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ABSTRACT

An implementation of a SUPG (Streamline Upwind Petrov Galerkin) finite element
method for unstructured triangular meshes is presented. The solution process is
the Full Multigrid algorithm with a SIMPLE smoother. The SIMPLE smoother
is specially designed to handle multiple free outlets with maintained performance.
The code automatically refines the mesh on the basis of on the finite element
residual, and from this process we extract a mesh hierarchy which is used in the
multigrid procedure. We investigated the behaviour of this SIMPLE solver with
and without multigrid for the P1/P1 and P2/P2 Lagrangian triangular elements.
' We also compare the performance of this method to our previous work based
on finite volumes on structured grids. The third order unstructured FEM (Finite
Element Method), was found to be superior to the second order FEM which showed
to be as accurate as a structured second order FVM (Finite Volume Method).
Using the third order FEM we present benchmark solutions for the lid-driven cavity
for Re=100, 400, 1000, 3200 and 5000. We also implemented a k& — w turbulence
model to simulate high Reynolds number flows and applied this to backwards-
facing step flows.

For all applications presented, the FMG-SIMPLE method showed grid inde-
pendent convergence within CPU time comparable with 100 — 200 iterations on
the finest grid (i.e. 100-200 WU).

! Peter Emvin changed his name from Peter Johansson in September 1995
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1 Introduction

For an engineer there exists a large number of applications based on fluid motion.
The basic equations describing fluid flow are complex but form a closed set. The
complexity requires numerical methods to simulate the flow but, the computer
capacity of today usually forces us to model the turbulence and hence solve a
stationary problem instead.

When constructing numerical methods for fluid flow with or without turbu-
lence models, there are great differences in scales in the domain. This requires
stabilised methods, as resolving all scales is prohibitively expensive. There has
been a vast amount of research into stabilised methods based on several different
techniques.

In finite volumes, the stability is often introduced into a central difference
discretization via the addition of second or fourth derivatives discretized by undi-
vided central differences or special reconstructions. For applications on structured
grids see [1, 2, 3, 4] and for unstructured grids see, [5, 6, 7, 8, 9, 10].

The leading error is third order for undivided fourth derivatives and thus is
the second order accuracy usually preserved when adding such dissipation. How-
ever, adding undivided second derivatives means that the method degenerates to
first order, and this artificial term normally contaminates the whole solution. Such
a method is the Upwind or the HYBRID/Upwind method and is not often used
today when simulating the Navier-Stokes equations although a special case is com-
pressible flow, where a first order viscosity term often is added in the vicinity of
shocks. However, since the spatial extent of a shock is small compared to the whole
domain, it does not contaminate the solution significantly.

Another problem when using stencils with a large support is that special
treatment of the boundary is required. While the stability problem of the dissipa-
tion stencil in unstructured finite volumes methods is partially solved, the imple-
mentational problems near the boundaries still remain [6, 11]. When using higher
order methods, these problem increase for the finite volume technique [7, 8, 9].

In finite elements, a proof of a stabilised finite element method with equal
order linear elements, was presented in [12], and it has been generalised to higher
order elements in [13]. These proofs show the slightly non-optimal convergence
O(hP+9-3), where p denotes the polynomial order even though all of our calculations
indicate the optimal O(h?*1:%) behaviour. Since this slight non-optimality most
often not is visible [14] we will in the rest of the paper consider these methods to
be optimal.

To raise the order of the method in FEM, additional nodes are simply added
to each element. Because, it is common when implementing finite elements to
evaluate the integrals in each element and distribute the contributions to the nodes,
the presence of boundaries does not add any extra complexity when raising the
order of the method. FEM also manages curved boundaries if the geometry is
mapped with a polynomial of an order of two or more.

Having discretized the PDE, we need a solution algorithm. The full multigrid



(FMG) has been shown to be very efficient [15]. We earlier used the multigrid
method for a structured finite volume method (FVM) [3, 16, 17, 18]. In that
multigrid algorithm, we used the SIMPLE smoother, which turned out to have
nice smoothing properties and was also found to be robust. We thus applied that
FMG-SIMPLE concept to our unstructured FEM.

Simulating turbulent flows we require a turbulence model and today are eddy
viscosity models (especially k — €) routinely used in industry. They are often used
in combination with wall functions, where the boundary layer is replaced by a log-
law approximation. Such a model is quite robust, reliable and rather cheap to use.
One way to improve the accuracy of such an eddy viscosity model is to resolve the
boundary layers. The k — ¢ model, unlike the k — w model is not consistent in the
boundary layer and thus must be modified with a low-Reynolds method. When
resolving the boundary layer, the size of the problem is increased by a factor of
two or more and, usually, the code also becomes more unstable as a result of the
model and/or the required stretching of the grid.

We have in previous work with structured finite volumes used the k — ¢
model with a two-layer wall model [19]. However, this requires the normal distance
from the wall, as most low-Reynolds models do. These wall distances are easily
evaluated for structured grids while they can be very expensive to evaluate for an
unstructured grid. We have therefore avoided methods relying on wall distances.

We decided to have the higher accuracy of resolved boundary layers and,
encouraged by the work of [20, 21, 22], we chose the k — w model (without wall
functions).

2 Basic Equations

The equations of motion with the ¥ — w model read:

Ra(U;) = pdiUs = 0 1)
Ry(Ui, P):==Q(Ui,p+ p¢) + P =0 (2)
Ri(k,p+ orpe) = Q(k, p+ oxpe) — PD(1, B*wk) =0 (3)
Ru(w,p+ oupe) = Qw, + dupis) — PD(yw/k, fu?) = 0 (4)
pe = pkjw (5)

where

Q(u, p) = pU;Oju — 8;(pdju)
PD(y, Bw?) = v 8;U;(8:Uj + 0;U;) — pPu®
and

B =3/40, B* =0.09, y=5/9, 0, =0x =05



3 Variational form

A variational form, in the sense of SUPG, of the presented set of differential equa-
tions reads: Find [U,V, P, k,w] = [U;, P, k,w] € V} such that

{Ra(U:), a} + QV (Ui, p+ pe, wi) = {Pdij, wi} +

la 27:
Qv(knﬂ + okpe + [l,*(k), t) - {P‘D(l) ,B*Wk),tlﬁ-
3a
QV(w, p+ owpe + p*(w),d) = {PD(wy [k, fuw?), d} +
4a
> [B2Ra(U:), Ra(wi)]+ Y [61Ru(Us, P), Ru(wi, q)]+
{VEL . NEL ,
16 2
> 1Rk, p+ orppe + 7 (K)), Q(k, g+ onpe + (k)] +
3b
> 1 Rw, 1+ e + 17 (@), Qo ki Tupts + 1™ (@))] = 0
NEL .
ab
V[wiaq:tad] € V'h,5 (6)
where

QV (u, p, w) = {pU;0ju, w} + {pud;u, Gjw}
{a,b} = f abdQ  [a,b] = f abdK
Q K

& = (4P (U2 + VIR™2 +16(p + pe +p*)°h™H) 700
82 = 0.5ph(U” + V*)** min(37  ph(U* + V)*® (u + pe + p*) 71, 1)
p*(a) = 0.5h|Ra(a, p + 0apsr)|((050)” + (max a)?h™?)7"%

€ 1s a bounded domain in 2D with the Dirichlet boundary I'p and the Neu-
mann boundary I'y. € is split into isotropic elements element K of the size h. On
Q, the test functions [w;, ¢,1;] span the Sobolev space 1}, and are continuous and
piecewise linear or piecewise quadratic within each K.

