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Summary

The subject of this Diploma Thesis is a three-dimensional laminar multigrid implementation.
The multigrid method is here used as a convergence accelerator for the system of nonlinear
algebraic equations obtained from the discretization of the Reynolds avaraged Navier Stoke’s
equations.

The solution process is the SIMPLEC algorithm. A line Gauss-Seidel (TDMA) solver is used
as a smoother for all equations.

For fine grids significantly computational savings have been achieved. The savings is of the
order that a three-dimensional grid with half a million cells could be calculated over a night on
a work station. But since the computer memory on the workstation used in the present study
was to small for such domains the largest three-dimensional grid used here is a 40x40x40 grid.

For two-dimensional calculations has a 160x160 grid been used and the CPU-time was re-
duced by a factor 16 using multigrid instead of singlegrid,

Implementation of the multigrid algorithm for turbulent calcultations with the &k — ¢ turbu-
lence model is also started. But due to the nature of the & and the € equations special care be
taken and further reserch must be done before any calculations can be done.
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1 Introduction

1.1 Preface

Except for some simple cases, calculations of flow problems are always bounded to numerical
methods. These numerical methods can be based on finite elements, boundary elements, finite
volumes ete.

To solve the system of algebraic equations in the finite volume method, a smoother used, for
example Gauss-Seidel solver or Stone’s Strongly Implicit Procedure (SIP). Smoothers like these
have a high convergence rate for the first iterations but after a couple of iterations it is slower.
Since the truncation error from the discretization process becomes smaller as the grid gets finer,
a solution of high accuracy demands a fine grid.

Most smoothers needs more relaxation sweeps to smooth out the algebraic errors, as the
mesh gets finer. Each relaxation sweep also takes longer time at a fine grid. The computer
time increases therefore rapidly with an increased number of nodes. To reach a certain accuracy
can therefore be prohibitively expensive. If the relaxation process could be speeded up, could
thereby a higher accuracy be afforded.

One way to increase the convergence rate is multigrid. Multigrid uses a serie of grids applied
to the same physical problem. These grids have different mesh sizes and they are in a nested
way used to correct each other, to obtain a solution at the finest grid.

If this is done properly can the computing time be reduced by an order of a magnitude or
two. The multigrid principles from the concept presented 1977 by Brandt[2] has been further
developed by, Peric[4, 5, 6, 7], Fuchs(8, 9, 10] , Briggs{11],Lien [12] among others.

This present work is done with a finite volume based code CALC-BFC, devoloped at De-
partment of Thermo and Fluid Dyramics by Davidsor and Farhanieh [1}. CALC-BFC uses the
SIMPLEC algorithm and has a collocated arrangement for all field quantities. As a smoother a
line-Gauss-Seidel is used and boundary-fitted coordinates can be handled.

In CALC-BFC a multigrid code for two dimensional laminar flow situations had been im-
plemented [14]. It was found that this multigrid code contained so many bugs and conceptual
errors that a new multigrid code had to be written. This new two-dimensional laminar multigrid
code was then extended to three dimensions and an implementation of the & ~ ¢ turbulence is
started.

It should not be forgotten that the old multigrid code [14] has been a good help to the
structure of the implementation in CALC-BFC. The same pointer system has also been used.

2 Equations

The following differential equations are discretized and calculated in the code CALC-BFC. They
are first lined up and later represented with the general transport equation.

2.1 Basic Equations

Continuity equation:
ap a ., ..

Reynolds averaged Navier Stokes Equation:

J . a — ap a al; .
”é“,j:“(ii’bz) + 3%(!?{/;51) S + 2}}? {#effg‘;jf} (2)



The k - £ turbulence model

—é—?;(pk) + ;;:({)Uik} = E}%” {(u + g—:) g%} + P — pe - {3)
D4 o) = o { (14 22) g+ £(CaPe = Cand) @)
Pk=y%—[i{%i+§~5—’-} (5)
= Cupk® /e (6)
Hepj = pe+ pt (7)
o = 1; oo = 1.3: Coy = 1.44; C, = 0.09; Cen = 1.92

2.2 General Transport Equation

To represent the equations above the general transport equation is defined as:

a8 a a kil
”3”;(/’@’) + %(PUJ@) = 9 (Fé-aw“) + S (8)

Zj
Table.1 shows the parameters in the general transport equation.

Define a flux vector J; containing both convection and diffusion:

L
J; = pU;® — F@% (9

Then the general transport equation can then be written as:

a8 aJ;
dr re) dr; & (10}

[}
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Table 1: The parameters in the general transport equation

Integrating this equation over a control volume, with volume V and surface area A ,using
Gauss’ law yields:

9
Lg;(p@)dvjufjinmmzfvswv (11)

This is the equation that is discretized and solved for the different ®'s in Table 1.

