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Abstract

A simulation tool that is valid within the field of tandem arc welding

(unsteady, three dimensional thermal plasma flow) has been developed,

based on the open source CFD package OpenFOAM. The validation of the

electromagnetic part of the solver has been done separately using a prob-

lem with a known solution. A good agreement between the numerical

and analytical solutions was obtained. Different boundary conditions on

the magnetic potential vector have been tested. Based on these tests, the

appropriate boundary conditions were chosen for the case representing a

transferred arc configuration. The complete simulation tool was validated

using a tungsten inert gas single arc problem. Two representations of the

magnetic field have been tested, based on the electric and magnetic po-

tentials, respectively. Qualitatively, both approaches agreed well with the

results found in the literature. However, quantitatively a deviation in the

results was observed in the near cathode region.
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Preface

The present work is divided in four chapters.

Chapter 1 presents the motivation and goals of the work. This is fol-

lowed by a description of the tandem arc welding process and the essen-

tial elements of a single arc formation. A brief summary of related work

by other authors is also included.

Chapter 2 covers the main assumptions used in the formulation of the

mathematical model. This is followed by a discussion on the modeling

of the thermodynamic and transport properties. Finally, the governing

equations used in the current work are summarized.

Chapter 3 presents a brief introduction to the used software and im-

plementation details. The proposed model and solution procedure are

validated with the help of two test cases. The first test case covers the

validation of the electromagnetic part of the model and tests the boundary

conditions on the magnetic potential vector. In the second test case, vali-

dation of the transferred arc configuration is carried out. In addition, the

effects of two different ways of calculating electromagnetic field on the arc

are studied.

Finally, in Chapter 4 the work is summarized, conclusion are drawn,

and future work is suggested.

Some additional details on the modeling of the thermodynamic and

transport properties are given in the Appendix A. A short description of

the finite volume method is presented in the Appendix B. The discretiza-

tion of the transport equation is explained term by term. The segregated

approach for the coupled system of differential equations that is used in

this study is described, and the solution procedure for transient arc plasma

model is summarized.
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Chapter 1

Introduction

1.1 Motivation of the study

Arc welding is a technique to melt and join different materials, that is

widely used in the industry. Nowadays, various arc welding methods

are available. Tandem arc welding is one type of welding method, whose

main characteristic is the use of a double heat source and the presence of

two electric arcs, see Fig. 1.1. The electrical circuits can either be depen-

dent or independent in terms of the power source, but each with its own

wire. The wires act as electrodes and provide the filler material. These two

wires are fed through two separate contact tubes. The two contact tubes

are contained in a common torch body, and surrounded by a common

shielding gas. These two wires may differ in diameter and composition

when two independent electrical circuits are used since parameters such

as the arc voltage can be set independently on each wire. The arcs can have

different functions: the leading arc heats both the wire and the base metal

to form a molten pool, whereas the trailing arc melts the second wire to

fill up the pool and smooth the surface of the weld. The type of arc inter-

action, the amount of heat transferred to the work piece, and the pressure

force applied on the molten pool depend on electrical, material and geo-

metrical parameters (such as tip shape, angle and distance between tips).
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Figure 1.1: A sketch of tandem arc welding. The following notation is

used: 1-wire; 2-gas nozzle; 3-contact tubes; 4-shielding gas; 5-electric arc;

6-molten pool; 7-part to be welded (www.saairliquide.com).

.

Tandem arc welding results in highly increased deposition efficiency.

However, the process stability is still a critical issue. The arcs may indeed

blow up while passing close to, or turning around, a metallic piece. A

better understanding and control of the process is thus needed to extend

its applicability. The operating conditions are extreme, with a tempera-

ture rise from room temperature to about 25 000K, which corresponds to

plasma fluid, within a few millimeters. The imposed electric field and

induced magnetic field are driving forces for the plasma flow. The experi-

mental characterization of an electric arc is a difficult task that needs to be

supported by numerical simulations.

Therefore, the aim of this work was to develop a simulation tool valid

within the frame of tandem arcs (unsteady, three dimensional thermal

plasma flow). The model is implemented in the open-source CFD software

OpenFOAM (www.openfoam.org). For validation purposes, the simulation

tool is initially applied to a single welding arc case. In addition, since the

droplet and welding pool dynamics are not yet accounted for at the mo-

ment, a tungsten inert gas (TIG) welding application has been chosen as

the main reference case.

1.2 TIG welding arc process

There are different types most common welding techniques that employ a

single arc to heat and fuze the metals. These are the Gas Metal Arc weld-

ing, the Gas Tungsten Arc welding (GTAW) and the Shielded Metal Arc

12



welding. This work considers only the GTAW, also known as tungsten in-

ert gas (TIG) welding. This arc welding process uses a non-consumable

tungsten electrode to produce the weld. The filler material is in this case

provided by a separate filler rod. The weld area is protected from atmo-

spheric contamination by a shielding gas.

Figure 1.2: A typical sketch of the TIG welding.

A schematic sketch of the TIG welding process is shown in Fig. 1.2. The

cathode is a tungsten electrode. This electrode is surrounded by a ceramic

nozzle, whose function is to direct the shielding gas towards the surface

being welded, the anode. The filler material is fed through the filler rod.

The complete welding process is complex in nature as it includes var-

ious phenomena such as multiphase flow in the plasma arc and the weld

pool, droplet and welding pool dynamics, and metal transfer. The present

work mainly focuses on modeling the plasma arc column. The basic as-

sumptions, that are generally accepted in welding arc modeling, are pre-

sented and discussed in Chapter 2.

1.3 Single arc physics

Electric discharges can be formed by applying a voltage between two elec-

trodes. In the present work, the specific electric discharge called electric
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arc is considered. The main characteristic features of an electric arc are: a

high current (30 A- 30kA), a low voltage between electrodes (10-100V), a

power level per unit length larger than 1 kW/cm, a moderate ionization

degree with an electron density within the range of 105 to 109 electrons per

cm3, and atmospheric or even larger gas pressure (0.1-100 atm) [48]. This

results in a very high temperature, capable of melting or vaporizing most

materials.

Figure 1.3: Sketch of the zones near an electron emitting cathode surface

[5].

It is generally considered that an electric arc consists of three major

parts: the thermal plasma column, the cathode and anode layer [49], see

Fig 1.3. The cathode layer is subdivided in two zones: the sheath (or space

charge layer) and the presheath (or ionization zone). In the sheath the con-

duction process switches: from metallic of the cathode surface to gaseous

in the plasma. The sheath zone is very thin, roughly of the order of one

electron mean free path. Electrons are thus almost collisionless in the layer

characterized by the absence of thermal equilibrium. This zone is mainly

made of positive ions, thus its name of space charge layer. These ions

lead to thermionic emission of electrons as they collide with the cathode

surface. They also build up a potential fall that accelerates the emitted

electrons towards the ionization zone.

Within the presheath zone, the energy transfer between the emitted

electrons and the heavy particles takes place during collisions inducing

ionization, thus its name of ionization zone. The thickness of this zone is

characterized by the recombination length and is much thicker than the
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sheath1. This zone is considered to be in partial thermal equilibrium2 and

quasi-neutral. It is followed by the plasma column that represents the

main body of the arc. In the considered case, the plasma column is of the

order of 10−2 m. This region is in local thermal equilibrium (LTE),3 free of

space charge, and both ionization and recombination take place.

Finally, the anode layer is subdivided in the same manner as the cath-

ode, though with a different distribution of electric potential [49].

Due to the passage of the electric current between the electrodes a mag-

netic field is induced. As a result of the interaction between the magnetic

flux density of the magnetic field and the current density, the Lorentz force

is produced that acts as a major source term in the momentum equations

governing the plasma flow. In the particular case of an axi-symmetric

configuration this force is aligned with the radial direction of the arc and

points towards the symmetry axis. As the distance from the cathode in-

creases, the electromagnetic force decreases in intensity. Due to the strong

variation in the Lorentz force, a large pressure gradient is formed just be-

low the cathode surface. As a result, a high-velocity plasma (or ionized

shielding gas) jet is directed from the cathode towards the anode surface.

Upon reaching the stagnation zone near the anode surface the jet is de-

flected [8]. From the stagnation zone, the jet flows radially outwards, pro-

ducing a well-known bell-shape arc.

1.4 Historical background

Investigations for understanding and modeling electric arcs started with

the first detection of the arc phenomena, in the beginning of 19th cen-

tury [47]. Under the assumption of LTE, a hydrodynamical model for the

plasma arc column can be derived from the conservation of momentum,

mass and energy, supplemented with an equation of state. In order to ac-

count for the electromagnetical effects, the above hydrodynamical model

has to be completed with the Maxwell’s equations (usually in a simplified

form). The interaction between the flow and the electromagnetic field is

complex. The strong dependence of the flow on the thermophysical prop-

erties of the plasma is also present. As a result, the analytical solution

of the complete system of equations is only possible after introducing a

number of constraining simplifications and assumptions, therefore signif-

1In the considered case of electric arc, the recombination length is larger than the mean

free path by about two orders of magnitude, and larger than the Debye length by about

one order of magnitude
2The electron temperature is almost twice larger than the temperature of the heavy

particles (ions and neutrals)
3The LTE assumption implies that the temperature of the electrons and the heavy

particles are the same
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icantly reducing the models applicability. As a result, until recently, the

technology of electric arc was mainly based on experimental trial and er-

ror rather than theoretical understanding and prediction.

An alternative approach for the solution of the complete system of

equations is to perform numerical simulations. The first work that con-

sidered the heat transfer and fluid flow in the arc column with coupled

electromagnetic forces was done by Hsu et al. [11]. In this work, a steady,

2-dimensional model of 10 mm long free burning arc4 was considered.

The work by Hsu et al. was continued by McKelliget and Szekely [9],

who made a refined representation of the heat and current flux density

at the electrode surface. Both of these studies dealt with a tungsten elec-

trode with a known current density, a water-cooled anode surface, and a

flat/stepwise approximation of the electrode tip.

In the attempt to confirm the validity of the LTE assumption, Hsu and

Pfender [45] used a two-temperature model 5. Their results indicated that

the LTE should be a valid assumption in the arc plasma, especially in the

regions where the temperature is greater than 10000 K. Therefore the ordi-

nary one-temperature model should be sufficient.

Over time, various two-dimensional numerical models of increased so-

phistication have emerged. Choo et al. [35], Lee and Na [36], Goodarzi

et al. [37], Lowke et al. [38] have developed numerical models with im-

proved capabilities. These improvements included a more accurate pre-

diction of the electrode temperature distribution [35], the introduction of

various aspects of electrode geometry in the calculation domain [36]-[37],

and different shielding gas (mixture of argon and hydrogen) [38]. The ma-

jority of these studies considered the case of axi-symmetric flows and the

main investigation was concentrated on the interaction between the arc

and the electrodes. The results confirmed that the boundary conditions on

the electrodes have a profound effect on the arc discharge.