Eq. 6 is the SUPG formulation of Eq. 1-5 and in Eq. 6 the term (la) cor-
respond to the standard Galerkin method of Eq. 1 and the term (1b) is the least
squares of Eq. 1 scaled by d,. Analogously the terms (2a) and (2b) correspond to
the standard Galerkin and least squares of Eq. 2, etc. The scaling d is chosen to



give sufficient stability and still retaining high accuracy [23]. However, it turns out
that an extra diffusion p* is required to remove “undershoots” and it was found
necessary to add such artificial viscosity for the & — w equations. Note that, for
the turbulent equations, we have not used the full residual on the test function
but neglected the source term. The production and the dissipation terms can be
magnitudes larger than the convection diffusion terms and are highly nonlinear.
If they are introduced in the test function we must use another scaling & in the
turbulent equations. We have made calculations were we have accounted for the
source terms in § and used the full residual. This method worked but the most
robust choice was to exclude the source terms in the test function. Note that it is
a consistent method in both cases, and thus should we retain the high accuracy in
both cases, whereby we chose the most stable method.

For clarity we might point out that if we had put more effort into tuning &
it may have been found that the full residual in the test function is still the best
choice.

4 Discretization

This section describes the details in the discrete approximation of Eq. 6. This dis-
crete approximation consists of a set of nonlinear algebraic equations represented
by a matrix equation:

Q@ G 0 Ui 0
D 0 0 +[ SUPG ] Fl=|0 (7)
0 0 Q+S i Py
i
AP =F (8)

where @ is the convection-diffusion operator, G' the gradient operator, D the di-

vergence operator, Py the turbulent production, S the dissipation operator and
T = [k,w].

4.1 The discrete approximation

The domain is divided into triangles and nodes are introduced into each triangle in
the sense of the Lagrangian element type. In each triangle, the continuous field is
approximated by a polynomial of degree p based on the nodal degrees of freedom.
The approximation U;, P, k,w will thus be continuous, while the derivatives will
be continuous only at the interior of the elements.

We chose the SUPG formulation [24] which has also proven stable when using
equal order elements for both pressure and velocities. In SUPG, the standard



Galerkin method is modified by perturbing the test-function. This perturbation
term then controls the residual and acts in a similar way to that of the dissipation
term used in FVMs. Note that it is a consistent method whereby the order of the
method is preserved and corresponds to higher order dissipations in FVM.

Comparing SUPG with FVM, we can loosely say that we add a first order
skew upwind scheme but compensate in the discretization of the pressure gradi-
ent such that we retain a consistent method with preserved accuracy. That means
second order accuracy in most cases for P1/P1 (p = 1) elements and third order
for P2/P2 (p = 2) elements. Note that SUPG also contain a term similar as the
Rhie and Chow interpolation used in FVM. The integrals in (Eq. 6) are approxi-
mated by a symmetric Gauss quadrature [25] where the integrals are replaced by
a sum of products of weights and integrand values in specific points. To calculate
the integrand, we need derivatives of the field variables at the Gauss points and
therefore map the element from the physical domain (z,y) onto a unit triangle
in the computational domain (£, 7). We used an isoparametric mapping, i.e. the
geometry (z,y) is mapped using the same basis functions as the field variables.
Using the chain rule, we can express the physical first and second derivatives of
the basis functions (in an element) in terms of the mapping and the derivatives in
the computational domain. The derivatives of the basis functions ¢ with respect
to (z,y) can then be expressed as:

!
|:‘Px]:|:xf yf] [‘PE] (9)
Py Tn Uy ¥n
=i
Poz e 2yexe vE Pee — (Paee + Pylee)
Pry | = | TeTy YpTe T YeTn  Ynle Pen — (P Ten + PyYen) (10)
Pyy :c?, 2ypitn y?‘, @ — (Peyn + ©yYny)

4.2 Notes on implementing boundary conditions in FEM

Dirichlet conditions are usually specified in the FEM in the same fashion as in the
FVM, while Neumann conditions are usually implemented weakly in the FEM via
boundary integrals. Such integrals are much easier to implement with preserved
accuracy as compared with evaluating the normal derivatives in the FVM. As a
by-product of the Greens theorem, we also have boundary integrals that appear
in the variational form and, if they are neglected, they are weakly set to zero at
free boundary nodes.
That means that for an outlet, the zero traction condition :

(Pdi; — (4 pe)0;Usi)n; =0 (11)

is weakly satisfied automatically (n; the outward normal). Also, as we are solv-
ing for zero divergence on the boundary, we weakly satisfy the correct pressure
boundary condition:

(pU;0;U; + 8; P — (p + 1) 0;0;Ui)ni = 0 (12)



Thus, by assembling the coefficient matrix, specifying the Dirichlet nodes,
and solving the equations in the other nodes, we satisfy the zero traction outlet
condition for the velocities and the appropriate pressure boundary condition [26].
These boundary conditions are complex to implement in a structured second order
FVM method and are usually simplified. In a higher order FVM and/or in an
unstructured FVM it will be very hard to implement these boundary conditions
correctly.

4.3 Adaptivity

For an efficient mesh distribution, we must adopt the mesh such that the discretiza-
tion error is minimised. The first naive approach is to make two calculations on
two meshes with different mesh sizes and then refine regions in which the solution
differs a great deal. This will give a bad grid distribution since errors are convected
from their origin, i.e. regions of high truncation error 7 (7 = discrete operator on
continuous solution). One way to estimate 7 is to apply the coarse grid operator
on the fine grid solution, a procedure which is easily implemented in an FMG
process [15, 17, 27]. The counterpart to 7 in FEM is the residual R, defined as the
continuous operator on the discrete solution.