3 The CALC-BFC code

3.1 Basics

In this section is the finite volume program CALC-BFC described briefly. For more details see
[1]. CALC-BFC uses three dimensional boundary fitted coordinates. A collocated arrangement
is used for all field quantities, i.e. all information is stored at the cell center. To aviod non-
physical oscillations, a fourth order artificial pressure diffusion is introduced by Rhie and Chow
interpolation. Cartesian velocity components are also used. The collocated arrangement for a

2D cartesian grid is showed in fig. 2.
Since only steady calculations are made in this report, only the steady part of CALC-BFC

is presented. If equation 11 is discretized using a finite volume formulation it yields:

(n;di AYe + (njdj Aoy + (05 dj An + (03 ; A)s + (nj Jj At + (mj ;A ) = SEV - (12)

which can be written on the form:

apbp = zanb@nb + SC (13)

nb
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Figure 1: Grid nomenclature

where

ap::Zaﬂwap (14)
nb

The coefficients a.;, contains contributions due to both convection and diffusion, and the
source terms S¢ and Sp contains the remaining terms.

3.2 Convection

The convective part of the flux vector multiplied with the facearea is defined as the massflux
multiplied with the field variable.

(n; IS A), = 1, @, (15)

The mass flux through an ecastface is defined:

e = {pA(Uny + Vi, + Wn;)}e (16)

A is the area of the face and n; is the east face normal vector. To avoid nonphysical oscil-
lations Rhie and Chow interpolation is used for the face velocities. For an east face velocity U.

we obtain:

"(Pr:e - Pe)év

(P, = P)6V
le(ee)l(ap)E

T e [Ty 142 — ]" .
{/p L’P §'w€i(6§p)p and LE (,E (1?)



U, = fxlf}% + (1 - f,;)U}% - W (18)

where

_ | Pel
S e o)

P, etc are calculated by linear interpolation. |we| is the spatial distance between the west

and the east face. CALC-BFC can calculate the field quantities used to calculate the convective
fluxes with three different schemes. Only Hybrid Upwind/Central Differencing Scheme will be
presented since it is the only scheme used in this report.

Hybrid Upwind/Central Differencing Scheme

i 297 if |[Resz| >2 and U, >0
P, oo dp if |Rese| >2 and Uy <0 (20)
f22p+ (1= f2)0w if |Resy| <2

3.3 Diffusion

The diffusiv part of the flux vector multiplied with a face area is defined:

(an;-ﬁffA)e = - {T@Aﬂj-g;?—'} (21)
I (4

If this equation is transformed into curvlinear coordinates with (g}, as the covariant base
vectors and ¢ as the metric tensor it yields:

: ;G0
(anf A)e = - {f@ﬁnm(gl)mgu'gg} (22)
3 e

since for an east face is Nm(g2)m = Nm(ga)m = 0. For more details, see [1}.

3.4 Pressure correction equation

The pressure correction equation is obtained by applying the SIMPLEC algorithm, on the col-
located grid. The mass flux is divided into one old value 7»*, and one correction value, m'. The
mass flux correction at the east face can be calculated by

Ml = (pAnm{g)mUf)e (23)

where {g7),, are the contravariant basevectors. The covariant velocity correction components
U! are related to the pressure gradient by:

A

J ap dz; (24)



If these two equations are combined

1 0 .
- - 1py e ! 7 " ] 25
1, = pAe(m — 8%‘(1?)(9‘ Jm) (25)
The continuity equation reads:
e — My, + Ty — My + 1y — g =0 {26)

If i = ™ + n’ and eq.25 are substituted into eq.26 a diffusion equation is obtained. It can
be solved in the same manner as the momentum equation if the convection is zero, & = 7, and
the source term is the mass flux imbalance for a control volume using m”.

3.5 The k — ¢ turbulence model

The k — ¢ turbulence model is discretized and calculated in the same way as the momentum
equations. Only the coeflicents and the source differ. Further information how this is imple-
mented is described in [1}.

4 Multigrid theory

4,1 Basics

The multigrid method was originally devoloped as an convergence accelerator for linear algebraic
equations. These algebraic equations could arise from discretized linear differential equations,
or discretized linearized nonlinear differential equations.

For linear problems, the first multigrid algorithm, the correction scheme (C8), was devoloped
by Brandt. It was then extended to handle nonlinear problems, such as fluid dynamics, and
presented as FAS (Fully Storage Approximation) 1977 by Brandt [2]. Before FAS and CS is
described, is a short description of the basic iterative methods and their behaviour shown.