In the context of the present work, it is also important to mention the

work of Tsai and Kou [24]. In their study a steady two-dimensional model

of the transferred arc6 has been introduced. This work differs from the

previous ones in that it considers an arc length that corresponds to actual

welding applications. It further accounts for the presence of the shield-

ing gaz nozzle and deals with various electrode tip geometries. As in the

previous studies, the sensitivity of the heat transfer and plasma column

4A free burning arc is a specific arc configuration. As the name implies, no external

stabilizing mechanism is applied on the arc [21]. The flow of gas in a free burning arc is

only caused by the electromagnetic forces generated by the arc itself.
5In the partial thermal equilibrium case, two coupled conservation equations for en-

ergy are needed [45], one for the electrons and one for the heavy species (ions and neu-

trals).
6In the case of the transferred arc workpiece is an electrode.
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flow to the current distribution was reported. Compared to the previously

considered long arcs, a higher width to height ratio of the bell shaped arc

was observed. Finally, the effects of the electrode tip geometry on the arc

shape was reported and compared with experimental observations.

Some physical aspects of the arc problem, such as the influence of a

non-uniform gas injection and geometry asymmetry cannot be considered

by the two dimensional models. Therefore, a complete three-dimensional

model is then required. Recently, a number of three-dimensional models

have been reported in the literature. The first of these models were still

constraint by the symmetry assumption. For example, Delandore et al.[42]

studied a symmetric transferred arc with an argon shielding gas. Also the

arc fluctuations were considered, but due to the symmetry assumptions

these fluctuation were constrained to two horizontal planes (correspond-

ing to the cathode and the anode surfaces).

Further development of the model was concentrated on relaxing the

symmetry constraint, considering a 3D unsteady model of the free burn-

ing arc [16]. No symmetry assumption was set. But due to computational

reasons the complete geometry was simplified to two parallel planes, in-

cluding the cathode and the anode (represented by two predefined con-

ducting circular regions). The results were compared with the work of

Hsu et al. [11]. The comparison was done only along the axis of symmetry

and significant differences were reported.

The study of a free burning arc by Freton et al. [17] presented a more

detailed 3D geometry. First, a 2D configuration was presented and com-

pared with the case studied by Hsu et al. [11] in order to validate the

model. Then the results of the 2D free burning arc calculation was com-

pared with a complete 3D calculation done using the same boundary con-

ditions. As expected, the results showed no significant difference, and it

was concluded that a 2D model can still be an efficient and accurate rep-

resentation for an axisymmetric problem. Then the model was applied to

a transferred arc configuration with a three-dimensional effect: a vortex

injection. In the case of a significant mass flow rate injection of the shield-

ing gas a noticeable difference between 2D and 3D simulation results was

observed. The 2D approximation was not considered acceptable outside

of the arc core region.

To summarize:

• Most of the arc models found in the literature consider a laminar flow

regime. This is explained by the fact that the characteristic Reynolds

number is usually considered to be too low for the turbulence to ap-

pear (a threshold value of 100000 is usually referred to, when a tran-

sition to turbulence in a free jet occurs [9]). But flow instabilities

could also be caused by the electromagnetic forces, as underlines in
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[25].

• Many authors chose to concentrate their efforts on different aspects

of the electric arc than those mentioned above. That is Lowke [40]

and Ushio et al. [39] contributed by a study of the electrode sheaths

of the anode and cathode surfaces, making it possible to avoid the

assumption of a specified current density distribution. Tanaka et al.

[41] presented a first model that considered simultaneously both the

arc region and the weld pool. Hu and Tsai [43] further developed

the coupled arc-pool approach. They studied the effects of differ-

ent current profiles on the plasma generation, weld pool and droplet

dynamics.

Unfortunately, no published literature has been found on numerical

simulation of tandem arc welding.

It is the purpose of the present work to develop a comprehensive sim-

ulation tool for tandem arc welding. Due to the asymmetry of the prob-

lem, a three-dimensional model is required. A simulation tool for a three-

dimensional transferred arc model has been implemented and being vali-

dated. The model is based on the LTE assumption, it accounts for the un-

steady effects, and the strong dependence of the flow on the thermophys-

ical properties of the plasma. The implementation is tested for a 3D single

transferred arc. For the sake of generality, both the shielding gas nozzle

and the surface of the conical electrode tip geometry are included in the

computational domain. In addition, a 2 mm arc length corresponding to

an actual welding application is considered. The results for the transferred

arc simulation are compared with those of Tsai et al. [24]. Characteristic

values of the considered arc configuration are compiled in Table 1.1. These

values are used in Chapter 2 for the dimensional analysis.

Tc[K] Vc [m/s] tc [s] Lc [m] Rc [m]

2 · 104 200 10−5 2 · 10−3 4.5 · 10−3

Table 1.1: Characteristic parameters.

.

Here Tc is the characteristic temperature that corresponds to the maxi-

mum arc temperature. The characteristic velocity Vc represents the maxi-

mum speed of the shielding gas jet (located under the cathode). The char-

acteristic arc length Lc represents the distance between cathode and anode

surface, and Rc the characteristic arc radius. The arc radius was evaluated

at a distance of 10−3 m from the anode surface using the T = 11 · 103 K

isotherm as a boundary for delimiting the plasma column. The character-

istic time tc was evaluated as a ratio of characteristic length to characteris-

tic speed.
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Chapter 2

Model of the thermal arc plasma

column

2.1 Magnetohydrodynamic model

In this chapter, the governing equations for a three-dimensional weld-

ing arc are presented. As already underlined in the previous chapter, the

quantities (such as the Reynolds number or the Debye wavelength) used

below to justify possible simplifications are evaluated based on the TIG

test case of Tsai et al. [24]. A special attention is paid to the modeling of the

thermodynamic and transport properties of the plasma column. Radiation

effects are also discussed. Finally the mathematical model is summarized

together with the assumptions made.

2.1.1 Modeling the flow of the conduction plasma fluid

In this section, the flow of the plasma column that is under LTE assump-

tion is considered. In the present case, the Reynolds number, Re ≈ 377, is

not small but well below the critical value for turbulent flow (Rec ≈ 10000)

[24]. The laminar flow of a heat conducting viscous fluid, which is me-

chanically incompressible (Ma ≈ 0.01) but thermally expansible (the den-

sity depends of the temperature), is governed by the following set of equa-

tions:

• Conservation of mass

∂

∂t
ρ + ∇ · (ρU) = 0 (2.1)

where U is the velocity of the flow and ρ is the density that depends

here on the temperature. The temperature dependence of ρ is dis-

cussed in Section 2.2.
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• Conservation of momentum :

∂

∂t
(ρU) + ∇ · (ρUU) −∇ · [µ(∇U + (∇U)T)− (2.2)

2

3
µ(∇ · U)I] = −∇p + j × B

︸ ︷︷ ︸

Lorenz force

where j is the electric current density, B is the magnetic field and the

stress tensor satisfies Newton’s law of viscosity. The dynamic fluid

viscosity µ depends here on the temperature. More details about the

dynamic viscosity are given in Section 2.2. In the equation above, p

is the static pressure and I is the unit tensor.

2.1.2 Modeling the energy transport within the plasma

The energy transport within the plasma is governed by the following en-

thalpy conservation equation:

∂

∂t
(ρh) +∇ · (ρUh) − h∇ · ρU +∇ · q = ∇ · (Up) − p∇ · U

+ j · E
︸︷︷︸

Joule heating

− 4πǫN
︸ ︷︷ ︸

Radiation loss

+ ∇ ·
( 5kb j

2ecp
h
)

︸ ︷︷ ︸

Transport of the electron enthalpy

(2.3)

where h is the enthalpy, E the electric field, ǫN the net emission coefficient

that is described in Section 2.2 , kb the Boltzmann constant and e the electric

charge. The heat conduction is given by Fourier’s law q = −α∇h where α

is the thermal diffusivity given by

α =
κ(T)

ρcp(T)
.

Here κ is the temperature dependent thermal conductivity, see Section 2.2.

The temperature is defined from the specific enthalpy using the defini-

tion of the specific heat capacity at constant pressure

cp(T) =
( ∂h

∂T

)

p

where cp is a function of the temperature, see Section 2.2.
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2.1.3 Modeling the electromagnetic phenomena within the

plasma

in arc welding, once the arc is established, the presence of an imposed elec-

tric field between the cathode and the anode causes the passage of an elec-

tric current through the ionized plasma region. The electric current gives

rise to an induced magnetic field. The magnetic field interacts with the

current transferring momentum to the gas, which is accelerated towards

the anode in the form of the characteristic cathode jet. Due to the electrical

resistance of the plasma, the Joule heating produced by the current main-

tains the plasma in an ionized state and provides the heating mechanism

for the welding process.

This electromagnetic phenomena is modeled with the help of Maxwell’s

equations:

• Faraday’s law:
∂B

∂t
= −∇× E (2.4)

• Ampere’s law:

ǫµ
∂E

∂t
= ∇× B − µj (2.5)

• Gauss’ law (electric):

∇ · E =
qtot

ǫ
(2.6)

• Gauss’ law (magnetic):

∇ · B = 0 (2.7)

where qtot is the total electric charge, µ denotes here the permeability

and ǫ the permittivity of the medium.

These four Maxwell equations are supplemented by the following equa-

tions:

• Conservation of the electric charge:

∂qtot

∂t
+ ∇ · j = 0 (2.8)

• Ohm’s law:

j = σm{ E
︸︷︷︸

Electric current

+ U × B
︸ ︷︷ ︸

Induction current

− 1

ne
j × B

︸ ︷︷ ︸

Hall current

} (2.9)

where ne is the electron density.
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The permeability is described with two parameters [10]:

µ = µ0(1 + χm) ≈ µ0

where χm is the magnetic susceptibility and µ0 is the permeability of free

space (4π × 10−7 N/A2). The magnetic susceptibility is a non-dimensional

constant determined by the physical properties of the magnetic material.

In the present work an argon gas is used as shielding gas. Its magnetic

susceptibility is of the order of 10−9. The magnetic permeability is thus

equal to the magnetic permeability of vacuum.

The permittivity of the medium is expressed as

ǫ = ǫ0(1 + χe) ≈ ǫ0

with ǫ0 denoting the permittivity of free space (8.85 · 10−12 A2s4kg−1m−3)

and χe the electric susceptibility. For an argon gas, the value of the electric

susceptibility can be neglected [10].

Due to the nature of the considered problem, the Maxwell equations

can be simplified based on the following assumptions:

1. Electro-neutrality

As mentioned in Section 1.3, in the plasma arc column, the mean

free path7 of an electron (of the order of λe = 10−6m [49]) is much

larger then the Debye wavelength8 (of the order of λD = 10−8m [49]).

The Debye wavelength itself is very small compared to the macro-

scopic scale used to model the plasma. It can thus be considered

that each volume element (i.e mesh cell) is electrically neutral at the

macroscopic scale (the total electric charge is zero) [28].

