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computational fluid dynamics. The method is used to investigate discretization errors in
computations of swirling flow in water turbines. The work focuses on the conservation of
a subset of the angular momentum equations that is particularly important to swirling

flow in water turbines. The method is based on the fact that the discretized angular
momentum equations are not necessarily conserved when the discretized linear momen-
tum equations are solved. However, the method can be used to investigate the effect
of discretization on any equation that should be conserved in the correct solution, and
the application is not limited to water turbines. Computations made for two Kaplan
water turbine runners and a simplified geometry of one of the Kaplan runner ducts
are investigated to highlight the general and simple applicability of the method.

[DOL: 10.1115/1.1595673]

1 Background

The use of computational fluid dynamics (CFD) in industry has
increased dramatically in recent decades and is now used in many
fields as a complement to model testing. Computational results
obtained in industrial applications are usually claimed to be quali-
tatively correct, i.e., they can be used to identify trends but not to
establish the quantitatively correct values. There are several rea-
sons why the industrial computational results are not quantita-
tively correct. First, the physics of the applications and the bound-
ary conditions are approximated using more or less sophisticated
methods. Secondly, the resulting approximated physical applica-
tion is computed by a numerical method that uses further approxi-
mations and computational limitations.

To study the accuracy of the numerical method, an assumption
can be made that the physics of the application and the boundary
conditions are approximated consistently. The accuracy of a com-
putation then depends on the resolution of the discretized prob-
lem. A sufficiently fine resolution will thus give the correct solu-
tion to the approximated problem if the iterative convergence and
round-off errors are small. Fine resolutions cannot be used in in-
dustrial applications, however, because of restrictions on compu-
tational power and time limitations. The resolutions used in indus-
trial applications are usually not even close to a sufficiently fine
resolution. This has lead to an increased interest in methods for
studying the accuracy of CFD results, [1,2], and many scientific
journals have adopted statement policies about this, [3,4].

When CFD is applied to turbulent flow in complex geometries
it is often difficult to obtain an iteratively converged solution, i.e.,
a solution that satisfies the discretized equations, for the reason
that the preferred higher order discretization schemes are highly
unstable when the computational grid has very skewed and thin
control volumes. One way of dealing with this is to use stable
discretization schemes. A number of discretization schemes of
varying stability are available in the literature. Depending on the
complexity of the flow and the geometry, a discretization scheme
that gives an iteratively converged solution usually has an ob-
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served discretization order that lies between the first and second
order. Figure 1 shows the computed flow above and below a Ka-
plan runner using the first-order hybrid scheme and the second-
order Van Leer scheme. The influence of the discretization scheme
is striking.

Stable discretization schemes introduce discretization errors
that must be investigated before it is possible to achieve reliable
computational results.

One approach to studying the accuracy of CFD results is to
look at the sensitivity to grid refinement using the Richardson
extrapolation method, [5-7]. The Richardson method uses results
from three grids of different refinement to estimate the grid con-
vergence error. If /1 is a geometric discretization parameter repre-
sentative of the grid spacing of the finest grid (h;=h), the sub-
sequent grids are coarsened according to h,=rh and hy=r*h.
The refinement parameter can for instance be chosen to be r=2.
The main requirement of the Richardson method is that the solu-
tions at all the grids must be in the asymptotic range. This require-
ment can be met in some cases. In general three-dimensional in-
dustrial computations, however, where it is difficult to get even
the finest solution in the asymptotic range, the method cannot be
used to its full extent, [8,9]. Another major drawback of the
method is that time constraints do not allow computations on sev-
eral grids in industry. The original Richardson paper, [10], exam-
ined the difference between a low-order solution and a high-order
solution on the same grid. This requires computations of two so-
lutions, which is time-consuming, and makes it necessary to ob-
tain a high-order computation, which is not always the case in
industrial CFD. A fast and simple method that investigates the
discretization error of a single solution on a single (coarse) grid is
therefore needed.