4.2 Definitions of errors

Define the discretized equation as:

Auw = f {(27)

where A is a coeflicient matrix, f is a sourceterm and u is the exact solution to the discrete
problem. It can also be written as:

Av= f+r (28}

where ¢ is an approximation to u and r is the residual



If A depends on u then the discretized problem is nonlinear. The algebraic error e is defined
as:

£y —v (29)

Let the exact solution to the differential equation be U. Then are the truncation error ¢
defined by:

t=U~u {30)

The total error E in any approximation v is therefore defined as:

E=t+e=U~-v {(31)

Tt is important not to confuse these three errors. The truncation error depends on the
gradients &, and the mesh size & like, (h*. The only way to reduce the truncation error is
therefore to reduce the mesh size {or use a higher order discretization scheme). The algebraic
error on the other hand can be reduced with the number of relaxation sweeps. It is this rate of
reducing the algebraic error wich can be speeded up with multigrid.

The relaxation process is strongly dependent of the number of nodes N in a characteristic
direction. The number of iterations needed to reach a certain accuracy is O(N®) where a is
around two for singlegrid calculations and close to zero for multigrid calculations.

Consider the computer time as limited when a solution as accurate as possible is needed.
With multigrid the algebraic error is reduced faster and therefore a finer grid with lower trun-
cation errors can be used. Therefore multigrid gives indirectly more accurate solutions.

For areas where the gradients are small, the reduction of truncation error using a finer grid
is negligible, compared to the reduction in arcas where the gradients are significant. Therefore
is it a waste of computer time to refine domains with small gradients, and that is why local
mesh refinement is so effective to get high accuracy for a low computing cost.

To measure the error matrix, a suitable norm on £ or ¢ can be used. But since neither u or
U/ is known is it common to use the residual as a substitute for the algebraic error. The measure
for the residual, is here choosen to be the sum of the absolute of the components in the residual
matrix scaled with a flow characteristic.

The residual is defined as the imbalance of the discretized equation when the approximation
v is used instead of the exact discrete solution u:

r= f- Av (32)

It should be mentioned that if 7 is low e is normally also low. Fortunately if r is zero, e is
always zero.
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Pigure 2: One-dimensional Fourier modes

4.3 TFourier expansion of the algebraic error

First consider an one-dimensional problem and expand the algebraic error e into Fourier series.
For a one-dimensional grid with six nodes can the error e be expressed as S8 _1 Agsin{nkj/6)
where j is the node number and k is the wavenumber. Fig. 2 showes 3 of these error modes.
Notice that it is the continous modes that are shown, i.e. ¥ — co..

The components with a wave length less then four times the mesh size will be called oscillatory
modes, and the rest is called smooth modes. It can analougus be extended to higher dimensions.
Most smoothers like Thomas, Gauss-Seidel or Jacobi have different smoothing properties for
different error components. The oscillative modes are smoothed out rapidly by just a few
iterations whereas the smoothest (largest wave length) components are almost not effected within
10-30 iterations.

Fig. 3 shows this typical behaviour for a one-dimensional model problem with a weighted-
Jacobi smoother. Assume a discretization where 3a is concidered as a smooth mode and 3b as
an oscillative error mode. The figures to the left show the initial errors and the figures to the
right show the same error modes after ten relaxation sweeps. These two modes superponated

are shown in 3¢,

Further information of the local made Fourier analys se Brandt[2, 3] and Shaw[13]

4.4 The multigrid idea

First assume that a full spectra of error components are represented on the fine grid k. A full
spectra of Fourier modes for a one-dimensional problem with N nodes are 3, Agsin(jkn/N)
1<k<N. After a couple of iterations at a fine gridlevel k are only smooth error components €5,
feft. If the mesh size is halved then e¥ does not consist of only smooth modes from the coarse
grid’s point of view.

Let ¥ be represented on the coarse gridlevel & — 1 by "1, Ongrid level k — 1 ep_y is a
full spectra of error modes that can be represented on this grid. After a couple of iterations on
this grid level will there onrly be low frequency errors =1 left. They can now be represented at
a still coarser grid as a full spectra and so on.

Let the coarser grids be used to liberate the fine grid approximation from the error com-
ponents that looks oscillative on respectively coarse grid. Use then a serie of grids, where the
coarsest grid is coarse enough to correct the fine grid solution, from the error component with
largest wave length. Then the computing time would theoretically depend on the smoothing rate
of the oscillative components, and not on the smoothing rate of the smooth error components.

The basic idea of multigrid is to do these corrections in a consistent manrner in order to

11
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Figure 3: Typical smoothing effects. (a} one smooth, {b) one oscillative error mode and {¢) both
superponated. The left curves show the initial error and the right curves show what is left after
10 iterations. (d) shows how a smooth mode is restricted. (e} show how an oscillative error
mode is aliased as a smooth mode after restriction



significantly reduce the computing time.

