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ABSTRACT

In recent years there has been a growing interest in ceramic materials for
high-temperature gas turbine chambers. Owing to different material prop-
erties, these gas turbine chambers have thicker walls than the metallic ones,
which gives a different geometry of the film-cooling slots, and hence the flow
field will be affected. In this work the mean and fluctuating velocities and
fluid temperatures have been studied numerically for two different lip-to-
slot-ratios. When the lip is thick, the flow becomes unsteady and a vortex
street appears behind the lip, and hence unsteady computations have been
carried out. The calculated results are compared with recently made hot-
wire measurements by Boman [1].

INTRODUCTION

The purpose of this investigation is to model both the flow and temper-
ature fields numerically, and to examine the validity of the eddy-viscosity
concept and of an algebraic-stress-model at different slot-lip-thickness and
flow ratios in a two-dimensional slot with tangential injection, and to relate
the results to the wake flow characteristics downstream of the lip. Launder
& Rodi[10] examined how well current calculation schemes succeed in mim-
icking the measured behavior of turbulent wall jets. They found out that
the models derived from the Reynolds transport stress transport equation
(whether of a full Reynolds Stress Model RSM or an Algebraic Stress
Model ASM form) were more successful than the Boussinesq stress-strain
relation in imitating the wall jet’s behavior, and that a crucial element in
these closures is the modelling of turbulent pressure reflections from the
wall: it is this process that is responsible for the siower growth rate of the

plane wall jet than the free jet.

In most works in the literature, except Kacker [7] who used an elliptic
steady solver, parabolic solvers have been used. However, in the present
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study when the lip was thick (t/s = 1.0), a periodic von Kérman vortex
street was obtained behind the lip, because of which the flow field became
unsteady and elliptic. In a review by Rodi [17], calculations with both a full
RSM, an ASM and the k — ¢ model were presented for a vortex-shedding
flow past a circular cylinder. Their results were in better agreement with
the data when the Reynolds stress equation models (RSM or ASM) were
used. A conclusion was that the assumption of the eddy-viscosity as a
scalar quantity in the k — & model is invalid, and that a Reynolds stress
equation model is necessary for a realistic simulation of this motion. Also,
a conclusion was that a good numerical resolution in the near-wall region is
essential for a realistic simulation of vortex shedding.

The present calculations have been made, comparing two different dis-
cretization schemes for the convective terms, using both an ASM, in order
to better predict the anisotropy effects of the turbulence, and the standard
k — e model. These two high Reynolds number models have been combined
with a one-equation model by Norris and Reynolds [13] near the walls in
order to account for the viscous effects on the turbulence. The configura-
tions considered, are relevant to high-temperature gas turbine chambers,
see Figure 1 below.
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Figure 1. Film model of a 2D wake flow.

THE MEAN FLOW EQUATIONS

In Cartesian tensor notation, the time-averaged conservation equations for
an incompressible unsteady flow without body forces can be expressed as:

Conservation of mass (Continuity equation)

au;

Bz,

= o (1)
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Conservation of momentum (Transport equation)

Uy + 2oy = —OF 4 O
ot P Sz, thd a 82’1’3,‘ 833j

J

(2)

where the stress tensor, ;; is written as:

1";3‘ =

( aU; N aU; (3)
— T
H 8&1' 823,‘ pUity

The k — ¢ Model
The commonest way to model the Reynolds stresses is based on the eddy-
_viscosity concept according to Boussinesq:

(6U;+8Uj
#\ bz, " B,

2
) — =bi;pk (4)
3

- puu; =

This concept assumnes that the Reynolds stresses are proportional to the
local mean velocity gradients and that the proportionality factor, the eddy
viscosity, gy , 1s a scalar quantity, i.e. that is the same for all components
of @iw;. The eddy (turbulent) viscosity is calculated as:

k?
H: = Cp P '“';"“ (5)

where C,, is a constant. The spatial and temporal distribution of turbulent
kinelic energy k and the dissipation rate € are governed by two differential
transport equations as follows:

Ok + 2 vy =2 PR LN (6)
_ i Ry = —— A — OVE
p@t Jdx; p dz; H o) Ox; kTP

Oe N 'S Use) 5] @m\ Oe N € [, P e
e - t = - e €1 ™ Cea PE
Pot T o PUE = e | \B Y o) aar | TRlCalh —car

where the production term, P; and the constants can be written as:

au; , auU;\ 8U;
323j 333, B:Bj

P, = ﬂz(

O = 1.0, O, = 1.3, €, = 0.00, C; = 1.44, Cr = 1.92
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The Algebraic Stress Model (ASM)

The algebraic stress model can be arrived at by making an assumnption that
the transport of the Reynolds stresses T;it; is proportional to the transport
of turbulent kinetic energy k, i.e.

