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NOMENCLATURE
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area
coefficient in the discretized equations

coefficients in the turbulence model

frequency (see Eq. 10)

the covariant and contravariant components of the metric tensor
height of flameholder

unit base yector tangential to the grid lines (=covariant base vector)
deterﬁinant of gi;

turbulent kinetic energy

normal vector

pressure

pressure correction

produktion term in the turbulence model

source term

Strouhall number (see q. 10)

Cartesian velocity components in the z;-direction
Cartesian velocity components

velocity correction )

mean value of I/ and \-/, respectively, during a cycle {see Eq. 11)
Instantaneous (including turbulent fluctuations) U-velocity
covariant velocity component

volume

Cartesian coordinates




&V volume of control volume
£ digsipation of turbulent kinetic energy
o general dependent variable
] density
A exchange coeflicient
I dynamic viscosity
& coordinates along (tangential to) the grid lines
£,1,¢ coordinates along (tangential to) the grid lines
Subscripts
E,P,W,.. referring to grid nodes (see Fig. 1)
e, 5, .. referring to control volume faces (see Fig. 1)
$ general dependent variable
t turbulent
eff effective
<3

1 INTRODUCTION

- e
The work presented in this report has been carried out at CERFACS in April 1991. Prediction
of the fiow and combustion in combustion chambers is the aim of an on-going preject at De-
partment of Thermo and Fluid Dynamics. The project is carried out in close collaboration with
Volvo Flygmotor, Trollhittan, Sweden, where the flow (with and without ‘combustion} behind
triangular flameholders has been investigated experimentally using a laser doppler system.

In this work the two-dimensional unsteady flow behind a triangular flamelolder is calculated.
The combustion is not included. Initially attempts were carried out to solve the steady problem,
but no convergent solution was obtained. Furthermore, the experiments showed unsteady flow
pattern with vortices being shed from the corners of the flameholder with a well defined Stronhall
number. Thus it was decided to solve the unsteady equations. The turbulence is modelled with
a k — ¢ model.

2 EQUATIONS

The unsteady transport equation in Cartesian coordinates for a general dependent variable reads:

ap®

L 1 5 (pUn®) = o (Toge) 457 1



where 3 denotes source per unit volume. If a flux vector Jy, containing convection and diffusion
is defined as

a®
Jn = PUm‘i’"f@-é-g“' (2)

Eq. 1 can be written as:

a0 92  9Jm i N - 3—4)
br | Bt

In vector notation the equation reads:

p%E+VJ =3

Integrating this equation over a volume (with volume V and bounding surface A) using Gauss’

law, gives:
f 3¢dv+[:f dA = /?“’dv
6 v

9.1 Mean Flow Equations

The continuity and%agt%y{@ntum equations in incompressible form reads:
U;
am,(” )=

H g _ ap aU
BT(PUt)"'f &;(PUiUJ) = T oz, 7 a (f-‘effal )

22 The k—c¢ Model

The standard high Reynolds k — ¢ model is used. The unsteady k and g-equations have can be
written as:

Ok
D (k) 4 g oli) = 2t 0 Yoy + P e

-g;(pe) + (,oU €)= -—~—-—{(,u + "‘)-"—*} + “'Clc(Pk —~ C2¢PE)

The generation term has the form in tensor notation:

oU; U; , 0U;
P = g (G Ba:)
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Figure 1: Grid nomenclature. The grid drawn orthogonal for clarity. Dots denote nodes.

The turbulent viscosity is calculated as:

k2
. P = PC#'“;
and the effective viscosity is obtained as
Beff = -+ it

3 THE CODE

In this section the finite volume computer program - CALC-BFC (Boundary- Fitted-Coordinates)
- for three-dimensional complex geometries is presented. The code is described in [4], and its
main features are, for convenience, given below. The program uses Cartesian velocity compo-
nents, which have been used by e.g. Shyy et al. [16] and Braaten and Shyy [1}. In most finite
volume programs staggered grids for the velocity components have been used {11]. In the present
work colocated variables are used, which means that all variables are stored at the same location.
This concept — suggested by Rhie and Chow [13] - has been used by, for example, Burns and
Wilkes {2], Majumdar [8}, Majumdar et al. [9], Peric et al. {12}, Miller and Schmidt [10], Lien
and Leschziner [7).

Equation (2.3) is discretized using standard control volume formulation as described in
Patankar [11]. The integration of Eq. (2.3) over a control volume {see Fig. 1} gives

Note that the positive signs in front of the contributions for the west, south and low faces in
§ Cartesian coordinates are turned into negative ones because the scalar product J - A are then
i .

negative.