Note, if oscillative error components are left on a fine grid, they will mistakenly, be regarded
as smooth components by the next coarser grid. This is called the alias fenomena and Fig. 3d
shows how a smooth mode on a fine grid is represented on a coarse grid and Fig. 3e shows how
an oscillative error mode at a fine grid is mistakenly regarded as a smooth mode on a coarse
grid. Let N be the number of nodes in a one-dimensional problem, j the node number and
k the mode number. The kth error mode lookes then like sin(rjk/N}, 1<k<N. Modes with
k > N/2 are oscillative and cannot be represented on the coarse grid but they are aliased as the
N-k mode on the coarse grid. That is shown in Fig. 3e.

To have oscillatory errors and exchange them against smooth errors has disasterous eflects on
the convergence rate if convergence is obtained at all. This is a phenomena that can arise from
bad smoothers, bugs, inconsistency with boundary conditions or other conceptual mistakes.

4.5 The CS-concept

CS is the first multigrid concept presented by Brandt[2], and it was developed for linear prob-
lems. The discretized equation for the interior domain at grid level k yeilds:

LFuk = fF (33)

where f* is the residual left by the approximation v**1, that is:

£ = T (= LA (39)

where k 4 1 is the next finer gridlevel and IJF:H is the interpolation operator that restrict the

residnals from the fine grid to the coarse one.
However, to handle nonlinear problems, Brandt extended this concept and presented it as

FAS.

4.6 The FAS-algorithm

The Fully Approximation Storage algorithm is the general multigrid algorithm that can handle
linear as well as nonlinear problems. FAS was presented 1977 by Brandt[2] and a lot of work has
been carried out to adopt this algorithm into different problems and different codes, see among
others, Vanka[15], Fuchs[8, 9, 10], Peric[4, 5, 6, 7], Lien[12]

The FAS algorithm stores the full current approximation at each grid level, while CS stores
only corrections due to the residuals {from the finest grid. For the interior domain:

Liu¥ = ¥ (35)

where

F* = LH(IE, oF Y + IE, (PR o LRIkt (36)

and

13
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Figure 4: The V-cycle. h denotes mesh size.
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where k+1 is the next finer gridlevel, If 11 is the interpolation operator that restrict the residuals
from the fine grid to the coarse one and Ifg“ is the interpolation operator that prolongates the

corrections from the coarse grid to the fine one.

Brandt suggests that for fluid dynamic problems linear or bilinear interpolations are used
for both restriction and prolongation operations.

4.7 The V-cycle and FMG

The V-cycle is a way to combine different grids. The V-cycle starts with a couple of iterations at
the finest grid and then are the field variables stored, and restricted together with the residuals
to the next coarser grid level. There are a couple of iterations made and then are the field
variables stored, and restricted together with the residuals to the next coarser grid level and so
on.

When the coarsest grid is reached the computed variables on this grid are compared to the
restricted variables, and the differences are prolongated to correct the second grid level. A cou-
ple of iterations to smooth interpolation errors are made before prolongation to the third level
and so on. The V-cycle is shown in Fig.4 where the mesh size is used to label the different grids.

The FMG-algorithm calculates an approximation at grid level 1 and then prolongates that
to level 2 as an initial guess. The V-cycle is for these two grids used until a given accuracy at
level 2 is obtained. The approximation at level 2 is then prolongated to the third grid level as
an initial guess and the V-cycle is now used with three levels to obtain an approximation at grid
level 3 to a given accuracy anrd so on.

For the prolongation of the initial guess Brandt suggested bicubic interpolation.



5 TFAS applied to SIMPLEC
5.1 SIMPLEC algorithm

A SIMPLEC iteration is defined as a procedure of relaxation sweeps applied to the equations
mentioned in 77. Here is how SIMPLEC is implemented:

1. Start with an initial guess for all quantities.

2. Update coefficients for U-momentum equation. Calculate corresponding residual.
3. Make a relaxation sweep with the smoother at U-momentum equation.

4. Update coefficients for V-momentum equation. Caleulate corresponding residual.
5. Make a relaxation sweep with the smoother at V-momentum equation.

6. Update coefficients for W-momentum equation. Calculate corresponding residual.
7. Make a relaxation sweep with the smoother at W-momentum equation.

8. Calculate the massfluxes and the continuity error.

9. Do approx. 5 sweeps with the smoother at the pressure correction equation

10. Correct U, V, W and the massfluxes using the pressure corrections

11. Update coefficients for k-momentum equation. Calculate corresponding residual.
12. Make a relaxation sweep with the smoother at k-momentum equation.

13. Update coefficients for e-momentum equation. Calculate corresponding residual.

14. Make a relaxation sweep with the smoother at ¢-momentum equation,



15. return to 2. i not convergence is obtained.

5.2 FAS-algorithm applied to SIMPLEC

The description below is done with two grid levels, but is easily extended to more grid levels by
the V-cycle. The FAS algorithm described earlier is here described in more detail and specially
applied to SIMPLEC. This special multigrid method has been devoloped by Perit it et. al.
[4, 5, 6, 7] For any variable on the fine grid level 2, the corresponding discretized equation can
be written as:

Apdh = 5 AL PN, - S5 (38)
nk

where $%{superscript 2 denotes grid level 2) is the exact discrete solution.