Under the assumption of electro-neutrality, Gauss’ law for electric

field 2.6 and the conservation equation for the electric charge 2.8 can

respectively be simplified to :

∇ · E = 0 (2.10)

and

∇ · j = 0. (2.11)

2. Quasi-steady electromagnetic phenomena

Upon the application of the rotational operator to Faraday’s law 2.4,

the following equation is obtained

∇× (∇× E) = −∇× (
∂B

∂t
). (2.12)

7The ”mean free path” is the average distance that a particle travels between two colli-

sions
8The ”Debye wavelength represents the screening length of a particle before it gets in-

fluenced by the electro-magnetic field, αD =
√

ǫ0kbTe

nee2
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The right hand side can be rewritten using Amper’s law with µ = µ0

and ǫ = ǫ0, as

∇× (∇× E) = − ∂

∂t
(µ0 j + ǫ0µ0

∂E

∂t
). (2.13)

Using the properties of the ∇ × (∇×) operator9 and Eq. 2.10, the

following equation is obtained

∆E = µ0
∂j

∂t
+ ǫ0µ0

∂2E

∂t2
. (2.14)

A dimensional analysis is now done, as described in [28] in the dif-

ferent content of atmospheric plasma spraying, comparing the left

hand side term to the second term on the right hand side of Eq. 2.14,

the following ratio is obtained

| ǫ0µ0
∂2E
∂t2 |

| ∆E | ≈
ǫ0µ0

Ec

t2
c

Ec

L2
C

=
ǫ0µ0L2

c

t2
c

Here Lc and tc are the characteristic length and time, given in Table

1.1. For the characteristic length of 2 · 10−3 m and the characteristic

time of 10−5 s the above ratio yields a value of 4.4 · 10−18, implying

that

| ǫ0µ0
∂2E

∂t2
|<<| ∆E | .

As a result, the second temporal derivative can be omitted and Eq.

2.14 is simplified to

∆E = µ0
∂j

∂t
.

Combining this result with Eqs. 2.12 and 2.10, the following equation

is deduced

∇× ∂B

∂t
= µ0

∂j

∂t
.

The convection current can be neglected compared to the conduc-

tion current in Ampere’s law. This simplification is called the quasi-

steady assumption. Ampere’s law is then reduced to the following

equation

∇× B = µ0 j. (2.15)

3. The magneto-hydrodynamic approach is valid

Let us first evaluate the Hall parameter to determine if the Hall cur-

rent can be neglected. For an arc current of 200 A and an arc column

9For a general vector a the following identity holds: ∇× (∇× a) = ∇(∇ · a) − ∆a
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with a characteristic radius of 0.0045 m (see Table 1.1), the character-

istic magnetic field is, according to Eq. 2.15, of the order of Bc = 10−4

T. The corresponding Larmor frequency, that represents the preces-

sion frequency of electrons in a magnetic field Bc, is expressed as

ωe =
eBc

me
≈ 2 · 108 Hz

where me is the electron mass.

The average collision frequency of electrons with other particles is

derived from

νe,β =
nee2

meσc
= 2, 8 · 1011 Hz .

where the characteristic electrical conductivity of the media σc ≈ 104

[A · V−1m−1] and the characteristic electron density ne ≈ 1023 [m−3]

are taken for the temperature value of Tc = 2 · 104 K (see Table 1.1).

The Hall parameter is defined as

βc =
ωe

νe,β
≈ 10−3.

Under the above conditions, βc is much less than unity. This means

that the motion of the charged particles under the action of the elec-

tromagnetic field is stopped because of collisions with other parti-

cles. Due to this fact the Hall current can be neglected in Eq. 2.9.

The general Ohm’s law 2.9 can then be simplified to the following

form

j = σm(E + U × B) (2.16)

In a second step let us evaluate the magnetic Reynolds number to

determine if the induction current can also be neglected. Combining

Eq. 2.16 and Eq. 2.15 yields

1

µ0σ
∇× B = E + U × B (2.17)

The rotational operator applied to this last relation leads to

∇× (
1

µ0σm
∇× B) = ∇× E +∇× (U × B) (2.18)

Using Faraday’s law 2.4, an equation similar to a transport equation

for the magnetic field is obtained

∂B

∂t
= ∇× (U × B)−∇× (

1

µ0σm
∇× B) (2.19)
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It relates the current induced by the time-variations of the the mag-

netic field, ∂B
∂t , to the current induced by the fluid motion, ∇× (U ×

B) and the conduction current, ∇× ( 1
µ0σm

∇× B).

A dimensionless study of this equation, as was proposed by Baudry

[28], can be done using the screening dimensionless parameter9 Rω

and the magnetic Reynolds number 10 Rmag .

A comparison of the current induced by the flow motion and the

conduction current yields the following relation

| µ0σc∇× (U × B) |
| ∇ × (∇× B) | ≈

µ0σc
1
Lc

VcBc

1
Lc

1
Lc

Bc

= µ0σcLcVc = Rmag (2.20)

with the characteristic parameters previously defined in Table 1.1.

The magnetic Reynolds number is then approximately equal to 0.01.

As a result, the induction current is negligible compared to the con-

duction current. Then the transport equation for the magnetic field

Eq. 2.19, and the simplified Ohm’s law Eq. 2.16, respectively reduce

to
∂B

∂t
= −∇×

( 1

µ0σm
∇× B

)

(2.21)

and

j = σmE.

Finally let us evaluate the screening parameter to determine if the

time-variation of the magnetic field can be neglected.

Comparing now the time-variation of the magnetic field to the con-

duction current, the following relation is obtained

| µ0σc
∂B
∂t |

| ∇ × (∇× B) | ≈
µ0σc

Bc
tc

1
Lc

1
Lc

Bc

=
µ0σcL2

c

tc
= Rω

The characteristic values of Table 1.1 led a screening parameter Rω

of 0.03.

The screening parameter is less than one, implying that the current

induced by the time-variation of the magnetic field is negligible com-

pared to the conduction current. The criteria for steady state regime

is thus satisfied, and Faraday’s law can be reduced to

∇× E = 0.

9The screening parameter is defined as the ratio of the time-variation of the magnetic

field to the conduction current.
10The magnetic Reynolds number gives an estimate of the effects of magnetic advection

to magnetic diffusion.
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2.1.4 Summary of the electromagnetic equations used in

the model

Taking into account the assumptions previously discussed, the electro-

magnetic equations are written in the following form

∇ · j = 0, (2.22)

∇ · B = 0, (2.23)

∇ · E = 0, (2.24)

∇× B = µ0 j, (2.25)

∇× E = 0, (2.26)

j = σmE. (2.27)

Combining the set of Eqs 2.22-2.27, the potential formulation of the elec-

tromagnetic field is now derived.

2.1.5 Derivation of the potential formulation of the model

In this section a derivation of the potential formulation of Maxwell’s equa-

tions is done. The scalar electric potential φ and the vector potential A

are first introduced. These potential functions are arbitrary, but they are

required to satisfy Maxwell’s equations. The derivation is based on two

fundamental vector identities

∇×∇ψ = 0 (2.28)

and

∇ · ∇× F = 0 (2.29)

for an arbitrary scalar field ψ and vector field F [34].

Gauss’ law 2.23 along with Eq. 2.29 are satisfied if we define A such

that

B = ∇× A. (2.30)

The electric potential φ is then defined as

E = −∇φ. (2.31)

Substituting the above equation in Eq. 2.26 and using the Eq. 2.28 leads

to

∇× (−∇φ) = 0.

Using Ohm’s law, Eq. 2.27, and the definition of the electric potential

function φ, Eq. 2.31, the following expression for the current density j is

obtained

j = −σm∇φ. (2.32)
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Combining the charge conservation Eq. 2.22 and the modified Ohm’s

law 2.32, the electric potential equation is written as

∇ · (σm∇φ) = 0

where the magnetic conductivity σm is a function of temperature. It is

given later on for an argon gas.

Combining the simplified Ampere’s law, Eq. 2.25, and Eq. 2.30 yields

∇×∇× A = −µ0σm∇φ

Using the property of the operator (∇×∇×) leads to

∇(∇ · A) −∇2A = −σmµ0∇φ. (2.33)

The electric and magnetic fields are written in terms of scalar and vec-

tor potentials as in Eqs. 2.31 and 2.30. However many different potentials

that can generate the same fields. According to the Helmholtz theorem of

vector analysis, a vector is uniquely defined if and only if both its curl and

divergence are specified [34]. In order to get a unique solution one may

choose the divergence of A so that the differential Eq. 2.33 has the sim-

plest possible form. This is achieved with the Coulomb gauge condition

(∇ · A = 0) that leads to a Poisson equation for the magnetic field

∇2A = σmµ0∇φ.

The Maxwell’s equations, when expressed in terms of the potentials φ

and A, are then reduced to the following form

∇ · (σm∇φ) = 0, (2.34)

∇2A = σmµ0∇φ. (2.35)

In other words, the electric and magnetic potentials satisfying these

equations always lead to a solution of Maxwell’s equations for E and B

when used with Eqs. 2.31 and 2.30.

2.1.6 Calculation of the magnetic field for 2D axi-symmetric

problems

In the 2D and axi-symmetric case the calculation of the magnetic field can

be simplified. Since the current density is axi-symmetric, the self induced

θ component of the magnetic field B can be derived from Ampere’s law:

∂Bθ

∂r
= −µ0 jx

where a cylindrical coordinate system (r, θ, x) is used.
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As a result, it is required to solve the electric potential equation

∇ · (σm∇φ) = 0

in order to get the electric current density:

j = −σm∇φ.

2.2 Thermodynamic and transport properties

The first role of the shielding gas is to protect the melted metal from ox-

idation by the surrounding air. The selection of shielding gas depends

on several factors, among them on its ability to conduct heat, as the heat

source must be suited to the type of material being welded and the joint

design. Argon is the most commonly used shielding gas for GTAW.

In the welding process the temperature gradient is very large. As a re-

sult the thermodynamic and transport properties of the argon gas exhibit

strong variations with temperature. A direct measurement of the thermo-

dynamic properties is difficult at high temperatures on the other hand,

kinetic theory is not always valid at low temperature when the gas den-

sity gets too large. Due to this fact, the data of the physical properties

based on experimental measurements at low temperatures was combined

with the data obtained from kinetic theory at high temperatures. Due to

very high plasma temperatures, radiation is also an important phenomena

which has to be accounted for.

This section describes the composition of a simple argon gas as a func-

tion of temperature, followed by a description of the physical properties of

the gas for the considered temperature range. The thermodynamic prop-

erties and transport coefficients that are measured experimentally and de-

rived with the kinetic theory are displayed. The radiation loss is also dis-

cussed.

2.2.1 Composition of a simple argon gas

In welding applications the heavy species (atoms and ions) do not have

enough energy to promote or initiate ionization. The electrons, that have

a smaller mass than the ions can be more easily accelerated and reach a

kinetic energy larger than the ionization threshold. They can thus provide

the energy for ionization.

When a monoatomic gas such as argon is progressively heated the

atoms first ionize

Ar + e ⇄ Ar+ + e + e
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where the e on the left side of this equation represents an electron that

brings the energy necessary for ionization.

A further increase in temperature causes Ar+ ions to lose one more

electron, this is the second ionization step

Ar+ + e ⇄ Ar++ + e + e

At higher temperatures the third ionization step begins

Ar++ + e ⇄ Ar+++ + e + e

Figure 2.1: Temperature dependence of the equilibrium composition

(species number densities) of an argon plasma at atmospheric pressure

(starting from one mole of Ar at room temperature [21].)