The present method uses a single computational result from a
single grid to investigate the accuracy of that computational result.
Most CFD codes use conservation of mass and linear momentum
to compute the flow. Hence, imbalances in angular momentum,
kinetic energy and higher moments reflect the numerical accuracy,
[11,12]. The CFD codes may be rewritten to conserve other than
mass and linear momentum, but, in any numerical approach, there
will be nonconserved quantities that can serve as candidates for
numerical accuracy assessment. Since all quantities of the flow
cannot be investigated, it is necessary to choose quantities that are
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Fig. 1 Circumferentially averaged velocity coefficients above
and below a Kaplan runner (Kaplan 1). Solid lines: tangential
velocity; dashed lines: axial velocity. Markers: A: first-order hy-
brid scheme; O: second-order Van Leer scheme. The velocities
are normalized by the runner radius and the runner angular
velocity. (a) Above the runner, (b) below the runner.

particularly important to the flow. A set of important quantities
can be specified for each industrial application. The method de-
scribed in this work can be used to estimate the accuracy with
respect to those quantities. When all important quantities of the
flow are conserved, the computational results can be considered
correct. Angular momentum is one important quantity in swirling
flow in water turbines, which is studied in the present work.

2 Derivation of the Angular Momentum Balance

The derivation of the angular momentum balance starts with the
Reynolds transport theorem for an arbitrarily moving deformable
control volume, [13,14],

dByy d
dr— dt CV’deV

where B is a property of the fluid, B=dB/dm is the intensive
value or B per unit mass, and d By /dt is the rate of change of B
of a system (material region) confined in a control volume that
instantaneously comprises the system. This expression is thus a
conversion formula between a system and a control volume that
instantaneously occupies the same space and, in other words, is a
coupling between the Lagrangian and Eulerian descriptions. The
velocity relative to that of the control volume surface is U,
=U(r,t) — Uy(r,t), where U(r,?) is the fluid velocity and U,(r,?)
is the control volume surface velocity. The Reynolds transport
theorem can be used to write all the basic laws in integral form
and can thus be used to derive the mass balance (B=m, f8
=dm/dm=1), the linear momentum balance (Navier Stokes, B
=mU, B=dmU/dm=U), the energy balance (B=E, f8
=dE/dm=e), and the angular momentum balance (B=H,
= [ (xrXU)dm, B=dH,/dm=rXU).

+ f Bp(U,n)dA
CcS

724 / Vol. 125, JULY 2003

The angular momentum balance for an arbitrarily moving de-
formable control volume is

dH,
dt

+f (rXU)p(Upn)dA. (1)
CS

d
:E( fcv(rXU)pdV

According to the laws of mechanics, the rate of change of the
angular momentum of the system is equal to the sum of all the
moments about an arbitrary point o acting on a control volume
that instantaneously comprises the system, yielding an expression
for the left-hand side of Eq. (1) as ([15])

syst

dH,

=f rXFSdA+j rXFbpdV—f (rXa)pdV,
ot JCS cv cv
@)

where F, is the surface force (both viscous, turbulent shear, and
normal forces) per unit area acting on the control volume surface
and F, is the body force per unit mass acting inside the control
volume. The vector, a, is the acceleration of the coordinate sys-
tem, [14],

AR dQ
a= — + — Xr+20XU+ QX (QXr), 3
d[z dt

where R is the position vector of the origin of the noninertial
coordinate system relative to an inertial coordinate system, r is the
position vector relative to the non-inertial coordinate system, and
Q) is the angular velocity of the noninertial coordinate system. The
terms on the right hand side in the equation correspond to system
acceleration, system angular acceleration, Coriolis acceleration
and centripetal acceleration.

If the control volume is nondeformable and the flow is steady,
the time derivative of the volume integral in Eq. (1) vanishes.
Further, if the control volume is rotating at a constant £} about a
stationary origin, the angular momentum balance (Egs. (1)-(3))
reads

f rXFXdA-N-f rXthdV—f
cs cv cv

—J rX(QX(QXr))pdV=J (rXU)p(Un)dA. (4)
cv cs

rx (2QXU)pdV

This is an extremely complicated relation that contains all the
features of the linear momentum balance. In addition, it should be
recalled that it was derived from the change in angular momentum
about point o, which has not yet been specified. Relation (4) is
obviously valid for all possible choices of o!