If that equation is relaxed with a smoother (i.e. a number of iterations are performed),
an error in the field variable will always remain. Therefore is it always an imbalance in the
discretized equation since the smoothed field variable is an approximation % to the discrete
solution ®%. This imbalance is called the residual 74. With an approximative solution, the
discretized equation can be written as:

aboh =Y al,dl, — sh +1é (39)
nb

If the residuals r3 = 0 the corrections from the coarse grid to the fine grid should be zero.
That is satisfied if the discretized equations, on the coarse grid level (grid 1) are satisfied with
the restricted fields originating from the exact discrete solution on the finest grid level (grid 2).

This condition is satisfied by the FAS-algorithm:

gy P S
ALBL = " AL OL, — 5§ + [@pdp ~ D Bhofus + 56 — Tol (40)
nh nb

or with an approximation ¢! to the exact discrete solution &t

apdp = Zam@m — s} + [@pdp - Z%a b+ 5 —Tal + 1y (41}

-1, . . 1 : : .
where ¢ is the restricted field variable and 7} is the restricted residual obtained from the
fine grid residual r3. The source term 5}, and the coefficients @' are calculated at the coarse
grid using the restricted field variable. Al overlined terms are held constant under the course

of coarse grid iterations.
As an initial guess for o', ¢! and s! the overlined qu&ntitles are used. At the coarse grid a’
¢! and s are changed due to the restricted residual 74 while iterating at the coarse grid. The

changes ¢! ~ &51 are then prolongated to correct the approximation ¢? obtained earlier at the
fine grid.

16



Figure 5: Restriction from fine to coarse grid

If r2 = 0 then are also Fh = 0 and with an initial guess where a’, ¢' and s' the same as

the resticted ones, eq.41 vanishes, and the changes ¢! — ?{»‘mo. The condition that a convergent
solution should not be corrected by a coarse grid iteration is thereby satisfied.

Note that the exact discretized solution.at the coarse grid in the multigrid method, is not
the same as a singlegrid solution on the same coarse grid. This has to do with the extra source
term in the coarse grid equation, when multigrid is used. This is not an important fact since
the coarse grids are only used to push the finest grid to converge faster.

Of course is the finest grid solution with multigrid identical to corresponding single grid

solution.

5.3 Restriction of the fine grid field variable ¢* and the fine grid residual +§

The two-dimensional coarse grid control volume is obtained by merging four fine grid ceils
together, and a three-dimensional coarse grid control volume by merging eight fine grid cells

together.
With the definitions in Fig.5 the bilinear restriction of a uniform two-dimensional cartesian

grid reads:
1 .
¢ra = 5(¢?,jw;~1 + i1 + Sl T 6E) (42)

Analougus is the trilinear restriction for a three-dimensional uniform grid:

1

1 . 2 2 2 2 2 2 2 12

1K = g(@,j‘,k @t n Ot S T Ot T O ke T sk F Bt k1)
{43)

If a nonuniform distorted grid is used is the interplotator changed very little since the level of
distorsion or expansion is seldom more than a percent or two for a fine grid. These small errors in
the interpolator due to the nonuniformity should be compared to the pretty ruff approximation
to the correction field that bilinear interpolation is in itself.

However the interpolations based on a uniform grid has the advantage that they are simple
and requires little computer time.

It is very important that the execution is short since these interpolations are made after
every third fine grid iteration. Thercfore the interpolator based on a uniform grid is also used

for a nonuniform grid.

17



Figure 6: Prolongation from coarse to fine grid

Since the pressure operator is linear is it not necessary to restrict the pressure. At each
coarse grid level the pressure is thercfore initially set to zero. And instead of prolongating a
pressure difference, the total pressure is used to correct the pressure at the finer grid.

The residuals are representing a flux imbalance according to eq.11 and are therefore restricted
to the coarse grid by a summation of the fine grid residuals that correspond to the fine grid cells
that define the coarse grid cell.

5.4 Prolongation of the coarse grid changes ¢' — @1 to the fine grid

First are the changes §' between the current approximation &' and the restricted approximation
&1 at the coarse grid calculated. These changes are then prolongated to the fine grid to liberate
the fine grid approximation ¢* from low frequency errors.