The residual R has the advantage over 7 that it is uniquely determined on
the same grid on which the approximation is made. A FEM posteriori error bound
based on the residual is given in [24]. We have simplified that somewhat and it
reads:

E=||u—U||< RN (13)
with
RN = C(u,U)(|| K Ro(U)/u || + Il RR2(U) ) (14)
where in each triangle
Ri(U) = (|pUi0iU; — 0i(p + 1) 8iU; + 9; P|) (15)
Ry(U) = (|p8:Us) (16)
and where | x | is the Euclidean norm, || x ||:= {x, x}!/? and U the approximation

of the exact solution u. We wish to minimise E with respect to a given set of nodes
and to insert a sufficient amount of nodes to obtain E < T'OL. First we assume a
value for the stability constant C' as it is complex to evaluate. We approximate the
minimum of RN with respect to the grid distribution by an equidistribution, i.e
all elements should give the same contribution RNk to RN. This gives a condition
to select elements to be refined. The selected elements are refined by inserting four
triangles within the original coarse element, see Fig. 1. If a non-refined triangle is
next to two refined triangles, it will automatically be refined.

This is iteratively performed until no non-refined triangles are next to two
refined ones. A triangle next to only one refined triangle will be split into two new
triangles (so called green triangles) in order to avoid hanging nodes. These green



Figure 1: Adaptivity and location of nodes. Dark gray triangles are refined once,
light gray triangles are green elements and white triangles are non-refined ones.

elements are removed prior to the next level of refinement to avoid degeneration
of the mesh quality.

Fig. 2 shows the node distribution for a triangle that has been refined once.
Using P1/P1 elements, nodes 1-3 exist on both the coarse and the refined level,
while nodes 4-6 exist only on the fine level. Nodes 7-15 do not exist on either the
coarse or the fine level, using P1/P1 elements. Using P2/ P2 elements, nodes 1-6
exist on both the coarse and refined levels, while nodes 7-15 exist only on the fine
level. When a coarse triangle is refined into two green triangles, one extra node is
mserted for P1/P1 elements and three nodes for P2/P2 elements.

5 Iterative method

This section presents the iterative method. We first describe the SIMPLE method.
It is usually used as a solver but, as it has a non optimal performance we use it
only as a smoother in the full multigrid method (FMG), which is an optimal solver.

In the first section we present the SIMPLE method and how we have applied it
to this FEM. We then present an extension of the SIMPLE method, handling zero
traction boundaries. Finally we present the implementation of this full multigrid
method with the SIMPLE smoother in conjunction with the FEM.



Figure 2: Node distribution on a refined element.

5.1 The SIMPLE smoother

In solving Eq. 7 we first notice that we do not have the pressure in the equation
for the pressure except in the SUPG term. We must therefore post condition A
with B in order to obtain a matrix M = AB which allows a regular splitting (to
use a simple local averaging smoother such as Jacobi, SSOR etc.). Choose B as:

I -Q7'G 0
B=10 I 0 (17)
0 0 I
with I equal to the identity operator, then
Q 0 0
M=|D -DQ'G 0 (18)
0 0 Q+S

With A= = (MB~')"! = BM~! and r = F — A®, and if M is an easy
invertible approximation of M, we obtain a cheap and robust iterative method
reading:

1

&t = BM v 4+ @' (19)

where the superscript ¢ denotes the iteration number. We chose to run symmetric

Gauss-Seidel (SGS) on each block of M and therefore had to put some restrictions
on M. First we needed diagonal dominance of M so we replace @ by @, which
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have enough artificial viscosity to be an M-matrix (positive diagonal dominant).
After that, Q is under relaxed by adding (1 — a,)diag(@)/ay, where oy = 0.7 in
all calculations . Second we need @' in —DQ~'G and thus here approximate @
by diag(Q) ~ |U|/h ~ &7 where &, is the streamline diffusion parameter.

We also need a boundary condition for the pressure correction matrix:

M, = -6, DGP, (20)

If we consider BM ~! we see that the velocities are corrected by the pressure
corrections in order to satisfy zero divergence. We should not have any divergence
corrections on a Dirichlet boundary. By identifying the velocity divergence correc-
tions on the boundary, we find by applying Green’s theorem on Eq. 21, that it
corresponds to a zero Neumann pressure correction condition. If we reformulate
the pressure correction equation weakly and use Green’s theorem, we obtain the
following variational form.

Find P, € V}, such that

{01VP,Vuwc} =1, Yuw.€Vj (21)

As we have dropped the surface integral arising from Green’s theorem, we
weakly satisfy 0, P, = 0; P.n; = 0 simply by also solving Eq. 21 on the boundary.

To sum up we present how the method is implemented in practice:

1. Evaluate the residual r and the M-matrix for the U-equation. Smooth by a
few SGS sweeps and update U.

2. Evaluate the residual r and the M-matrix for the V-equation. Smooth by a
few SGS sweeps and update V.

3. Evaluate the residual » and the matrix for the continuity equation. Smooth
by a few SGS sweeps and update P, U and V.

4. Evaluate the residual » and the M-matrix for the k-equation. Smooth by a
few SGS sweeps and update k.

5. Evaluate the residual » and the M-matrix for the w-equation. Smooth by a
few SGS sweeps and update w.

6. Update the turbulent viscosity.

7. Repeat 1. to 7. until convergence.

11



5.2 Extension of the SIMPLE method to multiple free out-
lets

Assume that, at the outlet we have a zero traction boundary condition instead of a
Dirichlet velocity condition . The pressure correction outlet condition should then
read P. = p0pUecn = —pud? P., a boundary condition that is difficult to implement
in FEM. If that boundary condition is reduced to P, = 0 it strongly implies P = 0,
which obviously is wrong as we should satisfy the zero traction boundary condition
weakly.

However, if we use 8, P, = 0, we obtain a singular pressure correction problem
and, because the velocities are free at the outlet, we will not satisfy the compatibil-
ity condition of the pressure correction equation (global mass conservation). That
is shown as very poor convergence of the SIMPLE algorithm. A remedy to this
problem often used in the FVM’s is to change the normal velocity at the outlets
in order to satisfy the compatibility condition.

A dual point of view of that remedy, is that weakly enforced on the outlet is
a pressure correction gradient, corresponding to an added constant velocity such
that the compatibility condition is satisfied. However, together with a zero traction
outlet, this condition gives a conflict situation, because the velocity modifications
result in a pressure correction drop near an outlet. In particular, it will drop differ-
ently at different outlets, and our experience is that these conflicts results in very
poor convergence (often a slowdown of a factor of 10 or more compared to Dirichlet
outlets). If we simplify the zero traction outlet boundary condition by imposing
zero velocity gradients, we avoid the conflict situation above. However, we then
only obtain accurate results for developed channel flows, while for more general
flow situations such outlet condition will detoriate the solution if it converges at
all.

If we consider the zero traction outlet boundary condition, we see that it
implies a pressure level in the domain such that it forces the velocities at the
outlets to satisfy global mass conservation. Thus during the course of iterations,
it is desirable to raise the pressure correction in the inner domain such that it
gives a velocity correction at the outlets enforcing the global mass conservation
condition. At the same time, we want to correct the pressure by means of the local
divergence errors.

