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A FINITE-VOLUME COMPUTER PROGRAM FOR TURBULENT FLOW IN COMPLEX GEOMETRIES

Lars Davidson, Peter Hedberg, Erik Olsson
Applied Thermodynamics and Fluid Mechanics
Chalmers University of Technology
S-412 96 Gothenburg, SWEDEN

ABSTRACT

A computer code for complex  geometries, written for general
nonorthogonal coordinates, has been developed including a k-¢ turbulence
model. The basis of the program is briefly described below.

The Navier-Stokes equation can be written for general nonorthogonal
curvilinear coordinates where the curvature effect of the mesh is inherent.
The covariant velocity components are solved in our FVM formulation, which
leads to the pressure-velocity coupling becoming relatively easy to handle at
the expense of a more complicated expression of the convective and diffusive
fluxes. When the velocity component, v (or v, , see Fig. 1), is solved, the
neighbouring velocities are projecte in e direction of the velocity

i3 &

component v (or v n). Thus we change the base vectors at the neighbouring
points. This renders a simpler expression for the covariant derivatives. It
should be stressed that when the procedure of changing the base vectors is
carried out, it only affects the convected velocity. The convecting term (dot
product of velocity and area) is calculated without any change of the base
vectors. The same is true for the operator on the covariant velocity in the
diffusion term.

For stability a hybrid central/upwind difference scheme is used. The
discretised equations are written in a form enabling the TDM-Algorithm. The
equations are solved using the SIMPLEC procedure.

It was shown in [1] that, when using upwind differencing, the use of
projected velocities gives better results than when curvature effects are
included in the source term.

The code 1is applied to two turbulent flows: the flow in a cascade, and
the flow in a cavity with an inclined floor. The calculated results are
compared with experimental data.

1. INTRODUCTION

This code has been developed by the two first authors, whose main research
fields are turbulent flow in ventilated rooms and in  turbomachines,
respectively. The mathematical derivation of the formulation of the code is
presented elsewhere [1], and the code is described in detail in [2]. The k-e
turbulence model has recently been implemented, and the code is currently
being extended to be able to handle three-dimensional configurations.

2. FORMULATION
2.1 Momentum Equations

The momentum equations for turbulent flow in general co-ordinates, using
covariant components can be written (1]

av

i Jk -2 jk

A T A L R T L S (1
where ng denotes the contravariant components of the metric tensor. Here the

subscripts (i,j,k) denote covariant components and superscripts (i,j,k)
denote contravariant components and this convention is wused throughout the
paper. The comma notation is used for denoting covariant derivative. In [1})
it was shown that if a local co-ordinate system is used so that the direction
of the neighbouring velocities Vinb (i=co-ordinate direction, nb=neighbour)
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are kept the same as that of the velocity (v e OTV
1), Eq. (1) can be integrated and rewritten so6 that

avi f jk avi f
f — dV + g (pv,v,- p ) dA + p ndA =0 (2)
v or . 17" Petr 3 37 ™k PN

2n) being solved (see Fig.

where A denotes the bounding area of the control volume with the volume V,
and n is its normal vector.

It is well known that upwind differencing gives rise to numerical
diffusion. For curved grids this becomes especially serious when the flow is
across the grid. Even if the magnitude of the velocity component is well
approximated by estimating the face value of v, (for example) with its node
value, the direction of vy is not. This was reCognised by Galphin et al. [3].

Figure 1. The grid (see Section 2.3). The dashed arrows show the neighbour
velocity vectors projected on PE, i.e. viee' viw, VieN and VieS'

In the present formulation the velocity components in the immediate
neighbourhood of the velocity component being solved, all have the same
direction. This means that all the neighbours, v! (prime denotes velocity
parallel to v, ), of v. , have the same directiofi  In this way the problem of
estimating a face valué of v, having the in-correct direction is solved. The
same is true for the v, -equation. The procedure of projecting velocities
drastically reduces the fnumerical errors due to upwind differencing
associated with curved grids [1].

In most studies on deriving discretised equations for flow in complex
geometries, the terms due to curvature, divergence and non-orthogonality of
the grid have been included using Christoffel symbols and metric tensors.
Since the number of these terms is rather large, it is very cumbersome and
may also be inaccurate (there appears terms containing up to the third

derivative of the grid coordinates). This is not the case with the present
formulation.

2.2 k-¢ Turbulence Model

The standard k-¢ turbulence model is implemented in the code [2]. The
equations for k and ¢ can be written

8¢ dv Jk - 9¢_ da b, dV - 0
{af + {g (v - Tege 3 ™ +£ 6 (3)
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where ¢=k or ¢, and b, denotes the general source term, which for the k and
e-equations take the foflowing forms:

L€ )
b, - { (B - pe) dV; b, 5 £ (Cy, By~ Cp, pe) AV

where the production term, Pk’ is " calculated (without projecting the
velocities) as

jk 1
Bm #e (Vg gt vy 00 BV g

The covariant derivatives of vy and vi are defined by [4&]

v = EZE - | k } v
1,J 5 13 'k
i et K

v = — - i } v
37 5 d Kk

The Christoffel symbol can be written [4]