.

Figure 2.1 shows the temperature dependence of the argon plasma at

chemical equilibrium and at atmospheric pressure, starting from room

temperature. As the temperature increases, the particle density decreases

monotonically due to the progressive first ionization. From about 15000 K,

the number density of Ar+ decreases steadily while Ar++ is formed and

the electron density is not significantly changed at the temperature range

from 15000 K up to 25000 K. At 25000 K the number density of Ar+++ is

still two orders of magnitude less than for Ar and four orders less than

Ar+ and Ar++.
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Figure 2.1 illustrates that the composition of the gas changes because

of the ionization process. This change is included in the model used for

the transport and thermophysical properties of the argon plasma.

2.2.2 Summary of the thermal plasma properties

In the present work the temperature can vary from 300 up to 30000 K. Ex-

perimental data collected in [31] for the low temperature range of [200,

1400] K were combined together with the data obtained from kinetic the-

ory for the high temperature range [500, 30000] K [50]-[51]. It was checked

that these data do overlap correctly in the common range of validity, see

Appendix A.
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Figure 2.2: Density of an argon gas versus temperature .

The resulting density profile that was used in the simulations done in

the present work is shown in Figure 2.2. As it can be seen, the density is

constantly decreasing with the increasing temperature. Even before the

first ionization, the density has already significantly reduced.

Similar assembling of experimental data in the low temperature range

of [200, 1400] K and kinetic theory values in the range of [500, 30000] K

have been done for the rest of the thermodynamic and transport proper-

ties. The resulting viscosity, thermal conductivity, heat capacity at con-

stant pressure and enthalpy are plotted as function of the temperature in

Figures 2.3-2.6, respectively

Finally, the net emission coefficient, ǫN , that is used to represent the
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Figure 2.3: Viscosity of an argon gas versus temperature.
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Figure 2.4: Thermal conductivity of an argon gas versus temperature.
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Figure 2.5: Heat capacity at constant pressure of an argon gas versus tem-

perature.
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Figure 2.6: Enthalpy of an argon gas versus temperature.
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radiative cooling, see Eq. 2.3, is presented in Fig. 2.7. As shown, a sharp

increase is observed after the beginning of the second and third ioniza-

tions.
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Figure 2.7: Net emission coefficient of an argon gas.

33



2.3 Summary of arc column modeling

In this section, a summary of the mathematical model for a transferred arc

is presented.

Assumptions:

• The plasma is a Newtonian fluid.

• The plasma column is supposed to be in local thermodynamic equi-

librium (LTE). This implies that the temperatures of the electrons and

the heavy particle are the same. This assumption is valid in the arc

column region, but will break down near the electrodes [21].

• The flow of the heat conducting viscous fluid is laminar and mechan-

ically incompressible, but thermally expansible .

• The arc column plasma is electrically neutral.

• The electromagnetic phenomena is steady.

• The induction and Hall currents are negligible.

• The plasma is optically thin, i.e no absorbation is taking place inside

the arc.

Governing equations:

• Conservation of mass:

∂

∂t
ρ + ∇ · (ρU) = 0 (2.36)

• Conservation of momentum:

∂

∂t
(ρU) +∇ · (ρUU) −∇ · [µ(∇U + (∇U)T)

−2

3
µ(∇ ·U)I] = −∇p + j × B

︸ ︷︷ ︸

Lorenz force

(2.37)

• Enthalpy conservation equation:

∂

∂t
(ρh) +∇ · (ρUh) − h∇ · ρU −∇ · (α∇h) = ∇ · (Up) (2.38)

−p∇ ·U + j · E
︸︷︷︸

Joule heating

−Sr + Se

• Maxwell’s equations in potential formulation:

∇ · (σm∇φ) = 0 (2.39)

∇2A = σmµ0∇φ (2.40)
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The coupling between the magnetic problem and the momentum and

enthalpy equation is established through the Joule heat source, the Lorentz

force, and through the temperature dependance of the electrical conduc-

tivity.

A discussions of the algorithm and tools that were used to solve this

problem will be presented in Chapter 3. The numerical details are given

in Appendix B.
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Chapter 3

Implementation and validation

The system of equations 2.36-2.40 that have been introduced in Chapter

2 and supplemented with the constitutive relations, initial and boundary

conditions has generally no analytical solution. Therefore a numerical so-

lution is usually sought.

In the frame of this work, a numerical tool was developed that is based

on OpenFOAM (www.openfoam.org), a general purpose open-source CFD

code. This code is based on the finite volume method and has a capacity

to perform three-dimensional unsteady simulations. In this chapter details

on the development of the simulation tool are presented. First, the capabil-

ity of the relevant already existing solver is described. This is followed by

the extensions that have been implemented in order to fit the solver in the

frame of arc welding. Finally, a validation of the complete model, as well

as its separate electromagnetic part, is presented. For the convenience of

the reader, the details of the numerical modelling are separately described

in Appendix B.

3.1 Development in OpenFOAM

The development of the solver for the arc welding simulations is based on

the existing buoyantSimpleFoam solver, which is a standard steady-state

OpenFOAM solver for buoyant, turbulent flow of compressible fluids for

ventilation and heat-transfer.

The following equations are solved in the buoyantSimpleFoam solver:

• Conservation of mass

∇ · (ρU) = 0

where U is the velocity of the flow and ρ is the density that can be

constant or modeled by an ideal gas law .
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• Conservation of momentum

∇ · (ρUU) −∇ · [µe f f (∇U + (∇U)T)−
2

3
µe f f (∇ ·U)I] = −∇p

where p = ps + ρ · gh + pre f and ps is the static pressure, pre f is the

reference pressure and ρ · gh is the body force due to the gravitation.

Here I the the unit tensor and µe f f the effective viscosity. The effec-

tive viscosity is represented by

µe f f = µlam + µturb

with µlam and µturb being the laminar and the turbulent kinetic vis-

cosities, respectively. The laminar kinetic viscosity µlam is given ei-

ther as a constant value or defined using a Janaf table.

• Conservation of enthalpy

∇ · (ρUh) − h∇ · ρU −∇ · (αe f f∇h) = ∇ · (Up) − p∇ ·U

where h is the enthalpy and αe f f denotes the effective thermal diffu-

sivity, represented by

αe f f = αlam + αturb.

Here αlam and αturb denotes the laminar and the turbulent thermal

diffusivities, respectively. Similar to the viscosity, αlam is either a con-

stant or attains its value from a Janaf table.

The temperature is defined from the specific enthalpy using the def-

inition of the specific heat capacity at constant pressure

cp =
( ∂h

∂T

)

p

where cp is either a constant or modeled using a Janaf table.

Comparing this system of equations with the system that was pre-

sented in Chapter 2, the following differences can be observed:

• The transport and thermodynamic properties of the fluid that are

available in the buoyantSimpleFoam solver can be a constant or mod-

eled via a Janaf table. The upper limit for the temperature is thus ap-

proximately 5000 K. In this work the properties of the fluid strongly
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depend on the temperature that is varying from 300 up to 30000 K.

Therefore, the modeling of transport and thermodynamic proper-

ties in the buoyantSimpleFoam solver has been modified in accordance

with the discussions in Chapter 2. Moreover, since the flow is con-

sidered to be laminar only the laminar part of the effective viscosity

and thermal diffusivity is remained.

• Due to the fact that the temperature gradient is very large in the do-

main and the flow is thermally expansible, the density should not

be a constant or modeled by the ideal gas law as it is done in the

buoyantSimpleFoam solver. As a result, the modeling of the density

in the buoyantSimpleFoam solver have been modified in accordance

with the discussions in Chapter 2.

• In the absence of buoyancy effects the body force due to the gravita-

tion is neglected.

• The electromagnetic equations, as well as the transport of the elec-

tron enthalpy and radiative loss per unit volume source terms are

not modeled in the buoyantSimpleFoam solver. Therefore relevant

electromagnetic equations and source terms that are missing in the

momentum and the energy equations have been implemented.

In order to develop the solver for arc welding problems, the buoy-

antSimpleFoam solver is completed with the set of equations that represent

the electromagnetic part. In addition, the necessary source terms in the

momentum and enthalpy equations to account for the Lorenz force, Joule

heating, radiative cooling and transport of the electron enthalpy have been

included. The model is not designed to handle the arc ignition. In the be-

ginning of the simulation there is no plasma in the computational domain

and a large potential difference is imposed. As a result, the Joule source

term in the enthalpy equation is becoming very large and the calculation

diverges. In order to solve this problem a weight function technique pro-

posed by Baudry [28] is used. The summarized system of equations that

was implemented is listed below:

• Conservation of mass:

∂

∂t
ρ + ∇ · (ρU) = 0

• Conservation of momentum:

∂

∂t
(ρU) + ∇ · (ρUU) − U∇ · ρU +∇ · [µlam(∇U + (∇U)T)

−2

3
µlam(∇ ·U)I] = −∇p + j × B

︸ ︷︷ ︸

Lorenz force

39



• Enthalpy equation:

∂

∂t
(ρh) + ∇ · (ρUh) − h∇ · ρU −∇ · (αlam∇h) = ∇ · (Up)

−p∇ ·U + ω · (j · E)
︸ ︷︷ ︸

Joule heating

− 4πǫN
︸ ︷︷ ︸

Radiation loss

+ ∇ ·
( 5kb j

2ecp
h
)

︸ ︷︷ ︸

Transport of the electron enthalpy

• Maxwell’s equations in potential formulation:

∇ · (σm∇φ) = 0

∇2A = σmµ0∇φ

The Joule heating term is expressed as

ω · (j · E) = ω · (σm(∇φ) · (∇φ))

where ω is the weight function that is used to control the Joule heating

term and is calculated as

ω =

√

1

fmax
.

Here fmax denotes the maximum value of the vector function σ(∇φ)2/(ρh)

at a given time step. After a few time steps, this weight function ap-

proaches unity and retains this value for the rest of computation. The

complete solution sequence and its description is given in Appendix B.

3.2 Validation of the electromagnetic part

In this section the electromagnetic part of the solver is validated. The vali-

dation is performed for a case with a known analytic solution. In addition,

various boundary conditions for the magnetic potential vector have also

been evaluated.

3.2.1 Infinite electric rod

Consider an infinite rod of constant radius r0, with a constant current den-

sity parallel to the rod axis, see Figure 3.1. The electrical conductivity is

defined as a constant inside the rod, representing a hot argon gas column

at a fixed temperature of T = 10600 K.

It is known that the analytic solution is reduced to an x component of

the magnetic potential vector A and a θ component for the magnetic field

B. The other components of these vectors are equal to zero. Inside the
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Figure 3.1: Electric rod.

cylinder, the analytic solution of the magnetic potential vector is expressed

as follows

Ax,in = A0 −
µ0 Jxr2

4
if r ≤ r0. (3.1)

Outside the cylinder it is given by the following expression

Ax,out = A0 −
µ0 Jxr2

2
[0.5 + ln(r/r0)] if r > r0 (3.2)

where µ0 is the magnetic permeability of vacuum and Jx is the current

density. In this test case Jx can be found via the current intensity I from

the following expression

Jx =
I

πr2
0

.