The interpolation operator for prolongation was chosen to be bilinear for two-dimensional
problems and trilinear for three dimensions. The reason of these choises was the same as for
restriction. The prolongation interpolation operator assumes uniform grids but is also used on

distorted nonuniform grids like the restiction interpolator.
With the definitions in Fig. 6 the bilinear prolongation of a uniform two-dimensional carte-

sian grid is:
1
8= %(gé}J + 387 41,0+ 36] g1+ 8141,040) (44)

Analougus the trilincar prolongation for a three-dimensional uniform grid reads:

§2

L

1
Gk @(275},3,&" + 98} 1 gk + 98t e i + 961 sxen +

! ; 1 :
38101 garic + 301t gk F 385 pen g F S0 ka1) (45)

The prolongation near the boundaries is not exactly the same as for the interior nodes, Since
collapsed control velumes are used for the boundary velocities as Fig. 7 shows, the weights are
not the same as for the interior domain.
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This fact makes the coding more tedious and specially in three dimensions. The boundary
proloag;at'xon interpolator is not presented here but is easily obtained from eq.45 by substituting
some 0.75 and 0.95 weights 10 0.5 weights-
1t has been found to be advantageble to put the pressure changes at the coarse grid houndary
to zero if Dirchlet conditions 18 used for the celocities at the same boundary. T hat is done evenl
though there has been changes of the pressure at the coarse grid boundary. This sreatment 18
consistent with the treatment of the velocities, gince their changes at the woundaries become
zero for Dirchlet boundary conditions.

1f the velocity boundary condition is of Neumann type it has been found to be more effective
to use the coarse grid pressuré changes ab the boundary for the proiongation. That is also
consistent with the velocities since their changes at the boundaries {or Neumann conditions at
the coarse grid differ from zero. The velocity changes at the boundary are also used for the
pro&on.g;ation.

5.5 Special ireatment for the mass fluxes

The coarse grid control volumes are created by assembling together eight fine grid controt vol-
umes in 3D and four control volumes in 2D. To avoid that the solution at the coarser grid drift
away too much from the fine grid solution, the mMass fluxes at a coarse grid are restricted by @
cummation of the corresponding fine grid mass fluxes, s Fig.8. No proloagation of the massflux
changes at the coarse grid is done.

If continuity 8 satisfied at the fine grid it 18 automatically ensured at the coarse grid too.
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During the iterations at the coarse grid the mass fluxes are then corrected with a mass flux
correction. The mass flux correction is calculated by using Rhie and Chow interpolation for the

difference between the current approximation »* and the restricted approximation [

5.6 Conservation of the global mass flux at the coarse grid when Dirchlet
velocity boundary condition is used

When a velocity profile is used as a boundary condition special care must be taken so the total
massflux is equal at al grid levels. This example will show why special care must be taken:

Assume a parabolic inlet velocity profile as for the backwards facing step. Set the density,
the inlet area and the maximum velocity to 1. With two control volumes the velocities would be
0.75 and thereby the total mass flux 0.75. With four control volumes at the inlet boundary would
two velocities be 0.9375 and the other two to 0.4375. The total inlet massflux is now 0.6875 and
that shows why special care must be taken with the restriction of the Dirchlet velocity boundary
condition.

To avoid the problem above the velocities at the fine grid are evaluated from the parabolic
profile. ¥or the coarse grid the mass fluxes are first restricted as described in the previous section.
Then the coarse grid velocities are calculated from the massflux by %,y niary = {%}bmndmy

5.7 Some notes on the k — ¢ turbulence model

It was found that the & and the ¢ transport equations could not be treated in the same manner
as the velocity transport equations. All attemps to simply apply the laminar multigrid method
to the k — ¢ equation without any justifications resulted in total divergence. One trial was made
with a rearrangement of the sources so the equations was more implicit and the corresponding
k — ¢ coefficient matrix more diagonal dominant. If in addition no prolongation of the turbulence
quantities were performed a V-cycle with two grid levels could converge.

Another trial was made where the k— e equations were solved only at the finest grid level and
the turbulent viscocity was interpolated to the coarse grid and was there held constant. This was
working fine for a V-cycle using two grids and converged three times faster than corresponding
singlegrid calculation.

Both these trials were unstable when a three level V-cycle was used and on such a weak basis

have I chosen not to present any results.

6 Results

In this section calculations of different cases are presented. These calculations have been made
with the multigrid method as well as with the singlegrid method.

This work is not dedicated to present optimum convergence rates for each specific test case
by testing different combinations of under-relaxation factors and number of iterations at each
gridlevel. The goal has instead been to design a robust multigrid that can use the same under-
relaxation factors and the same cycles for different flow situations.

All caleulations have therefore been made with the under relaxation factors @, = ¢y = @y =
0.7, 0, = 0.3 and with the V-cycle described in Fig.9. Three iterations at the finest grid and four
iterations af the coarsest grid are performed and for the other grids only cone iteration is done
for both restriction and prolongation. Note that the work of the four iterations at the coarsest
grid is negligible compared to one iteration at the finest grid. The reason of these choises is that
Lien[12] and Perié {4, 5, 6, 7] used the same.
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Figure 9: The V.cycle used for all cases

hin=0.4m Uin=0.455m/s

H=3.0m

=0.4
Uout=0.455m/s hout=0.4m

1=9.0m

Figure 10: Two-dimensional laminar ventilated enclosure

If &, = 1.3 for the three dimensional laminar ventilated enclosure the computing time was
reduced with a factor 2 which verifies that optimizations can be done. Grid plots and velocity
plots are presented below for each case.