The discretized equation is obtained as:

ap®p =3 @+ SE (3)

where

ap = Zanb ij‘S

The coefficents ans contain contributions due to convection and diffusion, and the source terms
SE and S& contain the remaining terms.

3.1 Time Derivatives

A first order, implicit scheme has been used.

3.2 Convection

The convection, which is the first part of the flux vector J, is the scalar product of the velocity
vector and the area vector multiplied with the density. For the east face it gives:

e = pU - A= Pe(UeAex + V;Aey + W]eAcz)

and since the cartesian areas Aer, Aey, Ae: a1 stored the calculation of the convection is straight-
forward. Special gare must, however, be taken when the velocities are interpolated from the
nodes to the control volume faces in order to avoid non-physical occilations; Rhie and Chow {13]
solved this problem (see also [2], {12] and [1o]).

Below is described how the velocities at the control volume faces are calculated. For sim-
plicity, Cartesian coordinates are used.

When the pressure gradient is added to the momentum equation standard linear interpolation
is used, i.e.

where
pe = fepe + (1 - fo)pp

When calculating the velocity at the east face, for example, the pressure gradient is sub-
tracted so that

#* . ‘”(pe - pw)év
Up = VP~ Tael(ar)r
- — pe )8V
Ut = Ug - (PEe — Pe)S

" Te(Be) [ (er)z

where ap is the discretized coefficient in Fq. 3 for the velocities. The [/-velocity at the east face
is now calculated as:, :

U. = fUE +(1- fo)UE - M




The advantage of the last expression of U is obvious: now the pressure gradient is calculated
using the adjacent nodes of face e. This prevents any non-physical occilations in the pressure
field.

The convective terms are discretized using hybrid upwind/ central differencing {11].

3.3 Diffusion
Diffusion is the second part of the flux vector J in Eq. 2, and it has the form:
D = (3-Ass=-TeA Vo

For the east face, for e;cample,'it gives in Cartesian coordinates (X,y,2)

0% 8% 8%
~ {Teh Vo) = —{Teldey + A+ A:go)le (4)

and in curvilinear coordinates (§,7,¢ )

e
o&;

The covariant (=tangential) base vectors g1, 82 and g3 correspond to the I, J and K-grid lines,
respectively. The metric tensor appears because the components of the product A - g; and the
derivative 8@ /9¢; are both covariant, and the product of their {contravariant) base vectors is
not equal to zero or one {(as in Cartesian coordinate systems) since they are non-orthogonal to
each other [6]. "

~{A- Véle=—{A 'gigij fe = ~{lAin: gigij'g_;%}e (5)

The diffusive terms are discretized using central differencing [11].

3.4 Pressure correction equation
The discretized continuity equation in one-dimension has the form

iy — 1y = 0 (6)
where 71 denotes mass flux, which is calculated as

m = pA-u

In SIMPLEC [11] the mass fiux, m, is divided into one old value 7™ and one correction 1/
50 that

m=m A+
The covariant velocity components are in SIMPLEC related to the pressure gradient as [4],
{11} "

1 dp
. 2
‘l - aP azi (?)
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The mass flux correction at the east face can now be obtained as:
Rl = pA-u = pe(Aestty + Aeyve + A wl) = (pA - g'V5)e

Using Eq. 7 gives
19 ; P
-I:_: ._,,_..........-.._......m—-’ =___“_A_vle
ey, = {pA (- 2578 fe= (o5 ) (8)
where p is the pressure correction. Equations 6 and 8 give
p / ""'E"A . V ! I T 0
(-—A-Vp = ( ple g — 1y, = (9)
ap ap

This equation is a diffusion equation for the pressure correction p’.

4 BOUNDARY CONDITIONS e

Inlet;
The velocities have been set according to experiments (U = 17mjs, V = 0), and k and ¢
have been set from estimations of the turbulence intensity and the turbulent length scale.

Qutlet:

The U-velocity is determined from continuity, and the remaining variables are extrapolated.

Walls: N
Gtandard wall functions [14] have been used. ' e

5 RESULTS

The incompressible unsteady two-dimensional flow around and behind a triangular flameholder
is calculated. The experiments [15] show that vortices are being shed with a regular and well
defined frequence, and a von Karman street appears behind the flameholder.

In Fig. 2 the grid near the flamehotder is shown. The cells in the flameholder are blocked,
i.e. all variables are set to zero. One time cycle is approximately 9ms (see Fig. 4), and 90 time
steps with A7 == 0.1ms have been used to resolve one cycle.