In both Eqs. 3.1 and 3.2, A0 denotes the reference value that was chosen in

such a way so that the numerical and analytical solutions are comparable.

The magnetic field and the magnetic potential vector are linked by the

relation ~B = ∇× ~A. Integrating Eqs. 3.1 and 3.2 the following analytic

expressions are obtained for the magnetic field inside the cylinder

Bθ,in =
µ0 Jxr

2
if r ≤ r0, (3.3)

and outside the cylinder

Bθ,out =
µ0 Jxr2

0

2r
if r > r0. (3.4)

3.2.2 Description of the simulations

The analytical solution has been compared with the numerical results ob-

tained with the help of the developed solver. The configuration of the rod

is summarized in Table 3.1.
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I[A] r0 [m] rt [m] σin [A/(V · m)] σout [A/(V · m)] L [m]

600 10−3 0.1 2700 10−5 10−2

Table 3.1: Rod case parameters.

.

Here I is the current intensity, r0 the radius of the rod, rt the total ra-

dius of the domain and L denotes the length of the rod. The electrical

conductivities inside and outside of the rod are denoted by σin and σout,

respectively. In addition, σin corresponds to the electrical conductivity of

argon gas at 10600 K.

The simulation is run as 2D and axi-symmetric. OpenFOAM needs 3D

control volumes even for 2D cases, with one control volume in the third

direction. The solution procedure is reduced to 2D by choosing a specific

boundary condition in the third direction. For 2D axi-symmetric problems

this boundary condition is named wedge. The geometry should form a

wedge of 5◦ angle, with symmetry axis along the x axis and center plane

at z = 0. Figure 3.2 shows a sketch of the computational domain. Here,

”block 0” corresponds to the rod and ”block 1” represents the atmosphere.

A uniform mesh was used in the present simulation.

Figure 3.2: Computational domain.

The boundary conditions used for the magnetic potential vector A and

the electric potential φ are summarized in Table 3.2, where n denotes the

outward normal vector to a surface.
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A0A1A2 B0B1B2 A2A1A4A3 B2B1B4B3 A4A3B3B4
∂A
∂n = 0 ∂A

∂n = 0 ∂A
∂n = 0 ∂A

∂n = 0 A = 0

φ = 707 φ = 0
∂φ
∂n = 0

∂φ
∂n = 0

∂φ
∂n = 0

Table 3.2: Boundary conditions.

3.2.3 Results and validation

The numerical result obtained for this simulation is presented in Figure

3.3. As expected, the current density is going from left to right (from high

to low electric potential) and is perpendicular to the iso-lines of electric po-

tential inside the rod. The iso-lines of the electric potential are parallel to

each other inside the rod and curving out outside the rod. This behaviour

is mainly due to the used boundary conditions. Since the electric conduc-

tivity of the outer region is very small, σout = 10−5, the current leakage is

negligible.

Figure 3.3: The electric potential iso-lines together with current density

vectors. Zoom near the rod.

Figures 3.4 and 3.5 show a comparison of the numerical and the ana-

lytic solutions.

As it can be seen from Fig. 3.4, the profiles of the computed magnetic

potential vector A are in good agreement with the analytical values. Close

to the interface between the rod and the atmosphere, and at the symmetry
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Figure 3.4: x-component of the magnetic potential vector A along the ra-

dius of the domain (at x = 0.5 · 10−2 [m]).
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Figure 3.5: z-component of the magnetic field B along the radius of the

domain (at x = 0.5 · 10−2 [m]).
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axis, a small difference in the magnetic field B is observed, see Fig. 3.5.

This is, most likely, due to the fact that the mesh is not sufficiently refined

in these regions and that no special treatment of the sharp gradient of σ

has been implemented.

3.2.4 Test of boundary conditions

As it was previously mentioned, the rod case was also used to investi-

gate appropriate boundary conditions for the magnetic potential vector,

in view of the transferred arc case of Tsai and Sindo [24].

In this case the computational domain was resized in order to have it

more similar to the computational domain of the transferred arc case. The

total radius of the computational domain, B0B3 = 16 mm, corresponds to

the anode radius and the radius of the rod, B0B1 = 0.5 mm, corresponds

to the radius of the electrode tip of the transferred arc test case, see Fig. 3.6.

Here two reference points are represented by Rside and Rtop.

Figure 3.6: Resized computational domain.

The following cases have been studied:

• 1st test case: This case uses the boundary conditions in Table 3.3.

• 2nd test case: This case uses the boundary conditions in Table 3.4 and

also set A = 0 at Rtop.

• 3rd test case: This case uses the boundary conditions in Table 3.4 and

also sets A = 0 at Rside.

46



A0A1 A1A3 B0B1 B1B3 A3B3
∂A
∂n = 0 ∂A

∂n = 0 ∂A
∂n = 0 ∂A

∂n = 0 A = 0

φ = 707
∂φ
∂n = 0 φ = 0

∂φ
∂n = 0

∂φ
∂n = 0

Table 3.3: Boundary conditions, 1st test case.

A0A1 A1A3 B0B1 B1B3 A3B3
∂A
∂n = 0 ∂A

∂n = 0 ∂A
∂n = 0 ∂A

∂n = 0 ∂A
∂n = 0

φ = 707
∂φ
∂n = 0 φ = 0

∂φ
∂n = 0

∂φ
∂n = 0

Table 3.4: Boundary conditions, 2nd and 3rd test case.

• 4th test case: This case uses the boundary conditions in Table 3.5.

A0A1 A1A3 B0B1 B1B3 A3B3
∂A
∂n = 0 A = 0 ∂A

∂n = 0 ∂A
∂n = 0 ∂A

∂n = 0

φ = 707
∂φ
∂n = 0 φ = 0

∂φ
∂n = 0

∂φ
∂n = 0

Table 3.5: Boundary conditions, 4th test case.

A comparison of the numerical results for these cases and the analytic

solution is presented in Figures 3.7 and 3.8.

47



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−6

−5

−4

−3

−2

−1

0

1

2x 10
−4

A
x

Radius [m]

 

 

analytic

1st case

2nd case

3rd case

4th case

Figure 3.7: x-component of magnetic potential vector A along the radius

of the domain.
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Figure 3.8: z-component of the magnetic field B along the radius of the

domain.

As it can be seen, the best agreement is obtained for 1st and 2nd cases.

As a result, for the case that represents a transferred arc configuration,
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the Dirichlet boundary condition for the magnetic potential vector on the

outlet region of the domain will be used, as in the 1st case.

3.3 Transferred arc configuration – 2D axi-symmetric

test case

In this section the 2D transferred arc case is described and the numerical

solution is presented.

3.3.1 Problem description

Many of the published studies of arc plasma welding consider signifi-

cantly long arcs. For example, in studies of Hsu [11] and McKelliget [9],

a 10 mm long arc is studied. In the present case, the same geometry was

used as in Tsai [24], where an arc length of 2 mm is modeled. This choice

is indeed closer to the TIG applications used nowadays. A schematic rep-

resentation of arc welding is shown in Figure 3.9.

Figure 3.9: A schematic representation of 2D axi-symmetric arc welding.

The argon shielding gas is injected between a tungsten cathode and a

ceramic nozzle. During the operation mode, an electric current that is a

result of the applied voltage is going through the ionized argon gas be-

tween the tungsten cathode and the anode. The arc column is therefore

formed between the cathode tip and the anode. For simulation of this case

the following simplifying assumptions were made:
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• The anode surface is considered to be flat.

• The problem is axi-symmetric.

• Gravity and heat dissipation due to viscous effects are negligible,

due to high current [30].

These assumptions are supplemented with those presented in Chapter

2. The mathematical model is based on Eqs. 2.36- 2.39, written in Cartesian

coordinates. Two different ways of calculating the magnetic field B are

studied.

3.3.2 Description of the cases

The computational domain is restricted to a sector with one control vol-

ume in the tangential direction according to the methodology for perform-

ing axi-symmetric simulations in OpenFOAM, see Fig 3.10. The dimen-

sions of the geometry are given in Fig 3.9.

Figure 3.10: The computational domain of the 2D axi-symmetric trans-

ferred arc test case.

With a flow rate of pure argon of 1.66 · 10−4 m3/s [29], the average inlet

velocity is obtained

Ū =
Q

A
= 2.36 m/s
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where Q is the volumetric flow rate and A is the area.

The inlet velocity was imposed as a parabolic velocity profile due to

the viscous friction that makes the velocity of the inlet jet slow down to

zero at the contact with the cathode and nozzle wall (no slip condition).

The radial velocity distribution at the inlet is given by

U = Umax
(rint − r)(r − rext)

r2
0

(3.5)

where Umax is calculated using definition of the average velocity and the

given volume flow rate, and

r0 = 0.5 · (rext − rint).

Here rext = 5 [mm] and rint = 1.6 [mm] denote the external and internal

radiuses, respectively.

The current density distribution at the cathode is set to

j = 0 along IHI’H’,

j = jt along BJB’J’,

j = jt(1 − l/L) along JIJ’I’

where l is the distance from point J along JI, jt = 0.7 × 108 [Am−2] and

L = 1.0 [mm] according to the work of Tsai and Kou [24]. Due to the

fact that the problem is 2D and axi-symmetric, the magnetic field can be

computed in two different ways, forming the two test cases.

Boundary U T φ p

CDD’ 0 T⋆
exp φ = 0

∂p
∂n = 0

EDE’D’ ∂U
∂n = 0 ∂T

∂n = 0
∂φ
∂n = 0 101334 Pa

KEK’E’ 0 ∂T
∂n = 0

∂φ
∂n = 0

∂p
∂n = 0

GKG’K’ 0 ∂T
∂n = 0

∂φ
∂n = 0

∂p
∂n = 0

HGH’G’ Eq. 3.5 ∂T
∂n = 0

∂φ
∂n = 0

∂p
∂n = 0

HIH’I’ 0 Texp
∂φ
∂n = 0

∂p
∂n = 0

IJI’J’ 0 Texp
∂φ
∂n =

−j
σm(T)

∂p
∂n = 0

BJJ’ 0 T = 20000 K
∂φ
∂n =

−j
σm(T)

∂p
∂n = 0

Table 3.6: Boundary conditions for the first and second cases.

.

The electrode surface temperature Texp decreases linearly from 3200

[K] along the edge JJ’ to 2700 [K] at edge HH’ [24]. The thermal bound-

ary condition along the anode surface was estimated from the work of

Haddad and Farmer [29], see Figure 3.11. The contour values were first
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linearly extrapolated onto the surface of the anode and these extrapolated

values were used to define a piecewise linear polynom, T⋆
exp. This is a

valid approximation since according to Tsai [24] the calculated tempera-

ture distribution in the arc plasma is not very sensitive to the temperature

boundary conditions on the anode surface.

Figure 3.11: Measured temperature profile for a current intensity 200 A

and 2 mm long arc [29].

• 1st test case:

The magnetic field is calculated as shown in Chapter 2 for the general

3D case, i.e. B = ∇× A. Therefore it is required to solve an extra

equation

∇2A = σmµ0∇φ.