If the position vector, r, can be approximated as constant over
the volume of integration, the angular momentum and linear mo-
mentum balances are equivalent in continuum mechanics, [13],
and the angular momentum balance can be derived from the vec-
tor product of r and the linear momentum balance. However, since
the computational control volumes are not infinitesimal, the dis-
cretized angular momentum balance is not necessarily satisfied
simply because the discretized linear momentum balance is satis-
fied. It is thus up to the discretization scheme to conserve both
angular and linear momentum.

2.1 Angular Momentum Balance in Turbomachinery. In
turbomachinery, the axial component of the angular momentum
balance about the axis of rotation transfers torque to the rotating
shaft. Assuming that ©=Qe, (e, is the unit vector in the
z-direction) is aligned with the shaft, the axial component of the
angular momentum balance (Eq. (4)) about the axis of rotation
reads
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Fig. 2 Angular momentum distributions at the inlet and a sec-
tion before the runner of a Kaplan runner (Kaplan 1). The dis-
tribution at the inlet should be approximately conserved at the
section before the runner in a correct solution, i.e., the curves
should coincide. Markers: [J: inlet distribution; A: first-order
hybrid scheme, before the runner; O: second-order Van Leer
scheme, before the runner. The angular momentum is normal-
ized by the runner radius and the runner angular velocity.

f rFSgdA-i-f erng+J' 2rQU,pdV
cs cv cv

= f rU yp(U-n)dA )
CS

where r is the cylindrical radial direction and 6 is the tangential
direction. The term involving () originates from the Coriolis term
of the angular momentum balance. There is no effect of the cen-
tripetal term, however, since the coordinate system rotation vector,
Q, is aligned with the axial component of the balance. Further, if
gravity, as in the present work, is the only body force,
J cvrFpedV=0. Equation (5) is the central equation in the present
work.

Equation (5) can be further reduced for simple investigations of
the flow in turbomachines. This is done in the remainder of this
section. When applied to a thin stationary axisymmetric stream
tube (r~const at inlet and outlet) with uniform inlet (index 1) and
outlet (index 2) velocities and negligible surface forces, Eq. (5) is
reduced to

f erng:An.’l(rngz_rerl)
cv

where Am is the mass flow through the stream tube. If F, in-
cludes all the tangential body forces from the blades in a turbo-
machine, we obtain the power balance for the stream tube, [15],

—AP 4= AmQ(r,U gy —r Ugy). (6)

This is the general Euler equation for turbomachinery, [15], re-
lating the input shaft power to the change in angular momentum
for a thin axisymmetric stream tube, which highlights the impor-
tance of the angular momentum balance in this kind of flow.
Equation (6) can be used to verify the numerical results to some
extent. One can assume that the thicknesses of the stream tubes
through the domain are proportional to the channel width, and that
the mass flow through all the stream tubes is the same, [16]. These
are not accurate assumptions, which is one of the reasons that this
simplified method is not complete. Further, the shaft power in
each stream tube is difficult to obtain, and thus the general Euler
equation is not easily applicable in the region where the runner
blades are located. However, the distribution of rU, should be
approximately conserved in each stream tube in regions where
there are no runner blades (AP ,=0). Figure 2 shows the an-
gular momentum distribution of the circumferentially averaged
flow at the inlet and a section above the runner of a Kaplan runner
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(the Kaplan 1 runner described later) for both the first-order hy-
brid and the second-order Van Leer discretization schemes (using
the tangential velocities in Fig. 1(a)). It is obvious that the hybrid
computation does not satisfy the general Euler equation while the
Van Leer computation works well. The Van Leer computations
were carried out and analyzed by Nilsson and Davidson [17] (the
k15 case), which gives detailed information on the analysis in
Fig. 2.

The present work uses Eq. (5), without further assumptions, to
investigate numerical accuracy of the computational results.

3 The Computational Method

The computations used for the investigations in the present
work were made using the CALC-PMB finite volume CFD code.
The main features of the CALC-PMB CFD code are its use of
conformal block structured boundary fitted coordinates, a pressure
correction scheme (SIMPLEC [18]), Cartesian velocity compo-
nents as the principal unknowns, and a collocated grid arrange-
ment together with Rhie and Chow interpolation. The computa-
tional blocks are solved in parallel with Dirichlet-Dirichlet
coupling using PVM (parallel virtual machine) or MPI (message
passing interface). The parallel efficiency is excellent, with super
scalar speed-up for load balanced applications, [19]. The ICEM
CFD/CAE grid generator is used for grid generation, and Ensight
and Matlab are used for post-processing.