Uy
C,'j — D{J‘ - k d (Ck - Dk) (9)

where Cj;, D;; represent the convective and diffusive transport of ;%] and
Ci, D) represent the corresponding terms for k. The ASM representation
of the Reynolds stresses can after some algebraic manipulation be expressed
in the following explicit form:

2 k(1 —c.)(Pj — 26,,F) + s

Ui = _,_,&.k h 10
Toog Y € ¢, + P/e —1 (10)

where P;; and Py denote the production of @W;#%; and k. These terms are
exact and do not have to be modelled and are given as:
oU; aU; oU;

P; = —pujur— — puitip—— ; P = —pUi;—- 11
P kdmk pjkd:ck’ k P Jd:cj ()

The pressure-strain correlation @;;, involves correlations between fluc-
tuating pressure and strain rates, and has to be modelled. Three processes
contribute to the pressure-strain correlation, one “slow” term attributable
only to the interaction of fluctuating velocities (¢y;,), one “rapid” term
- arising {rom the interaction of mean strain and fluctuating velocities (¢;;.,),
and one attributable to the effects of rigid boundaries (¢;;.,). Each contri-
bution can be modelled separately [18] as follows:

D = Qij, + Diju + Dijw (12)

The ’slow’ stress-isotropization term ¢;;,, proposed by Rotta [19], and the
'rapid’ isotropization-of-production term ¢ ., suggested by Naot et al.
[12], are determined from:

¢'z'j,1 - "'C1E [’IL,”LLJ‘ - E 6ij k} ; qbij,s = =Cy [RJ — 3 6ij P}c} (13)
k 3 3

The third term ¢;;,,, represents the redistribution due to the effects of rigid
boundaries on both ¢;;, and ¢;;, and is given by the sum of ¢};, and @

which are, respectively, the near-wall corrections to ¢;;, and ¢, thus:

Gijw = ¢, + b, (14)
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where:

/ ’ — 3____ 3
¢, =c, {ukumnknm&j — SR T — —;ukujnkn,- ] - fe (15)
: 2

el m

3 3
P., = c. [ Qrm,a kN Oij — -;Qéik,znknj - ;quk;znkn:‘ } - fe (16)

17,2

where m; is the unit vector in the “i”-direction normal to the wall (if
present). The function fr is a damping function, more detailed described in
(5], which reduces the effect of the wall correction with increasing distance
from the wall.

At high Reynolds number, most of the viscous dissipation occurs at the
small scales, which means that the dissipation term e;; can be assumed to
be isotropic so that the same amount of energy is dissipated in each energy
component u? and hence it can be written as:

2
€y = ”E(S,‘j (17)
3

Finally, the model is closed by solving the transport equations for the
turbulent kinetic energy, Equation (6) and its dissipation rate, Equation (7)
with the production term Py replaced with the exact expression in Equation
(11), and the diffusive terms replaced with the more general relations:

7,

(DIFF) ( O te pwE k ak) (18)
= e —_ C, Uy — -
g 8:2:3‘ H 8:123' p ! & 833,‘
(DIFF) R O (19)
e = Ce Uy —
823j H 823_,‘ 3 P Uit & 833,'

NEAR-WALL TREATMENT

The Two-Layer Model

A two-layer model combines the actual high Reynolds number turbulence
model with a simpler, but more reliable one-equation model to accurately
resolve the flow near a solid wall. It separates the flow field into an outer re-
gion, where the viscous effects are small, and into an inner region where the
viscous effects cannot be neglected. In the outer region, where the turbu-
lent Reynolds number is high, the transport equations for all the dependent
variables are solved as usual. The viscous-affected inner region, which in-
cludes the sublayer, the buffer layer and part of the fully turbulent layer, is




580 Natural/Forced Convection

resolved with the one equation model. In this inner region, the dissipation
rate €, is not determined from a transport equation but from a prescribed
length-scale distribution. Since the ASM is not valid in this inner region,
the Reynolds stresses are here computed using the Boussinesq assumption,
1.e. Equation (4). The one-equation model which has been chosen in this in-
vestigation is the one proposed by Norris and Reynolds [13]. The expression
for the eddy viscosity in the inner region, v, is given as:

v = c, k78, (20)
and € is determined from:
L3/3
= 21
€ 7 (21)