The boundary conditions are given in Tables 3.6 and 3.7.

CD ED KE GK HG HI IJ BJ
∂A
∂n = 0 A = 0 ∂A

∂n = 0 ∂A
∂n = 0 ∂A

∂n = 0 ∂A
∂n = 0 ∂A

∂n = 0 ∂A
∂n = 0

Table 3.7: Boundary conditions of the magnetic potential vector.

• 2nd test case: For an axi-symmetric current density, the z component

of the magnetic field B can be directly derived from Ampere’s law,

Eq. 2.25

∂Bz

∂y
= −µ0 jx.

There is thus no need to solve any equation for the magnetic field.

The boundary conditions for the 2nd case are presented in Table 3.6.
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3.3.3 Numerical results

Velocity

As expected, in the absence of the electromagnetical effects both test cases

deliver identical velocity fields, see Fig 3.12. As shown, after entering the

inlet nozzle, the shielding gas continues directly towards the outlet, avoid-

ing the region below the cathode tip. The velocity magnitude is of the

same order as the inlet velocity profile.

Figure 3.12: Velocity distribution inside the domain without electromag-

netic forces.

When the electromagnetical effects are activated, the velocity field is

shifted under the cathode tip and the flow is accelerated in this region

due to the Lorenz force, see Fig. 3.13. As it can be seen, the qualitative

behavior is the same for both test cases. That is in the region close to

the cathode tip, the fluid flows inward and downward towards the anode

surface. Due to the presence of the stagnation effects at the anode surface,

the fluid is deflected and directed towards the outlet. From Fig. 3.13, it

can also be observed that for the considered configuration, the inlet and

outlet boundary conditions do not seem to have a significant effect on the

velocity distribution in the plasma column. That is clearly indicated by

the maximum velocity magnitudes of 160 [m/s] and 70 [m/s] obtained

for two test cases, compared to the inlet average velocity of 2.36 [m/s].
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The presence of the ceramic nozzle does not have a profound effect on the

results either. This qualitative behavior is consistent with the findings of

Tsai and Kou [24].

Figure 3.13: The velocity distribution with electromagnetic forces for the

two cases. The velocity field is zoomed near the cathode tip.

For a better quantitative analysis of the two cases, the velocity pro-

files are now compared along the symmetry axis and in radial direction,

see Figs. 3.14 and 3.15, respectively. Along the symmetry axis, the ve-

locity profiles diverge almost immediately, with the maximum difference

of 50% in magnitude obtained. Similar deviation in the velocity profile is

observed in the radial direction. Though sufficiently away from the sym-

metry axis (≈ 4mm) both solutions approach the same value.

Temperature

The temperature distribution for both test cases is shown in Figure 3.16.

As in the case of velocity field, the qualitative behavior of the temperature

distributions is the same. As a result of the strong radially outward flow

that was presented above, a bell-shaped arc has been formed [24]. In both

cases, the maximum temperature of 22000 K is attained on the symmetry

axis close to the cathode tip. The calculated isotherms for the tempera-

tures of 10000 and 12000 K are in a relatively good agreement. This can

be explained by the fact that sufficiently away from the symmetry axis the

velocities for both test case approach each other, as shown in Fig. 3.15. For
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Figure 3.14: Velocity evaluated along the symmetry axis for both test cases.

Here x = 0 represents the anode surface and x = 2 mm represents the tip

of the cathode.
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Figure 3.15: Radial distribution of the x-velocity component for both test

cases evaluated at x = 1 [mm].

the rest of the isotherms the deviation is significant. The isotherms for the

first case are clustered closer to the cathode tip, while for the second case,
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the isotherm are elongated along the symmetry axis. This difference could

be explained by the convection effects, that are stronger in the second case

due to higher velocity field.

Figure 3.16: From large radius to small radius, the isotherms correspond

to 10000, 12000, 14000, 16000, 18000, 20000 and 22000 K. The temperature

contours are zoomed near the cathode tip.

To summarize, the comparison of the chosen two test cases revealed

a clear deviation in the results. This is due to the way the magnetic field

B is calculated.. The exact nature of this problem is currently not fully

understood and still under investigation.
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Chapter 4

Conclusions and future work

In this work a simulation tool that is valid within the field of tandem arc

welding (unsteady, three dimensional thermal plasma flow) has been de-

veloped. This tool is based on the open source CFD package OpenFOAM.

The tool is fully 3D, accounts for the complex interaction between the flow

and the electromagnetic field, and accurately represents the strong depen-

dence of the flow on the thermophysical properties of the plasma.

The validation of the electromagnetic part of the tool has been done

separately using a problem with a known analytical solution. A good

agreement between an analytic and numerical results was obtained. In

addition, various boundary conditions for the electromagnetic potential

have been evaluated. A good agreement between the analytic and numer-

ical solutions was observed in the case when Dirichlet boundary condition

for the magnetic potential vector was used at a far distance from the con-

ductor representing the plasma.

The complete simulation tool was validated using a tungsten inert gas

single arc problem [24]. Two methods of computing the magnetic field

have been tested, based on the electric and magnetic potentials, respec-

tively. Qualitatively, similar behavior was observed. In both cases a char-

acteristic bell-shaped temperature profile was obtained and a high velocity

jet directed towards the welded surface was formed. Upon reaching the

stagnation zone, this jet is being radially deflected towards the outlet. A

quantitative analysis of the results was performed by comparing the x-

velocity component along the symmetry axis. This comparison revealed

a 50% disagreement in the maximum value. A better agreement with the

results of Tsai [24] was obtained in the case when the magnetic field was

derived directly from the Amper’s law. Currently, this differences in the

results are not completely understood and are still under investigations.

Future work points in two directions from the current stand. First of

all the disagreement in the results for two representations of the magnetic

field has to be thoroughly studied. Next, one should continue towards the

complete tandem arc problem. For this purpose a tilted cathode geometry
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has to be introduced and the capability to simulate MAG welding has to

be added to the tool. At some stage, the accurate representation of the

sheath layers, solution of the heat and electromagnetic equations inside

the electrodes, as well as the dynamics of the droplet and welding pool

have to be also included in the simulation tool.
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Appendix A

Details on the thermodynamic

and transport properties

Due to high temperature range, the distributions of the thermophysical

and transport properties were assembled from both kinetic theory and ex-

perimental values. In this section the details on this assembly process are

given. The comparison of the kinetic and experimental values for the over-

lapping domain of validity is also presented.

A.1 Density

There are several types of gas models with slightly different behavior. For

example ideal gases (single species), real gases (single species) and plas-

mas (mixture).

The ideal gas law reads

PV = nRT or ρ =
P

RT
(A.1)

where P is the pressure, V the volume, T the temperature, n the number

of moles of gas present, R the universal gas constant (8.31441 JK−1mol−1),

and ρ is the density.

This model applies to light gases, such as argon, away from their crit-

ical point, see Table A.1 for critical values for argon. In other words it

applies to gases with a small density compared to the critical density, al-

lowing to model the atoms/molecules as hard sphere.

The real gas laws account for the compressibility of molecule (soft sphere)

by adding terms to describe attractions and repulsions between molecules.

Real gas laws have been determined empirically, or is based on a concep-

tual model of molecular interactions, or from statistical mechanics. One of

the well-known real gas laws is the virial equation of state, that is based on
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the definition of a compressibility factor Z, defined as

Z =
PV

RT
.

When Z goes to one the real gas model reduces to the ideal gas model.

At low temperatures (200 to 500 K) and pressure close to the atmo-

spheric (as considered in this work), the argon gas has a compressibility

factor less than one. The compressibility factor can be written in the form

of the power series

Z = 1 + B/V + C/V2 + ...

where B and C are the second and the third virial coefficients, respectively.

This equation can also be written as a second-order polynomial in the

molar density of the form

ρ = ρ̂ + Bρ̂2 + Cρ̂3 (A.2)

where ρ̂ is the molar density obtained from the ideal gas law. The density

of argon gas is calculated using the virial equation of state in [20]. This cal-

culation requires the knowledge of the second and third virial coefficients

which are functions of temperature and characteristic of the interactions

between the particles. Note that Eq. A.2 is accurate at least up to the criti-

cal density [20], see Table A.1.

.

In this study, the formulation for the virial coefficients that were pre-

sented in the work of Tournier and El-Genek [20] is used. Thus the second

virial coefficient B is represented by the following expression

B = V∗ · [−102.6 + (102.732 − 0.001 × θ−
0.44/θ1.22)× tanh(4.5

√
θ)] (A.3)

where V∗ = RTcr/Pcr and θ = T/Tcr denotes the reduced temperature.

The critical value for the temperature Tcr and pressure Pcr are given in the

Table A.1.

The third virial coefficient C is given by

C = V∗2 · [0.0757 + (−0.0862−
3.6 × 10−5 × θ + 0.0237/θ0.059) × tanh(0.84 × θ)]. (A.4)

Tcr[K] Pcr[kPa] Vcr[m3/mole] ρcr[kg/m3]

150.7 4863 74.59e-6 535.6

Table A.1: Fundamental and critical properties of argon gas.
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In the present work the temperature varies from 300 up to 30000 K.

When the temperature of the gas reaches the ionization point, a part of

its particles become ionized. Then, as mentioned earlier, the gas gets a

multicomponent plasma and the virial equation of state does not apply to

this mixture. Therefore another description of the state of matter under a

given set of physical conditions has to be employed. In the current work,

the kinetic theory of the gas is instead used.

That is the experimental data for the low temperatures was combined

together with the data obtained from kinetic theory for the higher temper-

atures. It was also checked that these data do overlap correctly.

First, the density in the range from 200K up to 5000K was studied. Here

the density obtained with the Eq. A.2 is in a good agreement with the

kinetic theory data, see Fig A.1(a).

As it can be seen from Figure A.1(b), the extrapolation (above 1400 K)

of the experimental data and the data from the kinetic theory are in good

agreement before the first ionization takes place. When the first ionization

gets significant the argon gas gets a plasma mixture that can no longer be

described by a single species real gas model.

A.2 Dynamic viscosity

Tournier and El-Genk [20] showed that the viscosity of pure noble gases

can be expressed as a function of the temperature and the density

µ = µ0(T) + (1 − 1

2.3
)µcr · ψµ

( ρ

ρcr

)

(A.5)

where µcr, ψµ and µ0 are the critical viscosity, reduced excess viscosity and

viscosity of the dilute gas, respectively. The critical viscosity is calculated

in [22] using the relationship proposed by Trautz [31]

µ∗
cr = b

√
MTcr

V2/3
cr

.

Here, the constant b = 0.204 · 10−7 is determined from the critical viscosity

values [20], M = 0.039948 [kg/mole] is the argon gas molecular weight

and the critical molar volume Vcr is listed in Table A.1. In Eq. A.5 the

reduced excess viscosity is expressed as a function of the reduced density

[20]

ψµ

( ρ

ρcr

)

= 0.221
ρ

ρcr
+ 1.062

( ρ

ρcr

)2
− 0.509

( ρ

ρcr

)3
+ 0.225

( ρ

ρcr

)4
.