We therefore decoupled these two processes during each iteration. A constant
mass source mgqq is first added so that the compatibility condition is satisfied.
Second, the pressure correction equation with zero Neumann boundary conditions
is smoothed. Finally, we add a constant pressure correction «, corresponding to
the global mass imbalance, to all nodes except the zero traction nodes. This is
realised by solving a one degree of freedom Galerkin FEM problem based on Eq.
21. It has a test function and a base function equal to unity for all inner nodes
and Dirichlet boundary nodes, while at zero traction boundary nodes are they set
to zero. This one-d.o.f problem has a source term equal to —mggq and it reads:

12



Fl
Figure 3: Full multigrid description

Find « such that:

{51 v¢gc: v¢gc}a = —Madd (22)

where

Madq = — Z rp and g = Z¢i (23)
=1,N €T
and ¢; = 1 in node 7 and zero for all other nodes and Y contain all N nodes except
free boundary nodes. This will give a raised pressure correction level in the inner
domain and, by applying B in Eq. 17 on this pressure correction, the velocities are
forced to match global mass conservation without changing the pressure correction
on the zero traction boundary.

The algorithm described above proved to be equally fast and robust for flow
situations with multiple zero traction outlets as for flow situations with only one
Dirichlet outlet. It should also be mentioned that this decoupled SIMPLE method,
using the pressure correction stiffness matrix, is implemented for arbitrary ele-
ments, arbitrary numbers of outlets, in arbitrary directions, 2D or 3D, within 20
extra lines of Fortran 77, i.e. is very easy.

5.3 The full multigrid method

In the full multigrid process, the algebraic set of equations is solved to the same
accuracy as the discretization error on a coarse mesh. The approximation is then
projected onto a finer mesh and the algebraic error is also reduced on this mesh
to the level of the discretization error. This approximation is projected on an even
finer mesh and so on, see Fig. 3. The solver on each mesh is the multigrid method
with a F-cycle, see Fig. 4.

The multigrid method uses a simple iterative method to smooth the residual
and a sequence of coarser grids to evaluate cheap corrections to the smooth part

13



Figure 4: F-cycle description

of the residual. Fortunately, the SIMPLE method, in combination with a local
averaging method, has good smoothing properties (at least for Pe = Uh/v ~ 25
or smaller).

A sequence of coarser grids is defined via the adaptivity process whereby we
already have all coarse meshes and their operators defined, see Fig. 5. To use this
sequence of grids in the multigrid process, we must define the transfer operators
[28]. The prolongation operator, projecting the coarse grid corrections Asp, on the
fine grid, is defined by:

Find Aj € Vj, such that

{Ah — Azh, 'U};} = 0, Yup € Vi (24)
or, in matrix notation,
D*(A% — PA?) = D*AR - CA?! =, (25)

Since the meshes are nested, i.e. Vo, C Vj, the Lz projection above simply
reduces to the nodal interpolant. For the restriction, we first note that the nodal
residual, 7", can be viewed as an L, projected residual field b, as:

Dhgh = o (26)
This residual field is then projected onto {255. That means:
D*p* — CTH =0 = r** = CTD "k = PToP (27)

Thus the restriction operator is the transpose of the prolongation operator, which
in the case of conformal cells is the transpose of the nodal interpolant.

In the multigrid method, the nonlinearity can be handled either by a global
linearization or by a nonlinear iteration via the full approximation scheme (FAS).

14
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Figure 5: Multigrid grid hierarchy

The corrections on the coarse mesh in FAS are then the changes from the approx-
imation that was projected from the fine mesh and used in the nonlinear iteration
procedure. It has been stated that the Newton linearization does not give any
acceleration owing to the frequency with which the residual in the FAS algorithm
is evaluated and the negligible extra cost of performing a FAS cycle compared to
a CS (correction scheme [15]) cycle. This has also been shown in explicit tests [29)
and, thus have we used the FAS. We used the F-cycle as it has been shown to be
more robust and somewhat faster than the V-cycle and the W-cycle [17].

With the grid hierarchy shown in Fig. 5, the method does not follow the
asymptotic optimal behaviour. However, as long as the number of levels with a
small amount of refined cells is not too many (2-4), we have seen a slowdown of
only a factor of 2-3 at most. The advantage is that we smooth the whole domain
on each level, and also smooth over the interior “interfaces”created within the
adaptivity process. This gives us a more robust solver, which is important when
solving complex turbulent flows.

6 Data structures
We store the geometry and the solution in all N NO nodes. The coefficient matrix

is implemented in a compressed fashion where only the nonzero quantities are
stored using a pointer for all coefficients. The size of the array for the coefficients

15



and the pointer is approximately 10 x N NO x 8 bytes (double precision) for P1/P1
elements and 35 x NNO x 8 bytes for the P2/P2 elements.

We also store pointers for all NEL cells such as the node connectivity 3p x
NEL x 4 bytes, parent-child connectivity 5 x NEL x 4 bytes and neighbour con-
nectivity of the size 3 x NEL x 4 bytes. In addition, about 5 x NNO x 4 bytes
pointers are stored for the renumbering in the FMG process, boundary conditions
etc. In the FMG process, we must also store a coarse grid solution and a residual
field, which correspond to 2x7x NNO x 8 bytes. Altogether including the solution
(7Tx NNO x 8bytes), we store approximately 60 x NNO x 8 bytes in a LIFO-stack
for both the P1/P1 and the P2/P2 methods.

Note that this is a small memory usage compared with most commercial
packages, which usually use 10-20 times more memory than does this FEM code.
When programming this code we had a great help of the data-structure from the
free-ware Femlab [30]. It is an adaptive 2D code for the scalar Poisson equation,
with a direct solver and with P1/P1 elements. We greatly appreciated the use of
Femlab even though we only could use about 10 % of the source code.

7 Some issues on the implementation of the k£ — w
turbulence model

We will present here some details about our implementation of the k—w turbulence
model [21]. We first need a wall boundary condition wyay for w. Asymptotically,
as y = 0, w = 6v/B*y?, where y is the normal distance from the wall. If we Jjust
try to set a very large value of wyay we get a very large numerical diffusion of the
source term in the k equation resulting in non-positive k values. This can easily
be seen when a one-dimensional, two-element discretization of a fully developed
channel flow is considered.

We therefore approximated y — 0 by the diameter d.,, of the elements close
to the wall. However on very coarse meshes, w becomes too small and, consequently,
the length scale becomes too large. To obtain realistic results on very coarse meshes
in the FMG method, we limit y1; and set wyan = max((2IU/1), (6v/B*d?,)), where
[ is the integral length scale and I the turbulence intensity.