Close to a wall the turbulent energy k decreases, owing to the damping of
the turbulent stresses, and hence the eddy viscosity v, goes to zero. The
damping of the eddy viscosity in this inner region is affected by a reduction
of £,, due to an exponential function similar to the van Driest damping
function used in the mixing length theory. The Norris-Reynolds model
employs the following expression for £,

£, = Cin {Imemp(—-ien)} (22)

where m is the normal distance from the wall. The turbulent Reynolds
number Re, is given as:
k/2n

Re, = (23)
v

which, in contrast to the original van Driest function, does not involve the
friction velocity u* and hence is valid also in cases with separated flows.
The constant C; is chosen as:

Cr = wC31 (24)

where C,, is the same constant as in the standard k& — & model (= 0.09)
and k is the von Kdrman constant which is somewhat different for different
modellers. The damping constant A, was determined from numerical tests
and set to A,=50.5 [15]. The length-scale £, in the expression for the
dissipation rate (Equation (21)) is given as:

Cg T

L, = 25
1+ 5.3/ Re, (25)




Natural/Forced Convection 581

The one-equation model in the inner region must be matched with the
high Reynolds number model in the outer region at some location in the
flow. This location should be placed in a region where the viscous effects
have become negligible. There are different ways of doing this. In this study,
the matching took place where the damping function in the length-scale re-
lation (Equation (22)), i.e. the expression in brackets, has a value close
to unity, which means that the viscous effects are small. For the present
calculations a value of 0.95 was chosen.

BOUNDARY CONDITIONS

Inlet

The inlet was located two slot-heights upstream of the rear edge of the lip
and mean velocities, velocity fluctuations and the temperature were set ac-
cording to the experiments. The dissipation rate was calculated from the
expression in Equation (21) and the turbulent kinetic energy was calculated

as:

k= —[wi4+ 4+ w7 (26)
2

Outlet

The exit velocity was set according to global mass balance between in- and
outlet, and a zero streamwise gradient was imposed for the remaining vari-
ables. '

Symmetry
A zero gradient was imposed for all variables except for the V-velocity,

which was set to zero.

Blockage
A blocked region is situated inside the lip and all quantities there were set
to zero, except for P, T and e which were extrapolated from the interior

flow field.

Walls
The Norris-Reynolds one-equation model was used near the walls and on
the walls all quantities were set to zero except for the pressure, temperature

and dissipation rate for which the gradients normal to it were set to zero.
THE CALC-BFC CODE

Basics
In this report a finite volume computer program — CALC-BFC (Boundary
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- Fitted - Coordinates) — for three-dimensional complex geometries has
been used. A detailed description of the code is given in [4] and some of its
main features are briefly discussed below.

The SIMPLEC solution algorithm [14] is used and the program uses
Cartesian velocity components, collocated variables situated in the middle
of the control volume and linear interpolation when a variable is needed
at a face of the control volume. The convective terms are discretized us-
ing both a hybrid upwind/central differencing scheme, as well as a second
order accurate bounded scheme of van Leer [11]. The diffusive terms are
discretized using central differences, which are of second order accuracy.
For the time derivatives a second order accurate scheme, referred to as the
Crank-Nicolson scheme has been used. All these schemes, except for that
of van Leer which will be shortly discussed below, are described in [14].

When using collocated variables instead of a staggered grid-arrangement
for the velocities, special care must be taken when the velocities are inter-
polated from the nodes to the control volume faces in order to avoid non-
physical oscillations. This is due to the weak coupling between the velocity
component at the face and the corresponding pressure gradient. Rhie and
Chow [16] solved this problem.

The van Leer Scheme [11]

I'or steady-state flows the van Leer scheme proceeds as follows. First iden-
tify the upstream (U), downstream (D) and centrally located (C) nodes
for each cell face on the basis of the sign of the cell face velocity. Thus,
referring to Figure 2 below, if Uy, , ; is positive, set @y = P, Pp =
@1‘4_1,1‘ and ¢C = @g,j. Then if

,Spp — 2P~ + @U’ > I@D - @U] (27)
set
@£+1/2,j - dSC’ (28)

otherwise set

(Pp — P¢) (Po — Py)
(#p — &)

Ditisay = Po+ (29)
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Figure 2. Grid geometry.