The viscosity of the dilute gas in Eq. A.5, µ0(T), is defined by the fol-

lowing correlation

µ0(T) = Aµ(T − Tµ)n
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Figure A.1: Density of argon gas versus temperature for overlaping do-

main of validity of the two sets of data.
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Figure A.2: Viscosity of argon gas versus temperature for overlaping do-

main of validity of the two sets of data.

where n = 0.63977 denotes the exponent for the argon gas. The values of

the viscosity correlation coefficients are Aµ = 6.9891 · 10−7 and Tµ = 65.7

[K] [20].

A.3 Thermal conductivity

A semi-empirical expression for the thermal conductivity of dense gases

was also developed in the work of Tournier and El-Genk [20]

λ(T, P) = λ0(T) + (1 − 1

2.94
)λ∗

cr × ψk(
ρ

ρcr
) (A.6)
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where λ0, λ∗
cr and ψk are the thermal conductivity, critical thermal conduc-

tivity and reduced excess thermal conductivity, respectively. The thermal

conductivity of the pure, dilute gases is calculated accurately in terms of

the dynamic viscosity using the kinetic-theory relationship

λ0(T) =
15

4

R

M
µ0 =

15

4

k

m
µ0

where k is the Boltzmann constant (1.380662 · 10−23 J/K) and m is the mass

of one gas molecule (m = M/NAkg).

An expression for the critical thermal conductivity was developed by

Tournier and El-Genk [20] using the approach of Owens and Thodos [22]

λ∗
cr = 0.304 · 10−4 T0.277

cr

M0.465(0.291 · V∗)0.415
.

The empirical relationship for the reduced excess thermal conductivity

used in Eq. A.6 was obtained in [20] from the least square approximation

of compiled experimental data is given as

ψk(ρ/ρcr) = 0.645 · (ρ/ρcr) + 0.331 · (ρ/ρcr)
2+

0.0368 · (ρ/ρcr)
3 − 0.0128 · (ρ/ρcr)

4.
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overlaping domain of validity of the two sets of data.
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A.4 Enthalpy and specific heat

The thermodynamic properties such as the enthalpy and the heat capac-

ities were calculated at low temperatures using fundamental thermody-

namic relationships [20]. Then the enthalpy equation reads

Ĥ(T, P) = Ĥ0(T0) + Ĉ0
p(T − T0) + ρ̂RT[(B − T

dB

dT
) + ρ̂(C − T

2

dC

dT
)]. (A.7)

Here B and C are the second and third virial coefficients given by Eqs

A.3 and A.4, respectively. The ideal value of specific heat capacity at con-

stant pressure for a monoatomic dilute gas is denoted by Ĉ0
p = 5R/2 and

H0(T0) = 0 [J/mol] is the reference ehthalpy. The specific heat capacity at

constant pressure is then calculated as

ĈP = [
∂Ĥ

∂T
]P

= Ĉ0
P + ρ̂[(B − T

dB

dT
− T2 d2B

dT2
) + ρ̂(C − T2

2

d2C

dT2
)]

+RT[(B − T
dB

dT
) + ρ̂(2C − T

dC

dT
)] × [

∂ρ̂

∂T
]P (A.8)

where

[
∂ρ̂

∂T
]P =

(ρ̂ + Bρ̂2 + Cρ̂3)/T + dB
dT ρ̂2 + dC

dT ρ̂3

1 + 2Bρ̂ + 3Cρ̂2
.

The values for the coefficients B, C and their derivatives are obtained

from Eqs. A.3 and A.4, respectively.

The derivatives for the second coefficient virial coefficient B are given

by

dB

dT
= V∗ · [(−0.001/Tcr + 0.5368 · T1.22

cr · T−2.22) · tanh(4.5 ·
√

θ)+

(102.732 − 0.001 · θ − 0.44

θ1.22
) · 2.25√

Tcr · T
· (1 − tanh2(4.5 ·

√
θ))],

d2B

dT2
= V∗ · [(−1.1917 · T1.22

cr · T−3.22) · tanh(4.5 ·
√

θ)+

2 · (−0.001/Tcr + 0.5368 ·T1.22
cr ·T−2.22) · tanh(4.5 ·

√
θ) · (1− tanh(4.5 ·

√
θ)+

+ (102.732 − 0.001 · θ − 0.44

θ.1.22
) · ( −1.1250

T0.5
cr · T1.5

·

(1 − tanh2(4.5 ·
√

θ)) − 10.1250

Tcr · T
· tanh(4.5 ·

√
θ) · (1 − tanh2(4.5 ·

√
θ)))]
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and the derivatives for the third virial coefficient C are

dC

dT
= V∗2 · [(−3.6−5 · T−1

cr − 0.0014 · T0.059
cr · T−1.059) · tanh(0.84 · θ)+

(−0.862 − 3.6−5 · θ + 0.0237 · θ−0.059) · 0.84

Tcr
· (1 − tanh2(0.84 · θ))],

d2C

dT2
= V∗2 · [0.0015 · T0.059

cr · T−2.059 · tanh(0.84 · θ)+

2 · (−3.6−5 · T−1
cr − 0.0014 · T0.059

cr · T−1.059) · 0.84

Tcr
· (1 − tanh2(0.84 · θ))+

(−0.862 − 3.6−5 · θ + 0.0237 · θ−0.059)

· −1.4112

T2
cr

· tanh(0.84 · θ) · (1 − tanh2(0.84 · θ))].

Again, the extrapolation of the experimental data diverges from the

data from kinetic theory when the first ionization becomes significant. See

Fig A.4(b) and A.5(b) for heat capacity and enthalpy, respectively.

The enthalpy and the heat capacity values that are calculated using Eq.

A.7 and A.8, respectively, have been supplemented with tabulated data

that are obtained from kinetic theory.

A.5 Plasma radiation

Due to very high temperatures of thermal plasma, radiation is an impor-

tant phenomenon which has to be accounted for. Qualitatively, radiation

has three two effects [27]:

• in the hottest regions, radiation is the dominant energy loss term,

• in the outer regions, radiation is a signifacant part of the energy

transfer within the plasma.

The radiative transfer equation is given in the following simple form,

along one direction in a nonscattering plasma with a refractive index equal

to one [26] :
dIν

dr
= ǫν

︸︷︷︸

emmision

− IνK′
ν

︸︷︷︸

absorbtion

(A.9)

where the intensity Iν(~r,~s) [W m−2 sr−1] is the radiative power per unit

solid angle and per unit apparent surface, K′
ν is the absorbtion coefficient

per unit length at frequency ν and ǫν = K′
νBν [W m−3 sr−1] represents the

emmision coefficient, that is the power at frequency ν radiated by a unit

volume of the plasma per unit solid angle.

73



0 500 1000 1500 2000 2500 3000 3500 4000
20.75

20.8

20.85

20.9

20.95
C

p 
[J

/(
kg

 K
)]

Temperature [K]

 

 

Experiment range Extrapolated experimental data
Kinetic theory data

(a) Before ionization.

4000 5000 6000 7000 8000 9000 10000
20

25

30

35

40

45

50

55

60

65

C
p 

[J
/(

kg
 K

)]

Temperature [K]

 

 

Extrapolated experimental data
Kinetic theory data

(b) First ionization

Figure A.4: Heat capacity of argon gas at constant pressure versus temper-

ature for overlaping domain of validity of the two sets of data.

74



500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8x 10
4

E
nt

ha
lp

y 
[J

/m
ol

]

Temperature [K]

 

 

Experiment range
Extrapolated experimental data
Kinetic theory data

(a) Before ionization.

4000 5000 6000 7000 8000 9000 10000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4x 10
5

E
nt

ha
lp

y 
[J

/m
ol

]

Temperature [K]

 

 

Extrapolated experimental data
Kinetic theory data

(b) First ionization

Figure A.5: Enthalpy of argon gas versus temperature for overlaping do-

main of validity of the two sets of data.

75



In the local thermodynamic equlibrium (LTE), Kirchoff’s law is valid

for a given wavelength and a given temperature

ǫν

K′
ν

= Bν(T, ν) =
2hν3

c2(ehν/kT − 1)
(A.10)

with Bν denoting black-body radiation, c the speed of light and h the Plank

constant.

Unfortunately even for the simple Eqn. A.9 the computation of the

total radiation transfer is a complicated task. This is due to the fact that the

radiation intensity and its divergence are rapidly varying functions of the

frequency. Large computational effort is therefore required for a rigorous

treatment of the radiation heat transfer terms in plasma modelling.

A number of simplified approaches are available. In this work, the

NEC (net emission coefficient) model has been used, which results in com-

puting the net radiation ǫN
11 in the center of the isothermal sphere12

ǫN =
∫ ∞

0
BνK′

νexp(−K′
νRp)dν (A.11)

where Rp is the radius of the sphere. For further details on radiation trans-

fer and derivation of the net emission coefficient, see Gleizes et al. [27] and

Rat et al. [50],[51].

11Net means the difference between emission and absorption, i.e. the divergence of the

radial intensity
12The assumption of constant temperature seems to be very restrictive, but it has been

demonstrated that it is a valid for central region of thermal plasmas [52]
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Appendix B

Numerical solution and algorithm

The system of Eqs. 2.36-2.40 is supplemented by the constitutive rela-

tions, initial and boundary conditions has generally no analytical solution.

Therefore a numerical algorithm is usually sought. In this chapter, the

main features of the finite volume based numerical algorithm that is used

in this work are briefly described. This is followed by the details on the

discretization of the momentum, continuity, energy and Maxwell’s equa-

tions. Finally, the complete algorithm is presented and its particularities

are discussed.

B.1 Discretization of the transport equation

In the frame of the finite volume method, the system of Eqs. 2.36-2.40

is written in the conservative form. In the general case, when both con-

vection and diffusion effects are present, the general transport equation is

given in the following integral formulation

∫

∆t

[ ∂

∂t

∫

V
ρφdV

︸ ︷︷ ︸

temporal derivative

+
∫

V
∇ · (ρUφ)dV

︸ ︷︷ ︸

convection term

−

∫

V
∇ · (ρΓ∇φ)dV

︸ ︷︷ ︸

diffusion term

]

dt =
∫

∆t

[∫

V
S(φ)dV

︸ ︷︷ ︸

source term

]

dt. (B.1)

Here φ is a tensorial property considered continuous in space, Γ is the

diffusion coefficient and S(φ) is the source term.

The discretization of the transport equation B.1 will be performed term

by term. The generalized form of Gauss theorem will be used throughout

the discretization procedure.
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B.1.1 Temporal derivative

The time derivative captures the rate of change of φ. We need only to

handle the volume integral.

• Using the temporal variation in a point

φ(t + ∆t) = φ(t) + ∆t
(∂φ(t)

∂t

)

where ∆t is time-step.