Coriolis and centripetal effects are included in the momentum
equations when the computational domain is rotating, but the low-
Reynolds k— w turbulence model of Wilcox [20], which can be
integrated all the way to the wall, is used without terms for rota-
tional effects. This is common in turbomachinery computations
for reasons of numerical stability and the small impact of such
terms in these kinds of industrial applications.

This work investigates the computational results obtained using
two different discretization schemes, the hybrid scheme, and the
Van Leer scheme. Equations and discretization schemes are de-
scribed in the following sections.

3.1 Equations. The steady Reynolds time-averaged conti-
nuity and Navier-Stokes equations for incompressible flow in a
rotating frame of reference read ([21,22])

0’)Xi
U, P o U,
(‘7)(:]' B l?xi 0)6, (Iu Iut) ﬂxj

+08i— P€ijr€rimiQx,—2p€; QU

where — €1 €;,,{2;{;x,, is the centripetal term and —2¢;; ;U
is the Coriolis term, owing to the rotating coordinate system. Be-
cause of the potential nature of the pressure, gravitational and
centripetal terms, [22], they are put together during the computa-
tions in what is often referred to as a reduced pressure gradient

aP*  opP
" x, =- ax, +08i— P€ijk€rmiQx,, .

Thus, a relation for the reduced pressure is
PE=P—pgix;+ p€; € x,X;.

In post-processing, the variation of the gravity term is assumed
to be negligible and the centripetal term is simply subtracted from
the reduced pressure.

The k— w model of Wilcox [20] for the turbulent kinetic en-
ergy, k, and the specific dissipation rate, w, reads
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where the turbulent viscosity, u,, is defined as

k
m=p .

The production term reads

Pi=p|——+——|—-—

ax.,‘ ﬁxi (9.x7

and the closure coefficients are given by

5 3

3*2009, Cwlza’ CwZZE’

=2 and o,=2.

A no-slip wall boundary condition is applied for the velocities
and k=0 at the walls. The specific dissipation at the first node
normal to the wall (at y™<2.5) is set to w=6v/(C,n*), where
n denotes the normal distance to the wall. For the pressure,
3 P/dn*=0 at all boundaries. Dirichlet boundary conditions are
applied at the inlet and Neumann boundary conditions are applied
at the outlet for the velocity components and for the turbulent
quantities.

3.2 Discretization Schemes. To solve the discretized linear
momentum equations, the fluxes through the faces of the compu-
tational control volumes must be known. Since all variables are
calculated at the nodes, some kind of interpolation must be used to
obtain the fluxes through the computational control volume faces.
A number of ways of doing this are described in the literature.
This work studies the numerical solutions obtained when using
the hybrid and the Van Leer [23] discretization schemes. Both
discretization schemes are bounded and use upwinding for the
convective terms. They are briefly described in the following
sections.

3.2.1 The Hybrid Scheme. The hybrid scheme is a combina-
tion of the central and the first-order upwind schemes. It uses
central differencing if the magnitude of the Peclet number is be-
low two and first-order upwind differencing otherwise, i.e.,

®,=0, for U, >0 and |Pe,|=2
O,=b, for U,<0 and |Pe,|=2
(I)e:feCDE+(1_fg)(I)P for |P€e|<2‘

The Peclet number reads

where F, is the convective mass flux and D, is the diffusion flux
at the computational control volume faces. The factor f, that ap-
pears in the central scheme is a linear interpolation factor that
allows the grid to be nonuniform; for uniform grids, f,=0.5. The
hybrid scheme thus uses the first-order upwind scheme if convec-
tion is dominant and the central scheme if diffusion is not negli-
gible. The diffusion is discretized using central differencing for
|Pe,|<2 and is neglected otherwise.

The major drawback of the hybrid scheme is that convection is
dominant in most flows, and the scheme can thus be regarded as a
first-order upwind scheme.