The calculated pressure contours are shown in Fig. 3 for different times in one cycle. In Fig.
3e approximately one cycle has been compleated and it can be seen that the flow in Fig. 3e is
similar to that in Fig. 3a. It is interesting to study the vortices being convected downstream as
time increases (from Fig. 3a to 3e). One can, for example, follow the vortex which is located
to the right of the upper corner of the flameholder in Fig. 3a (marked with an arrow). As time
increases it is convected downstream. At the end of the cycle another vortex is being formed at
the same position as in Fig. 3a.

In order to further illustrate the periodicity of the flow field in the calculations the V-velocity
below the lower corner of the flameholder is presented as a function of time (see Fig. 4), and
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Figure 2: The grid near the flameholder. A 180X 100-node grid has been used. Reynolds number
based on inlet velocity and height of flameholder is 3.81 X 105, The height of the flameholder is
40mm; the height of the channel is 120mm, and its width in the spanwise direction is 240mm

it can be seen an almost perfect periodicity exists with a constant {requency. The Strouhall
number in the calculations

_fH
S, = e (10)

is 0.26 which should be compared with experimental one of 0.25 {15

The predicted velocity vectors are presented in Fig. 5. A large clock-wise vortex with its
centre slightly above the centre line can be seen, as well as a small counter cloc

k-wise vortex
being formed close to the lower corner of the flameholder.

The calculated U-profiles are compared with the experimental ones in Figs. 6 and 7. As the
experimental ones are time averaged, the calculated profiles have been {ime avergared over one
cycle (n time steps). In Fig. 6 the calcutated U-velocity at the centre |

ine is compared with
the experimental one, and the agreement is good. It is seen that in the predictions the negative

maximum is reached slightly too early compared with experiments, and this is also reflected
in Fig. 7a where the predicted negative U-velocity near the centre

Line is too large. Overall,
considering the complexity of the problem, the agreement between calculations and experiments
is suprisingly good.

In the experiments Urms and V,.ms have been defined as the sum of cyclic variations in the
raean field and the turbulent fluctuations. In order to do any comparisons between calculations
and experiments, the predicted total variations in U and V have been calculated, i.e.

1
Ko = <U>+< V> +;2§‘mk¢ (11}
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<U> = nEz,:;{ 5!

lan, Ve—Voo
<V> = ;Btml{ 9 }

In Fig. 8 the calculated and experimental Ky, together with the cycle averaged calculated
turbulent kinetic energy k are shown, and the agreement between calculations and experiments
is fairly good. The contribution from the unsteady mean flow to I is dominant close to the
flameholder. At the first station z = 15mm < U > 4+ < V > is of the same magnitude as
k, and further downstream, when the mean flow no longer 1s constrained by the flameholder,
< [.> + < V > becomes approximatly twice as big as L. The unsteadiness of the mean flow
decays faster than the turbulent kinetic energy and at 376mm belind the flameholder k is larger
than < U >+ <V >.

¢ CONCLUSIONS

The two-dimensional, unsteady, incompressibel flow has been numerically simulated. A com-
puter code based on pressure-correction procedure, written in non-orthogonal coordinates, solv-
ing for the Cartesian coordinates, has been used. An important feature of the code is that ~
contrary to many SIMPLE codes — it is using non-staggered grids for the velocity components.
For space discretization hybrid central/upwind differencing has been used for the convective
terms, and central differencing for the diffusion terms. First order fully implicit has been used
for time discretization. The turbulence has been modelled using a standard high Reynolds
number k — ¢ model. Wall functions have been used at all walls. -

The calculated results have been rcompared with experimental data, obtained with laser-
doppler system. The experiments show that the mean flow behind the flameholder is unsteady,
and that a von Karman street is formed with a well defined Strouhall fregency.

The following conclusions can be drawn:

e

o the predicted results show - as found in the experiments — a von Karman street behind
the flameholder

o the experimentally observed Strouhall number (==0.25) is very well captured in the predic-
tions {=0.26)

o the calculated velocity profiles agree well with the experiments
. o the calculated velocities variations in time agree also well with the experiments

e it was found that a rather fine mesh (180) was needed to resolve the velocity scales
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es. An arrow above each figure indicates
7 = Sms, d} 7 = Tms,

Figure 3: Predicted pressure contours at different tim
at each time the position of a chosen vortex. a) r = lms, b) 7 = 3ms, ¢}
¢) r = 9ms. The cycle time is approximately 9ms

13




1.008

>
4,,..)
o
0 ? .50
@
o>
|
- 0.00
IS
148}
N
o -0.50
=
[
O
[
-1.00 l

.9 6.8 1.3.5

time [ms]

Figure 4: Predicted normalized V-velocity at one point (9 mm behind and 40 mm below the

lower corner of the flameholder) as function of time.
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Figure 5: Predicted velocity vectors behind the flameholder
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