Note that in the cycles in the multigrid we only produce corrections around
an approximation from the current level in the FMG method and thus we can use
the same wall value of wyqau on all meshes in the cycles. The discretization of the
k —w model often needs to satisfy a discrete maximum principle to avoid numerical
troubles. That is realized via the artificial viscosity p*, reducing the accuracy
locally to first order, but the overall convergence should be close to optimal, similar
to the TVD schemes in the FVM. The nonlinearity is handled by Picard iteration
every SIMPLE sweep (using the values from the previous iteration).

The k —w equations are strongly coupled via the nonlinear source terms and
thus we must damp the iterative method for k —w. We therefore include the strictly
negative dissipation term in the stiffness matrix. In a similar fashion, is the source
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term appearing in the multigrid used to damp the k — w equations on a coarse
grid. If the multigrid source term is negative, we use the realisability of k¥ —w and
lump it into the diagonal of the stiffness matrix (divide the multigrid source term
by the nodal turbulent variable) [16]. This does not affect the consistency of the
multigrid but gives an initial (the first iterations) behaviour similar to what would
be found if the production term were increased.

The corrections from the smoother and the multigrid are filtered for the
turbulent quantities such that temporarily non-positive k — w values are avoided.
The filter is nonlinear and reads: k + k*(k+max(Ak,0))/(k—min(Ak,0)), where
Ak is the correction before the filter [16, 31].

8 Results

We chose the lid-driven cavity as a test case (Re = 100 and Re = 3200), to
evaluate our discretization and solver. We first compared our calculations with the
benchmark solutions of Ghia et. al. [32]. We achieved grid independent solutions
deviating five percent from those of Ghia et. al. In particular, we obtained the best
agreement with Ghia et. al. when we used P1/P1 elements and the same number
of nodes as in [32]. If the mesh is further refined or P2/P2 elements were used,
the results converged to the solution differing five percent from those in [32].

We also calculated the same two flow cases using our finite volume code
[18]. This second order FVM code converged to the same solutions as did our
P1/P1 and P2/P2 FEM code. We therefore evaluated the accuracy and efficiency
of our FEM formulations towards our FVM formulation instead of Ghia’s results.
We also compare the performance of our second order P1/P1 method with the
sharpest scheme available in FLUENT/UNS [33]. Following this, we present a
section in which we calculate benchmark solutions for Re = 100,400, 1000, 3200
and Re = 5000 using the P2/ P2 FEM.

- The fourth subsection presents the performance of a calculation with two
inlets and two outlets using our decoupled SIMPLE smoother. In the final subsec-
tion, we show the performance of the P1/P1 method in turbulent calculations of
three backwards-facing step flows.

8.1 Evaluation of the P1/P1 and P2/P2 FEM methods

The P1/P1 and P2/P2 finite element methods with the full multigrid SIMPLE
solver are here compared with the collocated structured finite volume code in [18].
This FVM code uses the second order QUICK scheme and has a FMG-SIMPLE
line SSOR solver. We use a structured uniform Cartesian grid for the FVM and,
for the two FEM methods (P1/P1 and P2/P2) we have for all calculations used a
non-uniform triangular base mesh, see Fig. 6. This base mesh has 100 non-stretched
elements of similar size. It is important to use an unstructured triangulation, and
not triangulation based on a structured mesh with split quadrilaterals, because
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Method | Nodes | cycles | CPU-time | Adaptivity
FVM | 10000 3 60 No
P1/P1 | 8000 4 46 No
P2/P2 | 3000 4 98 No
P1/P1 | 3600 4 50 Yes
P2/P2 | 2300 3 86 Yes

Table 1: The number of nodes required for different methods to reduce Ey, below
0.5 x 10~* for Re = 100.

Method | Nodes | cycles | CPU | Adaptivity
FVM | 700000 | 21 18000 No
P1/P1 | 600000 34 21000 No
P2/P2 | 70000 15 8300 No
P1/P1 | 220000 | 20 16000 Yes
P2/P2 | 14000 9 2600 Yes

Table 2: The numbers of nodes required for different methods to reduce E;,, below
0.5 x 10~* for Re = 3200.

cancellation can occur on the latter grid, giving results that are too good and not
showing the real behaviour of the unstructured method. As a triangle has higher
approximation error than a quadrilateral, we expect the structured FVM to be
superior to the unstructured P1/P1 FEM.

However, we find the opposite in Tables 1-2, which indicates the power
of the SUPG concept. Tables 1-2 include, for Re = 100 and Re = 3200, re-
spectively, the number of nodes required to achieve a solution in which Eg, =
max(u — U)/max(u) < 5 x 107* for ¢ = 0.5, where u is the exact solution and
U is the approximation of u. The results in Tables 1-2 are based on an estimated
exact solution in the sense of Rickardsson extrapolation based on calculations of
a sequence of grids up to 200000 nodes for all three methods.

The required CPU time is measured on a DEC 3000/700. We can see that,
for Re = 100, the P2/P2 method is about twice as expensive as the other two.
The number of nodes for the P2/P2 only is 30% of the other methods when not
using adaptivity. Using adaptivity, the number of nodes can be reduced by 50%
for P1/P1 and by 256% for P2/P2.

We see for Re = 3200 that the P2/P2 method is three times as fast as
the P1/P1 method and twice as fast as the FVM. However, the P2/P2 method
uses only 15% of the memory of the P1/P1 method. Using adaptivity, the P2/P2
method is even more efficient than the P1/P1 because of the third order conver-
gence of the P2/P2 method compared with the second order convergence for the
P1/P1 method.
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The overhead in CPU time for the P2/P2 method as compared with the
P1/P1method is per iteration approximately a factor of two with an equal number
of nodes in the P1/P1 and the P2/P2 methods. That is because we use seven-
point quadrature for P2/P2 elements while only one-point for P1/P1 elements.
Using the P2/P2 method, we must perform three pre- and post-smoothing sweeps
instead of one for the P1/P1 method. We also needed to increase the number of
SSOR sweeps from one to four, but then the number of cycles was reduced by a
factor of two or three. We tested four-point quadrature for P2/P2 elements and
no degeneration of the results. This means that the P2/P2 CPU times could have
been reduced by 25%.

The cost of the P1/P1 is approximately the same per iteration as of the
structured code, but the SIMPLE smoother in the structured code uses an alter-
nating symmetric line Gauss-Seidel smoother, which is twice as expensive as the
symmetric point Gauss-Seidel relaxation method used in the FEM code. Thus we
find the overhead using the unstructured data structure to be about 2-3 in 2D.

It should be mentioned that without multigrid the P2/P2 solver converges
approximately six times more slowly than does the P1/P1. In the present study,
the multigrid method is used for all calculations, since a single grid calculation
would probably be approximately 1000 times slower than a corresponding multi-
grid calculation would on a 200 000 node mesh.