3.2.2 The Van Leer Scheme. The scheme of Van Leer [23] is
of second-order accuracy except at local minima or maxima,
where its accuracy is of the first order. One advantage of this
scheme is that it is bounded. For the east face, it can be written
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P =Dp if [Pp—2Dp+Dy[=|Dp— Dy
U,>0= _ (Pp=D@p)(Pp—Dy) )
O, =0, + T, D, otherwise
O, =0y if [Pp—20p+Dpp|=[Dp— Dy
Op—Pp)(Pp—D
U, <0= (I)e=<I)E+( P e)X(Pg EE) otherwise

o

The diffusion is discretized using central differencing.
This scheme is thus a bounded first-order upwind scheme with
a correction term, which makes it second-order accurate.

3.3 Convergence, Verification, and Validation. An itera-
tively converged solution is assumed to have been reached when
the largest normalized residual of the momentum equations, the
continuity equation and the turbulence equations is reduced to
1073, [24]. The residuals of the momentum equation are normal-
ized by the sum of the mass flow through the turbine and the mass
flow through the periodic surfaces multiplied by the largest veloc-
ity component in the computational domain. The residual of the
continuity equation is normalized by the sum of the mass flow
through the turbine and the mass flow through the periodic sur-
faces. The residuals of the turbulence equations are normalized by
the largest residual during the iterations.

The iteratively converged results of a correctly implemented
finite volume method should be conservative with respect to the
computed equations. The computational results of the continuity
and linear momentum equations have been verified by the method
described in this work. The result from this verification corre-
sponds to the iterative convergence limit. The information ob-
tained from the angular momentum balance can not be obtained
from the mass or linear momentum balances, however, since the
finite volume formulation conserves mass and linear momentum
when the residuals are small.

The CALC-PMB CFD code has been extensively validated
against the GAMM Francis runner, the Holleforsen (Turbine 99—
II) Kaplan runner, the Holleforsen distributor and academic test
cases, [25]. The code has also been used and validated in other
industrial applications, such as: LES of the flow around a simpli-
fied bus, LES of a high-lift air foil and heat transfer in gas
turbines.

The code uses double precision real numbers to avoid numeri-
cal cancellation.

4 Cases

The angular momentum balance method described in the
present work is applied to the flow in water turbines. There are
numerous types and configurations of water turbines, each opti-
mized for the conditions of the specific power plant. The water
turbines studied in this work are low-head Kaplan turbines, which
are the most common water turbines in Sweden.

The geometry and flow features in the vicinity of a Kaplan
water turbine runner comprises an axisymmetric duct with radial
swirling inflow above the runner and axial (ideally nonswirling)
flow through a short axisymmetric diffusor below the runner. The
angular momentum balance method is applied to two Kaplan run-
ners and a simplified geometry of the axisymmetric duct of one of
the Kaplan runners without the runner blades (see Fig. 3).

The cases are briefly described in the following sections.

4.1 Simplified Geometry. Figure 4 shows the meridional
contour of the simplified geometry and two computational grids
with 14,378 and 31,521 control volumes. The complete geometry
is the axisymmetric volume obtained from revolving this geom-
etry around the Z-axis. The grids have different grid density in the
through-flow direction and similar grid distributions in the other
two directions. There are seven computational control volumes in
the periodic direction, covering 10 deg of the total circumference.
Periodic boundary conditions are used in the circumferential di-
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Fig. 3 The three geometries studied in this work. In all cases
the flow is swirling radially inwards at the top and axially down-
wards at the bottom. (a) The simplified geometry, (b) Kaplan 1,
(c) Kaplan 2.

rection. The velocity profile at the inlet is a turbulent 1/7 profile
with a swirling component, [24], and the steady axisymmetric
flow in the inertial coordinate system is computed.

4.2 Kaplan Runners. Two different Kaplan runners are in-
vestigated in the present work. For both cases, the steady flow is
computed in a single rotating blade passage employing periodic
boundary conditions. Inlet boundary conditions are taken from
separate computations of the flow in the upstream guide vane
passage.

Detailed information on the first Kaplan runner case (denoted
Kaplan 1) can be found in the literature, [24,25], where it is de-
noted case k15. The simplified geometry in this work is the same
as the upper part of the duct of this Kaplan runner, where the error
is greatest for the hybrid discretization scheme.