6.1 Two-dimensional laminar ventilated enclosure using non-uniform grids

The first test case is a two-dimensional laminar ventilated enclosure with Reynolds number 110
based on the inlet height and the inlet velocity, see Fig. 10. The tests has been made with either
uniform or nonuniform grids.

Only the calculations with the nonuniform grid are presented. The convergence properties
for the uniform grid is similar to the results at the non-uniform setup.

For the non-uniform grid with 160x160 nodes the expansion factor is 1.015. That gives
a highest aspect ratio of 10. If the expansion factor was incrased to 1.025 convergence was
obtained only with four multigridlevels which could indicate some sensitivity for the multigrid
to high aspect ratios.

The convergence plot in Fig. 11 shows the maximum residual as a function of worku-
nits{ WU }.

WU =3 itg,20com9) (46)
ng

where it., is the the number of iterations at the current grid level, ng is the number of grid
levels, d is the spatial dimension and cg is the current grid level.
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Figure 11: Convergence history plot for the two-dimensional laminar ventilated enclosure using
a 160x160 non-uniform grid

The dashed line represent the singlegrid calculation at a 160x160 grid. The solid line rep-
resent calculations at the same case with the multigrid method. This multigrid calculation is
made with five grid levels.

If a multigrid code contain conceptual errors or bugs the result is often convergence stag-
nation. The level of the stagnation depends of the influence of the bugs and is therefore case
dependent. If no stagnation occurs it is not a guarrantee of a bug-free code but it shows at least
that a presumptive bug has only little influence.

That is the reason why the convergence plots for multigrid calculations is done to a maximum
residual < 10719 even though a common convergence criteria is 1072 or 102,

The WU is not an exact measure of the total amount of work made with the multigrid
method since the interpolation work is neglected, The interpolation work is here only 25% of
the total work since the bilinear and trilinear interpolations are very simple.

For consistency WU and CPU-times for single grid and multigrid calculations are showed in
Table 2 and Table 3. Note that the demanded CPU-time inreases linearly by the number of nodes
for the multigrid method, and quadratically for the singlegrid calculations as expected. The
multigrid calculation at 160x160 grid converges 16.21 times faster than corresponding singlegrid
calculation, If a 320x320 grid would be used should the same ratio be around 50.

The modest convergence-accelerations for the 20x20 and 40x40 grids has probably to do with
non-linear effects, big differences in truncation error between the multigrid meshes and that the
asymptotic smoothing behaviour of the single grid calculation is not devoloped since these grids
are too coarse. Note that the measure WU based on 80x80 grid is not equal to the WU based
on a 160x160 grid

The convergence line for the multigrid calculation in Fig. 11 shows small hacks due to the
corrections from the coarser grids. For linear problems this should not be possible for a correct
implemented algorithm but for systems and especially nonlinear systems, small amplifications
could sometimes be expected.

22



GRIDSIZE || CPU-TIME | WU
160x160 101534 3977
80x80 6570 1028
40x40 517 317
20x20 68.9 168
10x10 22.8 120

Table 2: CPU-times for the two-dimensional laminar ventilated enclosure using non-uniform
single grid o, = @, = 0.7, @, = 0.3 and max residual< 0.001

MULTIGRID SG/FMG
GRIDSIZE LEVELS CPU-TIME | WU || CPU-TIME
160x160 5] 6261 189 16.21
80x80 4 1575 182 4.17
40x40 3 388.5 190 1.33
20x20 2 52.1 188 0.74
10x10 1 22.8 120 1.0

Table 3: CPU-times for the two-dimensional laminar ventilated enclosure using non-uniform
grids in the multigrid method ay = o, = 0.7, &, = 0.3 and max residual< 0.001

6.2 Two-dimensional laminar backwards facing step

The next test case was the two-dimensional laminar backwards facing step and is shown in Fig.12.
The big difference between this case and the two-dimensional laminar ventilated enclosure is the
outlet boundary condition for the velocity. Backwards facing step uses Neumann condition
(U 9z = 0) instead of the Dirchlet condition (U = Usy) for the ventilated enclosure.

Fig.13 shows the convergence history for multigrid calculations at backwards facing step
160x80 nodes, 4 grid levels. The singlegrid calculation at the same case did not converge and is
therefore not presented. But with a modified outlet condition and other relaxation parameters
would convergence be accieved also for singlegrid. Table 4 shows the CPU-times and the numbers
of work units used for multigrid and singlegrid calculations at backwards facing step.