It is important to have a method which is robust with respect to mesh quality,
preventing spurious oscillations. We have found the SUPG to have good stability
and an example with Re = 3200 on a coarse grid is shown in Fig.s 7-9. Fig.
T shows the adaptively refined mesh where the mesh size is changed abruptly in
some regions by a factor of two. Fig.s 8-9 show a velocity vector plot and a pressure
plot. We can clearly conclude that no oscillations occur, even though we have a
coarse mesh with 294 elements (173 nodes) and the mesh size varies a great deal
locally, see Fig. 7.

The effects of a piecewise linear contour plot technique (clearly visible in Fig.
9) is not to be confused with spurious oscillations. We can also see that the major
flow structures are resolved on this coarse mesh. The good stability of the P1/P1
method is shown here, but even better regularity is obtained with the P2/P2
method, maybe because the viscous perturbation of the test-function is present
there.

It should be mentioned that the use of adaptivity does not increase the num-
ber of cycles in the multigrid, but rather a decreased number of cycles were used
if the refined region not is too large, see Tables 1-2.

8.2 Comparison of the P1/P1 FEM and FLUENT/UNS

We have included the part of the investigation [34] concerning the lid-driven cavity
Re =3200. We have compared both the P1/P1 FEM and the most accurate
scheme in FLUENT/UNS on a serie of pairwise equivalent grids (generated by
two different mesh generators). We have in Table 3 monitored the convergence of
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Figure 7: An adaptively refined grid with 173 nodes for Re = 3200.
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Method | Nodes | U(0.5,0.1) | Iterations | CPU (min)

UNS/AMG 68 -0.112 230
UNS/AMG 241 -0.211 830
UNS/AMG | 905 -0.313 1500 6.5
UNS/AMG | 3505 -0.381 4100 70

FEM/GS 65 0.016 320

FEM/GS 229 -0.301 950

FEM/GS 857 -0.391 3500 2.5

FEM/GS | 3313 -0.422 12000 35
FEM/FMG | 3313 -0.422 407 2.3
Benchmark -0.4338

Table 3: Comparison of the performance of the P1/P1 FEM compared with FLU-
ENT/UNS for the lid-driven cavity Re = 3200. These calculations were performed
on an Indigo2/R10000 SGI machine.

U(z = 0.5,y = 0.1) as it has shown to well represent the errors in the whole cavity.
It is shown in Table 3 that the P1/P1 SUPG method presented here is much more
accurate than the cell-centred finite volume method used in FLUENT/UNS . In
fact, the O(h?) scheme in FLUENT/UNS seems to be only about O(h') accurate,
while the formally O(h'-®) accurate P1/P1 SUPG behaves as O(h?). We can also
see that FLUENT/UNS uses ten times more RAM and twice as much CPU time
on the same amount of nodes as our SIMPLE point Gauss-Seidel solver without
multigrid. Note that FLUENT uses an AMG method on each linearised scalar
equation and still needs twice as much CPU time. If we use our FMG solver, it
converges 35 times faster than FLUENT /UNS on the 3500 node case.

On the 3500 node mesh, we see that the error for FEM is only 20% of that of
the FVM in FLUENT /UNS. This difference is present even though FLUENT /UNS
use twice as many d.o.f’s in their cell-centred discretization as the node centred
P1/P1 FEM does. This penalty is even larger in 3D, where there are about five
times more cells than nodes, resulting in even larger differences in CPU time and
memory usage between the-cell centred FVM in UNS and the node centred SUPG
FEM.

8.3 Benchmark solutions for the lid-driven cavity

Tables 4-9 present our benchmark solutions for the lid-driven cavity and give an
error bound of the data given. This error bound is based on a comparison in
all points given here of calculations made on three different meshes. These three
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i Re =100 Re=400 Re=1000 Re=3200 Re = 5000

0.05000  -0.0343 -0.0753 -0.1682 -0.3367 -0.3995
0.10000  -0.0635 -0.1440 -0.2967 -0.4338 -0.4195
0.15000  -0.0903 -0.2138 -0.3797 -0.3702 -0.3583
0.20000  -0.1163 -0.2788 -0.3759 -0.3187 -0.3122
0.25000  -0.1419 -0.3212 -0.3189 -0.2721 -0.2653
0.30000  -0.1668 -0.3254 -0.2591 -0.2249 -0.2187
0.35000  -0.1891 -0.2923 -0.2079 -0.1780 -0.1722
0.40000  -0.2060 -0.2370 -0.1597 -0.1311 -0.1257
0.45000  -0.2139 -0.1753 -0.1112 -0.0842 -0.0791
0.50000  -0.2091 -0.1150 -0.0620 -0.0369 -0.0321
0.55000  -0.1894 -0.05670 -0.0121 0.0110 0.0155
0.60000  -0.1543 0.0009 0.0390 0.0600 0.0642
0.65000  -0.10560 0.0600 0.0920 0.1106 0.1144
0.70000  -0.0440 0.1207 0.1479 0.1636 0.1668
0.75000  0.0279 0.1813 0.2079 0.2197 0.2223
0.80000  0.1149 0.2387 0.2721 0.2799 0.2817
0.85000  0.2321 0.2904 0.3353 0.3460 0.3463
0.90000  0.4083 0.3528 0.3842 0.4182 0.4187
0.95000  0.6719 0.5410 0.4592 0.4612 0.4778

Table 4: [J-velocity for X = 0.5 with E,,, < 5 x 10~%

meshes are a conformal sequence of grids refined over the whole domain having
NNO,ANNQO and 16 N NO number of nodes, where NNO = 12500. We used
the P2/P2 discretization and compared the solutions on these three meshes. We
clearly saw the third order convergence, and this comparison gives an estimate of
the error on the finest mesh in the sense of Richardsson extrapolation.

8.4 An example of multiple outlet ventilated enclosure.

Below we present a laminar model problem of a ventilated room with two inlets
with Re = 120 and Re = 40, respectively, and two free outlets. It gives a complex
flow pattern within the room and different mass fluxes at the two outlets. A wall
jet becomes turbulent when Rejner = 100 — 150, so it is indeed a convection-
dominated flow case.