The computational results of the flow in the Holleforsen Kaplan
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Fig. 4 Meridional view of the coarse (left) and fine (right) grid
of the simplified geometry. The grid densities and distributions
differ mainly in the through-flow direction.

runner (denoted Kaplan 2) were thoroughly investigated and vali-
dated against measurements at the Turbine 99—II workshop. The
investigations included in the present work use the computation
that was denoted the standard case in the workshop paper, [26],
which used the Van Leer discretization scheme. A computation
with the hybrid discretization scheme has also been made to show
the difference in the angular momentum balance between the two
schemes.

Both Kaplan cases include the clearance between the runner
blade tips and the shroud, which makes structured multiblock grid
generation very complicated.

5 The Angular Momentum Balance Method

5.1 Implementation. The fundamental idea of the angular
momentum balance method is to compute the flux of angular mo-
mentum through the computational control volume faces using
exactly the same discretization scheme as was used for the flux of
linear momentum in the CFD solver (see Section 3.2). It is very
important that this implementation is made correctly since small
errors in computing the fluxes make it impossible to investigate
the balance error. The angular momentum fluxes are used to com-
pute a control volume angular momentum balance error by sum-
ming up the flux into the control volume and generation inside the
control volume, and normalizing by the flux into the computa-
tional domain, i.e., (c.f. Eq. (5))

= f rFsgdA—Ff eredV+f
cs cv cv

/f rUyp(U-n)dA.
INLET

The control volume investigated can be a computational control
volume or a control volume that comprises several of the compu-
tational control volumes. When computing a balance error over
several computational control volumes, a summation of the bal-
ance errors over the computational control volumes cancels the
fluxes through internal faces, which results in a balance error of
the composite control volume.

In the present work the angular momentum balance method is
applied to through-flow investigations, [27]. Applying the method
between two cross-flow planes (axisymmetric in turbomachine
runners) yields the angular momentum balance error between
those planes. Placing the first cross-flow plane at the inlet and
moving the second cross-flow plane from the inlet to the outlet
(from plane 1 to plane 26 in Fig. 5(a)) yields the global angular
momentum balance error evolution along the flow path. This can
be easily done in the CFD code if there are cross-flow grid planes
that can serve as boundaries for the control volumes investigated.

A more general method for summing the balance error over a
subdomain of the computational domain is to save the computa-
tional control volume balances as an element-based (constant in

2rQU,pdV

- j rUyp(U-n)dA
cs
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Fig. 5 Definitions of the cross-flow axisymmetric surfaces.
The numbered surfaces (represented by thin lines) are grid sur-
faces for the simplified case and general control surfaces for
the Kaplan cases. (a) The simplified geometry with humbered
axisymmetric cross-flow grid surfaces corresponding to the
coarse grid. (b) The meridional contour of the Kaplan 1 runner
(thick lines). The dashed lines show the computational domain.
(c) The meridional contour of the Kaplan 2 runner (thick lines).
The dashed lines show the computational domain.
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Fig. 6 Local and cumulative error distributions from inlet to
outlet of the simplified geometry. Dashed line: Van-Leer, local
error; dotted line: hybrid, local error; solid line: Van-Leer, cu-
mulative error; dashed-dotted line: hybrid, cumulative error. (a)
Coarse grid, (b) fine grid.

each computational control volume) error density, i.e., the balance
divided by the volume of the computational control volume. Us-
ing a post-processing tool such as Ensight, the sum over any sub-
domain can be derived by an element-based volume integral of the
error density over the subdomain. There is then no need for ex-
plicit grid planes at the cross-flow surfaces, and they can cut ar-
bitrarily through the geometry (see Figs. 5(b,c)). The only require-
ments on the post-processing tool are that it can cut out arbitrary
parts of the computational domain and compute the volumes of
the computational control volumes correctly. The element-based
volume integral is then obtained by multiplying the volume of the
computational control volume by the local balance, which is con-
stant in each computational control volume. The overall balance
and volume of the computational domain were conserved in the
analysis by Ensight, and the investigation of the simplified geom-
etry gave the same result in both the analysis by the CFD code
and in the analysis by Ensight. This shows that no significant
errors are introduced in the post-processing by Ensight.

