
a_{W} & =\frac{k_{w} A_{w}^{2}}{V_{w}} \\
a_{N} & =\frac{k_{n} A_{n}^{2}}{V_{n}} \\
a_{S} & =\frac{k_{s} A_{s}^{2}}{V_{s}} \\
b & =S V_{P}+\frac{k_{e} A_{e}}{V_{e}}\left[n_{x e}\left(A n_{x}^{e}\right)_{n e}+n_{y e}\left(A n_{y}^{e}\right)_{n e}\right]\left(T_{n e}-T_{s e}\right) \\
& +\frac{k_{n} A_{n}}{V_{n}}\left[n_{x n}\left(A n_{x}^{n}\right)_{n w}+n_{y n}\left(A n_{y}^{n}\right)_{n w}\right]\left(T_{n w}-T_{n e}\right) \\
& +\frac{k_{w} A_{w}}{V_{w}}\left[n_{x w}\left(A n_{x}^{w}\right)_{s w}+n_{y w}\left(A n_{y}^{w}\right)_{s w}\right]\left(T_{s w}-T_{n w}\right) \\
& +\frac{k_{s} A_{s}}{V_{s}}\left[n_{x s}\left(A n_{x}^{s}\right)_{s e}+n_{y s}\left(A n_{y}^{s}\right)_{s e}\right]\left(T_{s e}-T_{s w}\right)
\end{aligned}
$$

2.1 The temperature at corners

The temperature is stored at nodes ($\mathrm{P}, \mathrm{E}, \ldots$), but we need also the temperature at corners (ne, se, ...). The easiest way is compute it as $1 / 4$-th of its nodeneighbours. The temperature $T_{n e}$, for example, is computed as

$$
T_{n e}=\frac{1}{4}\left(T_{E}+T_{N E}+T_{N}+T_{P}\right)
$$

2.2 Geometrical quantities

It is useful to first compute the unit vectors s along the control volume. For the east face, for example, we get

$$
\begin{aligned}
s_{e x} & =\frac{x_{n e}-x_{s e}}{d_{e}} \\
s_{e y} & =\frac{y_{n e}-y_{s e}}{d_{e}} \\
d_{e} & =\sqrt{\left(x_{n e}-x_{s e}\right)^{2}+\left(y_{n e}-y_{s e}\right)^{2}}
\end{aligned}
$$

(note that the area of the east face A_{e} is equal to d_{e} since $\Delta z=1$). The relation between the normal vector \mathbf{n}, \mathbf{s} and the unit vector in the z-direction

$$
\begin{aligned}
& \mathbf{s} \cdot \mathbf{n}=0 \\
& \mathbf{s} \times \hat{z}=\mathbf{n},
\end{aligned}
$$

gives us the normal vector for the east face as

$$
\begin{aligned}
n_{e x} & =s_{e y} \\
n_{e y} & =-s_{e x} .
\end{aligned}
$$

When computing the $\mathbf{s}_{n e}$-vector, we can assume that it is parallel to the vector from node P to node E . Compute the coordinates of the nodes as $1 / 4$-th of the surrounding grid points. For node P, for example, we obtain

$$
\begin{aligned}
x_{P} & =\frac{1}{4}\left(x_{n e}+x_{n w}+x_{s w}+x_{s e}\right) \\
y_{P} & =\frac{1}{4}\left(y_{n e}+y_{n w}+y_{s w}+y_{s e}\right)
\end{aligned}
$$

The volume V_{e} of the dashed control volume in Fig. 1 can be computed as

$$
V_{e}=\frac{1}{2}\left(V_{P}+V_{E}\right)
$$

where the volume of the control volume P , for example, is computed as the vector product

$$
\begin{aligned}
V_{P} & =\frac{1}{2}|\mathbf{a} \times \mathbf{b}| \\
a_{x} & =x_{n e}-x_{s w} \\
a_{y} & =y_{n e}-y_{s w} \\
b_{x} & =x_{n w}-x_{s e} \\
b_{y} & =y_{n w}-y_{s e} .
\end{aligned}
$$

This vector product has the form

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
a_{x} & a_{y} & 0 \\
b_{x} & b_{y} & 0
\end{array}\right|=\left(0,0, a_{x} b_{y}-a_{y} b_{x}\right)
$$