This scheme is a first-order upwind scheme with a correction term which
gives second-order accuracy. All the momentum equations may be solved
by the van Leer scheme, and also the turbulent equations. This bounded
scheme prevents occurence of negative values of k and €. Such values are
not only unrealistic, but destabilize the turbulence equations and prevent

the solution from converging.
RESULTS AND DISCUSSION

The calculations of the two-dimensional turbulent flow have been carried
out for two different lip-to-slot ratios (t/s=0.1 and 1.0) and for two differ-
ent velocity ratios (M=1.0 and 1.5). The bulk temperatnre in the slot, T}
was approximately 40°C and in the freestream the temperature, T, was 23-
—29 °C. Since the temperature differences are quite small, and hence the
bouyancy effects sh..!d be negligible compared with the convection terms,
it was assumed that the temperature had no influence on the velocity field.

The outlet boundary condition was set 50—80 slot-heights downstream
of the lip in order to be sure that the vortex shedding has dissipated, and
hence the streamwise gradients could be set to zero. The upper bound-
ary was set 5—12 slot-heights over the wall, in order to be able to accept a
symmetry condition. More details on the results can be found in Jansson [6].

Case t/s=0.1. Steady Calculations.

The calculations in this case were performed at two different Reynolds num-
bers (12550 and 18950) based on the slot-height, s and the mean velocity
in the slot, U,. The lip itself causes little disturbance, and the flows will
interact as two merging shear-layers and not as a turbulent wake. For this
case, the downstream effects of the lip are primarly due to the difference in
velocity between the two flows. Steady solutions were obtained no matter
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which of the turbulence models were used. The total grid consisted of
190 X 80 grid points.

Since the experimental study used hot-wire equipment, the measured ve-
locity has contributions from the components in both the - and y-direction.
The calculated velocities in Figures A1 and A2 are therefore the absolute
ones. The agreement is good between calculations and measurements con-
sidering mean velocities for both turbulence models.

The dimensionless mean temperatures are shown in Figures A3 and
A4 and the agreement between calculations and measurements is good in
both the free stream and the mixing layer. The mean flow does not seern to
penetrate much into the slot flow, which results in a high film cooling effec-
tiveness near the wall. This low mixing of the flows is probably due to the
fact that the thin lip creates very little vortex shedding and hence the pe-
riodic fluctuation, which is important for the mixing process, is small. The
diffusion term in the temperature equation was calculated using Boussinesq

approXimation:
o or
(5+2) ] 5

Oz; (\o o,] Oz,

where o and o, are the laminar and the turbulent Prandtl numbers. The
value of the turbulent Prandtl number was set to 0.9 in the near-wall region
and 0.5 elsewhere. The latter value has been found to be appropriate for
plane jets, wakes and mixing layers [20]. At the wall (y/s=0), the results
come together in a single point at 8 around unity in the region near the lip,
but @ decreases for higher x/s. The calculated profiles in the last position
indicate that the lateral mixing is too large in the calculations. The grid
expands in the streamwise direction and at this position it is quite coarse,
which in turn leads to numerical diffusion, and the profiles being smeared
out. Except for the last position considered, the film cooling effectiveness
at the wall is generally well predicted.

Case t/s=1.0. Unsteady Calculations.

The calculations at this case (He, =12400), resulted in unsteady motions.
This unsteady behaviour of the flow is due to vortex stretching, with vorti-
cies alternatively shedding from the upper and lower edges of the lip, forming
a periodic von Kdrman vortex sheet behind it. To illustrate the periodicity
of the flow the pressure contours at different times during a whole cycle are
shown in Figure B1. At the lower edge of the lip, a vortex has just been
created and is convected downstream as time increases. During its trans-
port 1t will continuously lose vorticity, which can be seen by the increasing
distance between the isobars in the vortex. All the unsteady calculations
presented here were calculated using the Crank-Nicolson time discretiza-
tion scheme, and both the hybrid upwind/central differencing scheme and
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the scheme of van Leer was used for the convective terms. The grid con-
sisted of 190X 144 grid points. The total time of a cycle was almost 2.5 ms
and has been divided into approximately 90 timesteps of At=25 pus in the
calculations, which gave a Strouhal number, Sr:

0 2
Sr = %a 2 0.22 (31)

At high Reynolds numbers three-dimensional stochastic turbulent fluctua-
tions are superimposed on the periodic unsteady motion. The instantaneous
velocity component, U; is separated into time-mean velocity components,
U,, periodic fluctuating components, U, (together called phase averaged,
(U;)) and turbulent fluctuating components, u;, i.e.:

U = U+ U +u = U) +u (32)

where (U;) is the velocity resolved by the numerical method. The time-
averaged mean velocities in the calculations are shown in Figures B2 and
B3. With the use of the & — £ model, the results obtained using the van
Leer scheme are in considerably better agreement with the measurements
than those obtained by using the hybrid scheme. The ASM predicts the
flow field better than the k — & model, but when the van Leer scheme is
used, both models are capable of predicting the flow quite well.