• Defining time levels φn and φn−1

φn−1 = φ(t = told)

φn = φ(t = told + ∆t)

• Temporal derivative, first order approximation

∂φ

∂t
=

φn − φn−1

∆t

• Thus the following expression is used in the volume integral approx-

imation

∫

V

∂φ

∂t
dV =

φn − φn−1

∆t
V

B.1.2 Convection term

Consider the terms under the convective term in Eq. B.1. Having in mind

that the control volume, or simply cell, is bounded by a series of flat faces,

the convective term can be transformed into a sum of integrals over all

faces:

∫

V
∇ · (ρUφ)dV =

∫

∂V
dS · (ρUφ) = ∑

f

S(ρU) f φ f = ∑
f

Fφ f

where F represents the mass flux through the cell face f

F = S · (ρU) f .

These fluxes have to satisfy continuity for every cell. They can be esti-

mated using the interpolated values of U and ρ onto the face. This inter-

polation may introduce an error into mass flux. The calculation of these

fluxes will later be discussed separately in the Section B.2.2.
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The face value of the φ f is calculated from the values in the cell centers.

In this study it is obtained using the convection differencing scheme. The

upwind differencing or ’donor cell’ scheme takes into account the flow

direction when determining the value at the cell face [44]

φ f =

{

φ f = φP for F ≥ 0

φ f = φE for F < 0.

where P denotes the center of the currently considered cell and E is the

center of its neighbour cell.

B.1.3 Diffusion term

The laplacian operator was discretized in a similar way. It is integrated over

a control volume and linearized as follows
∫

V
∇ · (ρΓφ∇φ)dV =

∫

∂V
dS · (ρΓφ∇φ) f = ∑

f

(ρΓφ) f S f · (∇φ) f

where the terms (S · ∇φ) f and (ρΓφ) need further treatment. Since in the

current work the considered mesh is orthogonal, i.e. vector d and S in Fig.

B.1 are parallel, it is possible to use the following expression [18]:

Figure B.1: An example of the non-orthogonal mesh. Here d denotes the

distance between the cell centers and S is the normal on the common face.

S f · (∇φ) f =| S f |
φE − φP

| d | .

B.1.4 Source term

All terms in the equations that cannot be written as convection or diffusion

terms are treated as sources. First, if the source term is non-linear with

respect to φ, linearization is performed [18], such as
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S(φ) = Su(φ) + Sp(φ)φ(x).

When this equation is integrated over the control volume, the discre-

tised form of the source term is obtained
∫

V
S(φ)dV = SuV + SpVφP.

B.1.5 Boundary conditions

The solution of the general transport equation B.1 is not complete without

boundary and initial conditions. The initial conditions are necessary for

transient calculations in order to determine the initial state of the problem

under consideration. The convection and diffusion terms require fluxes

through cell faces which have to be specified at the boundary or evaluated

from initial and boundary data. Most commonly, boundary conditions

are:

• Dirichlet boundary condition: given by prescibing the value of φ at the

boundary

• Von Neumann boundary condition: given by specifying the gradient of

φ

More specifycally, in this work some physical boundary conditions that

occur when solving our system of equations are:

• Inlet. The velocity distribution is prescribed and the surface normal

gradient is set to zero for the pressure.

• Outlet. The pressure distribution is prescibed there. Surface normal

gradient of the velocity field is set to zero.

• Non-slip wall. The velocitiy field is fixed to the velocity of the wall

that is set to zero in our case. As convection flux through the wall is

zero, the gradient of the pressure is set to zero there.

• Thermaly isolated wall. No heat flux going through the wall, i.e.

the surface normal gradient of the temperature is zero.

B.1.6 Solution of the linear equation system

As a result of the discretisation procedure, a system of algebraic equations

is obtained. These equations may be linear or non-linear. When equations

are non-linear they can be linearised in some manner and then solved as

for linear problems, but in an iterative or time-marching fashion.
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The system of linear algebraic equations can be written in the following

general form, [18]:

aPφP + ∑
N

aNφN = Qp

where P is the control volume under consideration, N stands for the neigh-

bours of the control volume P and coefficients a accumulates all the corre-

sponding discretization details.

The resulting algebraic system can be solved either by direct or iterative

method. Direct methods provide a solution of the system in a fixed num-

ber of operations. The most popular methods of this type are: Thomas

algorithm (TDMA), Gauss elimination and LU decomposition. They are

appropriate for a small systems as the number of required operations in-

creases rapidly with number of the equations, except in case of TDMA for

which it increases linearly.

However, in this work an iterative method is employed. This itera-

tive method starts from an initial solution and subsequently improves the

solution until user specified error tolerance is met. In this study two meth-

ods are used: Preconditioned Conjugate Gradient (PCG) and BiConjugate

Gradient (PBiCG) methods.

B.2 Solution algorithm for the pressure-velocity

coupling

B.2.1 Derivation of the pressure equation

Combining the information from the preceeding sections, the complete

discretization of the momentum equations is now written down. How-

ever, one thing remains to be specified, namely the pressure gradient.

Note, that in our case (compressible and thermally expandable flow) the

continuity equation becomes an additional constraint on the velocity field.

A way to overcome this difficulty is to construct the pressure field such

that velocity satisfies the continuity equation. This is done by modifying

the continuity equation into an equation for the pressure [18].

Consider the discretized momentum equations in the matrix form. The

momentum matrix can be decomposed into the diagonal and off-diagonal

contributions. For the purposes of the derivation, the pressure gradient

term will remain in the differential form. For each control volume, the

dicretised momentum equation yields

au
PuP + ∑

N

au
NuN = r −∇p (B.2)

where au
P is a diagonal elements of the momentum matrix. Introduce the

H(u) operator, containing the off-diagonal part of the momentum matrix
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and any associated r.h.s. contributions:

H(u) = r −∑
N

au
NuN (B.3)

Substitute (B.3) in (B.2) to obtain

au
PuP = H(u) −∇p.

or

up = (au
P)−1(H(u) −∇p) (B.4)

Substituting the expression for up into the compressible continuity equa-

tion yields

∇ · [ρ(au
P)−1∇p] = ∇ · [ρ(au

P)−1H(u)]

This expression is the pressure equation with the diagonal part of the dis-

cretized momentum acting as diffusivity and divergence of the velocity on

the r.h.s..

B.2.2 Assembling the conservative fluxes

The pressure equation has been derived from the continuity equation and

the role of the pressure is to guarantee a divergence-free velocity field.

Consider the discretised form of the continuity equation [18]

∇ · (ρu) = ∑
f

s f · (ρu) = ∑
f

F

where s f is a face area vector and F is the face flux:

F = s f · (ρu)

Therefore, the conservative face flux should be created from the solution

of the pressure equation. Substitute the expression for u from (B.4) into

the flux equation, it follows:

F = −ρ(au
P)−1s f · ∇p + ρ(au

P)−1s f · H(u)

Note, that a part of the above expression, ρ(au
P)−1s f · ∇p appears during

the discretization of the Laplacian, for each face. This is discretized as

follows:

ρ(au
P)−1s f · ∇p = ρ(au

P)−1
|s f |
|d| (pN − pP) = ρa

p
N(pN − pP)

where, a
p
N = (au

P)−1 |s f |
|d| is equal to the off-diagonal matrix coefficient in the

pressure Laplacian.

Note that in order for the face flux to be conservative, assembly of the

flux must be completely consistent with the assembly of the pressure equa-

tion (e.g. non-orthogonal correction).
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B.2.3 The SIMPLE algorithm

To resolve the problems associated with the non-linearities in the equa-

tions and the pressure-velocity coupling, an iterative solution strategy such

as the Semi-Implicit Algorithm for Pressure-Linked Equations (SIMPLE)

of Patankar and Spalding [25] for the transient problem was adopted. The

discretised momentum equation include the transient term. This term is

also required in the pressure correction equation. In the standard version

of the algorithm the convective fluxes per unit mass F through the cell

faces are evaluated from the so-called guessed velocity components. Fur-

thermore, a guessed pressure field is used to solve the momentum equa-

tions and the pressure equation. The corrected pressure is in turn used

to update the velocity field. To start the iteration process initial guesses

for the velocity and pressure fields are used. As the algorithm proceeds,

the aim is to progressively improve these guessed fields. The process is

iterated until convergence of the velocity and pressure is achieved.

The algorithm can be summarized as follows

1. To initiate the SIMPLE calculation process a pressure field p∗,

density ρ∗ , thermal and transport properties are guessed.

2. An approximation of the velocity field is obtained by solving

the momentum equation using the guessed pressure (or pres-

sure from the previous iteration)

au
PuP = H(u) −∇p∗

This step is called momentum predictor.

3. By using the guessed pressure and velocity fields, the enthalpy

distribution can be obtained. The temperature distribution is

obtained though the enthalpy. Thus density, thermal and trans-

port properties can be obtained.

4. Calculation of the new pressure is based on the new velocity

field and on the new density.

∇ · [ρ(au
P)−1∇p] = ∇ · [ρ(au

P)−1H(u)]

This is called pressure correction step.

5. Based on the pressure solution, assemble conservative flux F

F = ρ(au
P)−1s f · H(u) − ρa

p
N(pN − pP)

6. Repeat to convergence
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B.2.4 Under-relaxation procedure

The algorithm in its base form produces a series of corrections on u and

p. Unfortunately, in the above form it will diverge due to the fact that the

pressure correction contains both the pressure as a physical variable and a

component which forces the discrete fluxes to become conservative [44].

In order to achieve convergence some under-relaxation is used during

the iterative process and a new, improved pressure is obtained with

p∗∗ = p∗ + αP(p − p∗)

where αP is pressure under-relaxation factor. If αP is selected equal to 1 the

guessed pressure field p∗ is equal to p, that is the solution of the pressure

equation. A value of αP between 0 and 1 allows to add to the guessed

field an αP fraction of the correction field p∗ that is large enough to move

the iterative improvement process forward, but ,at the same time, small

enough to ensure stable computation [44].

The velocities also need under-relaxation. The iteratively improved

velocity is obtained from

u∗∗ = u∗ + αU(u − u∗)

where αU is the velocity under-relaxation factor with a value between 0

and 1. u is solution of the momentum equations and u∗ presents the series

of velocity approximations. The enthalpy is usually also under-relaxed

for the very same reasons as pressure and velocity field. A correct choice

of the under-relaxation factors α is essential for cost-effective simulations.

Too large value of α may lead to oscillatory or even divergent iterative so-

lutions and a value which is too small will cause extremely slow conver-

gence. The optimum values of under-relaxation factor are flow dependent.

Some guidelines for choosing under-relaxation are

0 < αP ≤ 1

0 < αU ≤ 1

αP + αU = 1

see [18] for details.

B.2.5 Solution procedure for the system

It is now possible to describe the solution sequence for our system of equa-

tions. A transient solution procedure for the incompressible, but thermally

expansible and electrically conducting flow can be summarized as follows:

1. Set up an initial conditions for all field values.
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2. Start the calculation from the new time-step values.

3. Go through the SIMPLE loop until the tolerance for the pressure-

velocity system is reached. For this stage, pressure and velocity

fields are obtained.

4. Using the results from the previous step, solve the enthalpy equation

in order to obtain the new temperature field.

5. Update the properties of the gas using the new temperature distri-

bution.

6. Using the updated electric conductivity of the gas solve first the elec-

tric potential equation.

7. Solve the equations for the magnetic potential field using the new

information about the electric potential field.

8. If the final time is not reached, return to step 2.
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