5.2 Results. Figure 6 shows the local (between two neigh-
boring axisymmetric surfaces) and cumulative (from the inlet) an-
gular momentum balance error distributions from inlet to outlet
(see Section 5.1) in the simplified geometry. The overall balance
(from inlet to outlet) is obviously not necessarily representative of
the accuracy of the computations since the errors in different parts
of the domain might cancel each other. The coarse grid hybrid
analysis in Fig. 6(a) highlights this problem, where the total error
of the domain is small but the error in different subdomains is
large.

Both the hybrid and the Van Leer discretization schemes yield
small local errors. The cumulative errors show, however, that the
hybrid scheme accumulates the local errors while the Van Leer
scheme cancels the local errors. Both schemes have problems at
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Fig. 7 Cumulative error distributions from inlet to outlet of the
Kaplan cases. Dashed line: Van-Leer, Kaplan 1; dashed-dotted
line: hybrid, Kaplan 1; solid line: Van-Leer, Kaplan 2; dotted
line: hybrid, Kaplan 2.

the inlet and at sharp geometric corners (located at computational
control volume planes 8, 12, 16, and 18 for the coarse grid and 17,
26, 35, and 40 for the fine grid).

Figure 7 shows the cumulative angular momentum balance er-
ror distributions in the Kaplan runners from inlet to outlet (see
Section 5.1). The angular momentum balance method clearly
shows the difference between the Van Leer scheme and the hybrid
scheme. The hybrid scheme accumulates the local errors while the
Van Leer scheme cancels the local errors.

The analysis shows that the hybrid scheme performs worst in
the first part of the Kaplan 1 computational domain and best in the
first part of the Kaplan 2 computational domain (from the inlet to
axisymmetric surface 5).

Table 1 shows the global estimations of the angular momentum
balance error, which correspond to the overall cumulative values
in Figs. 6 and 7. The global angular momentum balance error of
the hybrid scheme are about 30 times larger than that of the Van
Leer scheme in the Kaplan cases.

It may seem that a 0.7% angular momentum balance error
(Table 1, Van Leer, Kaplan 2) is rather good, but there are at least
two reasons why the error should be reduced: (1) the linear mo-
mentum is better predicted, (2) water turbine efficiencies are very
high (about 95%) and the improvements that can be made are in
the range of 0.1% in efficiency. Since the efficiency of water
turbines is closely related to the angular momentum balance (see
Section 2.1) it is interesting to further investigate the angular mo-
mentum balance for the Van Leer scheme. Figure 8 shows iso-
surfaces of the largest angular momentum balance error magni-
tude for the Kaplan 2 Van Leer computations. This gives an
indication of where to start the quest for improved results with the
Van Leer scheme and the present grid.

6 Conclusion

This work presents a method of investigating the discretization
error in swirling flow computations. The method is based on the
fact that the discretized angular momentum equations are not nec-
essarily conserved when the discretized linear momentum equa-
tions are solved. The method is applied to the first-order hybrid

Table 1 Global angular momentum balance error estimations

. . Van Leer Hybrid

Simplified

Case Coarse Fine Coarse Fine
Overall balance  —6.93-107% —4.79-107* —1.92-107% 1.77-1072

Kaplan Van Leer Hybrid

Cases Kaplan 1 Kaplan 2 Kaplan 1 Kaplan 2
Overall balance  541-107°  6.86-107%  1.41-107" 1.47-107!
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Fig. 8 Iso-surfaces of the absolute value of the computational
control volume angular momentum balance indicating where
the largest errors are located. The Kaplan 2 case with the Van
Leer scheme.

and the second-order Van Leer discretization schemes in swirling
flow in water turbines. The angular momentum balance method is
applied to through-flow investigations. It is shown that the hybrid
scheme cannot be used and that the Van Leer scheme needs im-
provement to give quantitatively correct results for these kinds of
applications. The global angular momentum balance errors of the
hybrid scheme are shown to be about 30 times larger than for the
Van Leer scheme.

This work has studied only a small part of the angular momen-
tum balance that is important to a single vortex with known fea-
tures. There are, however, several vortices of unknown features in
turbomachinery flow (and most other flows as well) that must also
be resolved. A discretization scheme that simultaneously preserves
both the linear momentum balance and the general angular mo-
mentum balance is needed.
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