From Figure B4, it can be seen that the k — € model leads to greater
turbulent fluctuations than the ASM in the wake region. This overpredic-
tion of turbulent kinetic energy results in excessive eddy viscosity, which
damps the periodic fluctuations, and hence the mixing process. The mea-
sured values are the sum of the periodic and the turbulent fluctuations.
The corresponding calculated fluctuations time-averaged over a whole cycle

Uror are computed as:

Tor = = 3 [U)sy = Dol + s (33)

S

where n is the number of timesteps during one cycle. It can be seen from
Figure B4 that the contribution from the periodic fluctuations is quite high
near the lip, but further downstream this periodic contribution decreases,
indicating that the strength of the vortex sheet decreases. The fluctuations
in the free stream are in better agreement with the measurements when the
van Leer scheme is used. The reason is that the van Leer scheme is less
diffusive (second-order accurate) compared with the hybrid scheme (first-
order accurate) and this results in a stronger vortex shedding, which gives
a better vertical mixing between the two flows.
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In Figure B5 the time-averaged dimensionless mean temperature pro-
files are shown, and it can again be noted that the van Leer scheme results
in a better mixing. Considering the same discretization scheme and com-
paring the turbulence models, it can be seen that in the ASM case, the
profiles are a little bit more smeared and better predicted than those ob-
tained in the k — € case. This is a result of the higher momentum exchange
from the mean flow in the y-direction and hence the main and slot flows are
more mixed when the ASM is used. In the near wall region, the calculated
film-cooling effectiveness is generally too high, which means that the flow in
the free stream does not penetrate far enough into the slot flow, indicating
that the calculated vortex shedding is too weak. Further downstream, the
film cooling effectiveness is decreased, owing to the increased mixing of the
flows, which acts to destroy the “heating” film. It should be noted that in
the calculations as well as in the measurements, the wall was assumed to
be adiabatic, and that the “hot” flow was in the slot.

There were some difficulties in comparing the calculations with the mea-
surements, since the temperature in the free stream varied from day to day
during the measurements. This means that the temperature in the free
stream during the measurement of a temperature profile at a downstream
location varied from the free stream temperature during the measurements
at another location. In the calculations using the ASM, the diffusion term
was approximated by the following gradient-type expression [9]:

k or

——u,ﬁ = Cg — Uiy (34)
€

82’33'
where the constant Cy was taken as 0.11.

CONCLUDING REMARKS

Finally, the following conclusions can be drawn:

e Both turbulence models predict the mean flow field quite correctly
when the lip is thin (t/s=0.1) and no streamline curvature effects
are present.

® When the lip is thick (t/s=1.0) and hence the flow becomes unsteady,
it is of great importance that a fine grid in space (or a higher order
scheme) is used to achieve good agreement with experiments.

e In the unsteady cases, where streamline curvature effects are present,
the anisotropic behaviour of the turbulence is better predicted by
the ASM than by the &k — ¢ model. The calculated film cooling
effectiveness at the wall is too large, indicating that the penetration
of the cold flow in the free stream into the slot is too weak.
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~Appendix A. Case t/s=0.1. Steady calculations.

M=1.0 ; t/s=0.1 K/5=
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T B 040 .0
3.0 i
Y/S : ]
2.0 A
: | - ASM
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Figure Al. Mean velocity profiles, M=1.0, t/s=0.1.
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U/ U,
Figure A2. Mean velocity profiles, M=1.5, t/s=0.1.
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X/S=

Data
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Y/S oAk

2.0“‘" 5
‘Y — ASM

-------- k—¢ mode!
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Figure A3. Film-cooling effectiveness, M=1.0, t/s=0.1.
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Figure A4. Film-cooling effectiveness, M=1.5, t/s=0.1.
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Appendix B. Case t/s=1.0. Unsteady calculations.

t/T=10/47
@Q O@
t/T=20/47

t/T=30/47
; , Q 60 u Q
t/T=40/47
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Figure B2. Time-averaged mean velocity profiles,
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Figure B4. Turbulent (%/U,) and total ((u + U)/U,)
velocity fluctuations. Markers denote measurements.
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