2 1 ke, %8 985 9By
i j) = 7 g ( j + i - K )
ax ax ax

The covariant components of the metric tensor gij are defined by [4]
8117 Byp”li BypTeose

where o is the angle between the base vectors gl and gz.
The turbulent viscosity is calculated as

2
b= pC“k /€

The constants in the turbulence model have been assigned their standard

values [5]: CF-O.O9, Cle-l.hh, C2€-1.92, ak-l.O, 06—1.3

2.3 The Grid

A grid is shown in Fig. 1. The crosses define the corners of the scalar
control volumes, and the circles define the scalar nodes. The position of a
scalar node 1is defined as the average of its four cell corners. The lines
which connect these nodes (dotted lines in Fig. 1) define the direction of
the base vectors, g.. 1

The v, -control volume is staggered in the positive x -direction; it is
outlined Wwith dashed lines in Fig. 1. Its east face, for example, is defined
as being midway between the east faces of scalar control volumes P and E.

2.4 Discretization
Equation (2) can now be discretized using the control volume formulation
described in [6]. For the vl-equation the discretized equation may be written

apvie= X8 Vi, * P (&)

where the prime denotes velocity parallel to the v, -velocity. The v,-
equation is discretised in the same way. The a -coefficienE in Eq. (4), for
instance, contains convective contribution such as (pveA) and diffusive
contribution such as (u «V) [cf. Eq. (2)], where A is ¢the east face
vector area of the control® volume. The part of the®diffusion terms which
contains the cross-derivative due to non-orthogonality has been included in
the source term, b.



To make it possible to solve the velocities using the usual ' TDM-
Algorithm, Eq. (4) is rewritten so that

anle- Zanbvlnb+ b+ bcurv

where the source term b now contains
curv

D urv™ 220 Vinb™ Vinb!

The k and e-equations [Eq. (3)] are discretized in the same manner, except
that no curvature terms appear.

The equations are solved using the SIMPLEC-algorithm [7]. The four main
features are staggered grids for the velocities; formulation of  the
difference equations in implicit, conservative form, wusing hybrid
upwind/central differencing; rewriting of the continuity equation into an
equation for the pressure correction; and iterative solving of the equations
using TDMA.

2.5 Boundary Conditions

The velocities at the inlet were prescribed according to experiments; the
turbulent quantities were estimated. Conventional wall-functions [5] were
used for velocities, k and ¢ at all walls. Zero stream wise pgradient was
imposed for all variables at the outlet. At the symmetry plane the normal
velocity component was set to zero, and the gradient in the normal direction
of the remaining variables was set to zero.

3. RESULTS

3.1 Room With an Inclined Floor
The configuration with the grid is shown in Fig. 2. The calculated results
are compared with experimental data from Hanel and Kéthnig [8].

When the flow in ventilated rooms with small inlets is numerically
simulated, it is not uncommon to prescribe the v. -velocity at a line where
x=constant [9,10]), which means that fewer grid lines are needed in the inlet
region. In the present calculation the v,-velocity was prescribed at x/H=0.1,
using the formula for the velocity in a wall jet [11]

2
v./U, = [cosh( L - 0.14)] (5)
1/ "in 81/2

where § is the half-width of the wall jet, and which was determined from

the ex%é%imenCS [8]; Eq. (5) was used for grid lines which were nearer the
ceiling than 61

/2
Uin
0.31H | S5 t
H
y Uou( l
i—— X -

2.78H

Figure 2. Configuration for the room with the grid (schematically drawn)
included. The height of the inlet: h-=0.009H; Reynolds number, Uinh/v- 3700.

In Fig. 3 the calculated velocity profiles are compared with the
experimental data, and the agreement is good.
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Figure 3. Velocity profiles of the absolute velocity, |3[/U.n. Solid 1lines:
33x33 node grid; dotted lines: 53x62 node grid; markers: experiments [8].

3.2 Flow in a cascade

The cascade consists of two symmetric profiles located beside each
other, aligned with the main flow direction in a closed wind tunnel. The
experimental and numerical studies are a part of a turbomachinery project.

Because the experimental part of the project has started recently there
is mnot much experimentgl data available. The Reynolds number based on the
corda length is Re=1.6 10 . The first half metre of the blade profile 1is an
ellips where the main axes are 100 mm and 500 mm. The rear end of the profile
is described by a 1500 mm long radius. The curvature is continuous. The
centre lines of the blades are located 425 mm from each other. The height of
the wind tunnel test section is 1250 mm. Figure 4 shows the mesh in the
calculation and Fig. 5 shows calculated data and experimental data [12] for
C . The calculation predicts a separation at about 15 cm from the trailing
egge. This explains the differences in C_ at the end of the profile. The
underlying reason is probably that the wall flnction over-estimates the value
of the wall shear stress with the present pressure gradient. Obviously some

other way of estimating the shear stress has to be thought of as the project
proceeds.

Figure 4. Grid for the cascade.
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Figure 5. Pressure coefficient, Cp' as function of corda length, X.
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