We used the adaptive process and stopped at 30 000 nodes. The mesh is shown
in Fig. 10. The P2/P2 FEM discretization with the FMG decoupled SIMPLE
solver was used. It converged (grid independently) within 12 F'(3, 3) cycles which,
is approximately 125 WU. We can clearly see that the convergence is as fast as for
the lid-driven cavity, and the CPU time on a DEC 3000/700 workstation was 1.1
hours. Fig.s 11-12 shows the major features of the flow in the streamline plot and
the pressure distribution plot.
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Y Re =100 Re =400 Re=1000 Re=3200 Re=5000

0.05000  -0.00003  -0.00039 0.00020 -0.00166 -0.00380
0.10000  -0.00019  -0.00229  -0.00294 -0.00408 -0.00699
0.15000 -0.00030  -0.00323  -0.00072 -0.00501 -0.00857
0.20000  0.00014 0.00044 0.00430 -0.00490 -0.00801

0.25000  0.00189 0.00979 0.00732 -0.00325 -0.00618
0.30000  0.00594  0.02229 0.00927 -0.00075 -0.00352
0.35000 0.01315 0.03387 0.01219 0.00238 -0.00028
0.40000  0.02426 0.04215 0.01624 0.00599 0.00339
0.45000 0.03932 0.04763 0.02089 0.00998 0.00742

0.50000  0.05753 0.05206 0.02581 0.01426 0.01173
0.55000  0.07709 0.05674 0.03083 0.01871 0.01620
0.60000  0.09546 0.06195 0.03577 0.02318 0.02069
0.65000  0.10973 0.06723 0.04038 0.02742 0.02498
0.70000  0.11717 0.07163 0.04431 0.03110 0.02872

0.75000  0.11542 0.07392 0.04715 0.03374 0.03145
0.80000  0.10270 0.07266 0.04833 0.03477 0.03255
0.85000  0.07835 0.06609 0.04668 0.03358 0.03136
0.90000  0.04513 0.05033 0.04031 0.02969 0.02735
0.95000  0.01336 0.02051 0.02323 0.02127 0.01970

Table 5: V' -velocity for X = 0.5 with Eg, < 5 x 1075,

Y Re =100 Re=400 Re=1000 Re=3200 Re=5000

0.05000  0.01492 0.01781 0.01423 0.00456 0.00910
0.10000  0.01475 0.01677 0.00880 -0.01288 -0.01097
0.15000  0.01429 0.01345 -0.00522 -0.03316 -0.02984
0.20000  0.01329 0.00596 -0.02547 -0.05026 -0.04650

0.25000  0.01142  -0.00707  -0.04497 -0.06518 -0.06098
0.30000  0.00826  -0.02480  -0.06077 -0.07782 -0.07317
0.35000  0.00332  -0.04404  -0.07339 -0.08812 -0.08303
0.40000  -0.00380  -0.06128  -0.08340 -0.09604 -0.09056
0.45000 -0.01331  -0.07469  -0.09084 -0.10158 -0.09575

0.50000 -0.02492  -0.08398  -0.09565 -0.10471 -0.09858
0.55000 -0.03778  -0.08942  -0.09778 -0.10544 -0.09906
0.60000 -0.05050  -0.09131  -0.09726 -0.10380 -0.09722
0.65000 -0.06148  -0.08983  -0.09416 -0.09988 -0.09316
0.70000  -0.06933  -0.08523  -0.08863 -0.09382 -0.08701

0.75000 -0.07323  -0.07804  -0.08091 -0.08590 -0.07903
0.80000  -0.07306  -0.06925  -0.07141 -0.07653 -0.06962
0.85000 -0.06926  -0.06035  -0.06108 -0.06639 -0.05946
0.90000 -0.06279  -0.05281  -0.05174 -0.05645 -0.04956
0.95000  -0.05515  -0.04709  -0.04560 -0.04880 -0.04162

Table 6: Pressure for X = 0.5 with Egp <5 x 1075,
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X Re =100 Re=400 Re=1000 Re=3200 Re=5000

0.06000 -0.00634 -0.00507  -0.00066 0.00510 0.00760
0.10000 -0.02222  -0.02064  -0.01376 -0.00148 0.00255
0.15000 -0.04362 -0.04149  -0.02661 -0.00781 -0.00388
0.20000 -0.06775 -0.06211  -0.03516 -0.01358 -0.00926

0.25000 -0.09285 -0.07960  -0.04059 -0.01830 -0.01369
0.30000 -0.11792  -0.09270  -0.04485 -0.02223 -0.01748
0.35000 -0.14244  -0.10143  -0.0489%4 -0.02575 -0.02094
0.40000 -0.16609 -0.10697  -0.05307 -0.02918 -0.02435
0.45000 -0.18858  -0.11101  -0.05735 -0.03281 -0.02799

0.50000 -0.20915 -0.11505  -0.06205 -0.03690 -0.03211
0.55000 -0.22659  -0.12013  -0.06740 -0.04163 -0.03685
0.60000 -0.23892 -0.12702  -0.07354 -0.04706 -0.04227
0.65000 -0.24317  -0.13682  -0.08035 -0.05313 -0.04830
0.70000 -0.23552 -0.15134  -0.08733 -0.05960 -0.05471

0.75000 -0.21217  -0.17161  -0.09373 -0.06605 -0.06105
0.80000 -0.17152  -0.19107  -0.10077 -0.07185 -0.06665
0.85000 -0.11735 -0.18501  -0.11622 -0.07557 -0.07056
0.90000 -0.06057 -0.12535  -0.12827 -0.07676 -0.07034
0.95000 -0.01676  -0.03930  -0.06330 -0.08294 -0.07753

Table 7: U-velocity for Y = 0.5 with Ey, < 5 x 1075,

X Re =100 Re=400 Re=1000 Re=3200 Re=5000

0.05000  0.0794 0.1596 0.2500 0.3642 0.4062
0.10000  0.1315 0.2387 0.3407 0.4326 0.4347
0.15000  0.1622 0.2799 0.3762 0.3852 0.3725
0.20000  0.1767 0.3009 0.3591 0.3254 0.3177
0.25000  0.1792 0.3009 0.3071 0.2714 0.2647
0.30000  0.1722 0.2775 0.2461 0.2186 0.2128
0.35000  0.1567 0.2338 0.1882 0.1666 0.1618
0.40000  0.1326 0.1771 0.1334 0.1155 0.1114
0.45000  0.0997 0.1148 0.0795 0.0648 0.0615
0.50000  0.0575 0.0521 0.0258 0.0143 0.0117
0.55000  0.0063 -0.0095 -0.0282 -0.0364 -0.0382
0.60000  -0.0526 -0.0703 -0.0830 -0.0877 -0.0887
0.65000 -0.1161 -0.1322 -0.1389 -0.1400 -0.1402
0.70000 -0.1778 -0.2000 -0.1960 -0.1938 -0.1931
0.75000  -0.2278 -0.2810 -0.2533 -0.2496 -0.2478
0.80000  -0.2529 -0.3767 -0.3137 -0.3080 -0.3049
0.85000  -0.2407 -0.4499 -0.4032 -0.3680 -0.3650
0.90000  -0.1866 -0.4070 -0.5209 -0.4305 -0.4231
0.95000  -0.0994 -0.2128 -0.3780 -0.5669 -0.5604

Table 8: V-velocity for Y = 0.5 with E,, < 5 x 1074,
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X Re =100 Re =400 Re=1000 Re=3200 Re = 5000