MULTIGRID | MULTIGRID | MULTIGRID | SINGLEGRID | SINGLEGRID
GRIDSIZE LEVELS CPU-TIME WU CPU-TIME WU
160%80 4 2901 184 N0 COnv. 10O COnV.
20x40 3 519 150 10 conv, N0 conv,
40x20 2 138 148 226 200
20x10 1 29.4 142 20.4 142

Table 4: CPU-times for single- and multigrid calculations of backwards facing step a, = @, =
0.7, 0, = 0.3 and max residual< 0.001
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Figure 12: Backward facing step
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Figure 13: Convergence history plots for the two-dimensional laminar backwards facing step
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Figure 14: Three dimensional ventilated enclosure

The fact that the multigrid calculations for both 80x40 or 160x80 grids converged nicely
even though corresponding single grid calculations did not indicates robustness for the multigrid
method.

The oscillations in the multigrid convergence plot may seem confusing, but other workers [7]
has also reported oscillations.

6.3 Three-dimensional laminar ventilated enclosure

After the two-dimensional laminar multigrid code had been tested with the two cases presented,
it was extended to three dimensions. That does not imply any conceptual differencies but is
tedious to implement.

The three-dimensional laminar code was tested for a ventilated enclosure, see Fig.14.

The dashed line in the convergence plot (Fig.15) shows the convergence history for single
grid 40x40x40 nodes and the solid line for corresponding multigrid calculation at 40x40x40 grid
and with 3 grid levels. The size of the computer memory was to small to handle the 80x80x80
grid.

Table 5 and Table § show the CPU-time and WU required for single and multigrid calcula-
tions. The speed up factor of the muitigrid calculation compared to the singlegrid calculation
is for the 40x40x40 grid 3.39. The first reflection is that this ratio is a bad result but then it
should be reminded that it is the number of nodes in a characteristic direction that specifies the
speed up ratio and not the number of nodes in the whole domain.

That means for a 80x80x80 grid should the speed up ratio be at least a magnitude. Note
that the amplifications of the maximum residual discussed for the two-dimensional ventilated
enclosure has not occured in this three-dimensional caleulation.

For this problem has, as mentioned earlier, a multigrid calculation with o, = 1.3 and a, =
o, = &, = 0.8 been done and it converge twice as fast as the presented one. This shows
that optimizations of the relaxation factors and the V-cycle can be done but it also indicates
robustness of the multigrid method to this pretty ruff change of a,.
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Figure 15: Convergence history plots for three dimensional laminar ventilated enclosure

GRIDSIZE |} CPU-TIME | WU
40x40x40 28905 515
20x20x20 1194 182
10x10x10 82.9 106

Table 5: CPU-times for single grid calculations at the three-dimensional ventilated enclusure
using a 40x40x40 grid, o, = a, = ay = 0.7, a, = 0.3 and max residual< 0.001

MULTIGRID SG/FMG
GRIDSIZE || LEVELS | CPU-TIME | WU || CPU-TIME
10x40x40 3 8527 i3 3.39
20x20x20 2 1097 141 1.09
10x10x10 1 82.9 106 1.0

Table 6: CPU-times for multigrid caleulations at the three-dimensional ventilated enclosure
using a 40x40x40 grid, oy, = o, = a,, = 0.7, 0, = 0.3 and max residual< 0.001
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7 Closure

This work has been dedicated to implement and code and therefore only a few test cases have
been calculated. But even with such a few calculations some characteristica can be observed.

1. Multigrid accelleration is highly effective in 2D and 3D laminar flows.

2. Multigrid calculations on turbulent flows demands special treatment for the turbulence trans-

port equations.

The three test cases also indicate that:
1. The effectivness is not greatly effected of grid non uniformity.

2. Neumann boundary condition can be handled as well as Dirchlet conditions.

8 Advices to further research

Some advices to further research of what has not been possible to include in this work is pre-
sented below:

1. Theoretical investigations of the coupling between the equations when turbulence is in-
cluded.

2. Theoretical investigations of the smoothing properties of the SIMPLEC algorithm when
turbulence is included.

3. Apply these theories or test different treatments of the turbulence and then implement
the multigrid algorithm into turbulent calculations.

4. Testings of different laminar flow situations to document the prestanda of the multigrid.
5. Optimizing the relaxation factors and the V-cycle to achieve maximal convergence rate.

6. Use the multigrid algerithm in calculations with local mesh refinement.
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Figure 16: 10x10, 20x20 and 40x40 grids for two-dimensional Jaminar ventilated enclosure with
non-uniform grids
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Figure 17: 80x80 and 160x160 grids for two-dimensional laminar ventilated enclosure with non-
uniform grids and a vector plot at the 10x10 grid
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Figure 19: Vector plot for two-dimensional laminar ventilated enclosure with non-uniform grid
at the 160x160 grid and grid plots for backwards facing step at 20x10 and 40x20 grid
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