0.05000 -0.00382 .-0.00068  -0.00625 -0.01416 -0.00844
0.10000  -0.00553  -0.00322  -0.01238 -0.02689 -0.02312
0.15000 -0.00709  -0.00870  -0.02432 -0.04337 -0.03919
0.20000 -0.00890  -0.01758  -0.03992 -0.05838 -0.05377

0.25000 -0.01119  -0.02958  -0.05548 -0.07152 -0.06661
0.30000 -0.01398  -0.04351 -0.06875 -0.08264 -0.07743
0.35000 -0.01712  -0.05742  -0.07931 -0.09161 -0.08611
0.40000 -0.02033  -0.06947  -0.08731 -0.09831 -0.09256
0.45000 -0.02313  -0.07847  -0.09277 -0.10269 -0.09672

0.50000 -0.02492  -0.08398  -0.09565 -0.10471 -0.09858
0.55000 -0.02506  -0.08602  -0.09504 -0.10437 -0.09812
0.60000 -0.02292  -0.08484  -0.09367 -0.10171 -0.095639
0.65000 -0.01820  -0.08066  -0.08893 -0.09682 -0.09045
0.70000 -0.01114  -0.07351  -0.08188 -0.08981 -0.08344

0.756000 -0.00289  -0.06300  -0.07284 -0.08086 -0.07451
0.80000  0.00457  -0.04829  -0.06219 -0.07018 -0.06384
0.85000  0.00897  -0.03013  -0.04947 -0.05802 -0.05167
0.90000  0.00894  -0.01506  -0.03226 -0.04493 -0.03833
0.95000  0.00484  -0.01099  -0.01787 -0.02830 -0.02306

Table 9: Pressure for Y = 0.5 with E,, <5 x 107°.

Figure 10: Grid distribution for the multiple outlet ventilated enclosure.
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Figure 11: Velocity stream line contours for the multiple outlet ventilated enclo-
sure.

8.5 The backwards-facing step

The final application is the backwards-facing step. We evaluated our implementa-
tion of the £ —w model by comparing our predictions with three different mea-
surements. The geometry is described in Fig. 13.

The inlet is located 10(h 4+ H) upstream the step, and the outlet is located
10(h + H) downstream the step . As inlet boundary condition we use a fully
developed channel flow profile for U, k,w and we have a free outlet for the outlet,
1.e the zero traction condition and symmetry for k—w. We simulated three different
cases (on a DEC 2100 computer) and compared with measurements in Tables 10-
11. The attachment points Xg in our predictions are compared with the measured
Xr and are in close agreement. We chose to use the P1/P1 method since we
expect to need almost the same amount of nodes for the P2/P2 method owing to
the sharpness of the boundary layers.

We needed to use up to 11 levels of refinement near the walls in order to
resolve the boundary layers and, since we use non-stretched elements, we were
forced to use up to 650 000 nodes. The solver converged within four to six cycles,
similar to the laminar cases presented earlier in the previous sections. As we use
the F(2,1)-cycle with the slightly non-optimal grid hierarchy shown in Fig. 5, these
four to six cycles correspond to work equivalent to about 80-120 iterations on the
finest grid. That is probably 100-1000 times faster than the single grid solver. Such
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Figure 12: Contours of constant pressure for the multiple outlet ventilated enclo-

sure.

HC ——=

Xr

Figure 13: The geometry of the backwards-facing step.

Source Rey | h/H | Xr
Kim[35 | 46000 | 2.0 | 6-8
Eaton[36] | 38000 | 1.5 | 7.95
Rasagi[37] | 5500 | 2.0 | 6,51

Table 10: Definition of the three experiments and their measured reattachment

lengths.
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Reg | h/H | Xi | Nodes | Cycles | MG-levels | CPU
46000 | 2.0 | 7.2 | 645000 6 11 15H
38000 | 1.5 | 8.0 | 644000 5 11 12H
5500 2.0 | 6.9 | 166000 4 9 2.56H

Table 11: The predicted reattachment lengths in our simulations and the perfor-
mance of the FMG solver using the k — w model.

0.50

0.45

0.40

7

7\
\ >
208,

v
avy
7\

oV
RN

™ Y IR

0.35 ?1 SDRASD %ﬂl" SN :3??5{3,5:35

ASERRAh - PRAD

RSRSES “q.v:':'g RASSRSIE TN N H %Ng

R N RS RS SO SO

R A O ISR
= IR NERN

- BRR WA

W

10.0 1041 10.2

Figure 14: The grid of the shear layer after the step.

speedup is analogous to the results we obtained with our structured FMG-FVM
with the & — ¢ model [18].

Fig.s 14-15 show the grid distribution around the step and close to a wall.
We can see in Fig. 14 see the refinement of the shear layer from the corner of the
step,as well as the many levels of refinements near the wall in Fig. 15. Profiles of
[/ and k from two of the flow cases are compared with the measured profiles in
Fig.s 16-17, and the agreement is good.

We also applied the solver to other geometries and the performance was found
to be similar to that for the backwards-facing step presented here. To resolve the
boundary layers in 3D with the same brute force method used here is of course
impossible. However, that is purely a mesh generation problem and can be solved
using using stretched tetrahedrons, prisms or hexagons.
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Figure 15: The grid near the wall
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Iigure 16: Profiles of U (to the left) and k (to the right) for Rey = 5500. Lines
represent calculations and dots measurements [37]. The width of a field (z/L = 2)
corresponds to U/Uq and k/(0.04U¢).
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Figure 17: Profiles of U (to the left) and k (to the right) for Rey = 38000. Lines
represent calculations and dots measurements [36]. The width of a field (z/L = 2)
corresponds to U/Uy and k/(0.04UZ).

We would also like to mention that we have performed calculations, using

wall functions approximating the boundary layers, resulting in problems with ap-
proximately 10 000 nodes instead. With wall functions the FMG solver showed the
same behaviour as in the resolved case presented in this section but the predictions
is somewhat worse.

9

*

Conclusions

The P1/P1 and P2/P2 FEM methods are stable and do not give any spu-
rious oscillations, even though the mesh quality may be poor as a result of
adaptivity.

The second order unstructured P1/P1-FEM is on an unstructured triangu-
lation as accurate as a second order structured QUICK-FVM for a given set
of nodes.

The third order unstructured P2/P2-FEM is more accurate than the P1/P1
FEM.

The FMG-SIMPLE method on a unstructured mesh is as fast with P1/P1
FEM as a structured SIMPLE-FMG FVM. Using P2/P2 FEM, the work is
two times greater on a given set of nodes.

The P1/P1 FMG-FEM is approximately 100 times faster, five times more
accurate and uses ten times less RAM than FLUENT/UNS. The P2/P2
FMG-FEM method is even more superior.

The modified (decoupled) SIMPLE method gives the same performance for
multiple free outlets as for a single Dirichlet outlet.
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* The FMG converges with grid-independent speed (100-200 WU) for both
laminar and turbulent flows.
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