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Abstract

The present work presents a fast numerical procedure for large eddy simulations.
This is an implicit fractional step method with a geometric multigrid pressure
Poisson solver. It was found to be 20 times faster on a one million-node mesh than
an explicit fractional step method with an incomplete Cholesky preconditioned
conjugate gradient pressure Poisson solver. The flow in a ventilated enclosure is
studied using the dynamic subgrid model.
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1 Nomenclature

A area of a control volume face .
d  a non-diagonal nonzero coefficient in the discretized equation
k turbulent kinetic energy
p  pressure

Re Reynolds number
Si; strain rate tensor

Ar  cell aspect ratio

u;  velocity vector

N Number of nodes

C'  Subgrid diffusion coefficient

Greek letters

p diffusion coefficient

¢ residual/initial residual
v kinematic viscosity

14 61'.;.1/ € as i — oo

pd  density

Tij . stress tensor

A mesh size

2 Introduction

The Navier-Stokes equations are traditionally studied in their time-averaged form,
often referred to as the Reynolds averaged Navier-Stokes equations (RNS). The
resulting unknown stresses, %;u;, stemming from the time averaging must be mod-
eled with a RNS turbulence model. The most common turbulence model is the
two-equation k — € model [1]. In industry today, the k — ¢ model is routinely used
and the model is included in most commercial CFD packages. The advantage of
the k — & model from a numerical point of view is that it is robust and reliable.
From a physical point of view, the physics is treated in a simplistic manner, but
the model nevertheless works surprisingly well in many types of flows.

However, there are physical phenomena that eddy viscosity models such as
the k — € model cannot capture, such as streamline curvature and the effect of irro-
tational strains, although these phenomena can be accounted for in full Reynolds
Stress Models. However, they probably all fail for flow cases with a few distinct
low frequencies. It is likely that these types of flows can be successfully predicted
by large eddy simulations (LES), even on quite coarse meshes (~ 10° nodes).

Since LES is consistent with the Naver-Stokes equations in the limit of zero
mesh size, it is always possible to find a critical mesh size at which the LES methods
performs better than all RNS methods. However, it seems as though this mesh size



is often quite small, resulting in meshes with 10° nodes or more to obtain better
results with LES than with RNS turbulence models [2].

The small three-dimensional scales are convected far from their origin, and
thus we need a sufficiently fine mesh in the whole domain in contrast to RNS
models. In boundary layers, there exist scales that seem more important to resolve
than others, however, and thus it is preferable to compress the mesh normal to
walls, resulting in cell aspect ratios of 10 or higher [2].

Having concluded that a fine 3D mesh is required, it is found that we also
need a fine time advancement. Even with a highly efficient numerical algorithm,
LES is considerably more expensive than a steady-state turbulence models such
as k — ¢, which forces us to use the most accurate and fastest algorithm possible.
We therefore present a fully implicit second order discretization with a multigrid
PPE solver that is 10-100 times faster than the explicit fractional step method in
(2, 3].

3 Basic Equations

With a spatial, inhomogeneous filter (denoted by a bar) applied to the incompress-
ible Navier-Stokes equations, we obtain the momentum and continuity equations
for the large-scale motion. If the filter size is larger than the Kolmogorov scales, we
need to model the non-resolved scales. We here use the dynamic sub-grid model
proposed by Germano et al. [4, 5], where the constant relating the second moments
to the strain tensor is not arbitrarily chosen but computed. It reads:
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where the sub grid stresses are given by
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Figure 1: Grid cell (solid lines) and test cell (dashed lines).
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Following Germano et al. the ratio between the size of the test filter and the

grid filter is set to two, i.e. E/A = 2 (see Fig. 1). The filtering procedure at the
test level is carried out by integrating over the test cell assuming linear variation
of the variables [6]. This is in fact the same stencil as the full weighting stencil
used in the projection of a solution on a doubly as coarse grid in finite difference
multigrid. The estimate of C is then averaged locally and span-wise (for more
details see [2]).

We used a consistent pressure Poisson equation (PPE) rather than the conti-
nuity equation. The PPE is achieved by taking the divergence of the Navier-Stokes
equations. This is referred to as a consistent PPE [7] and has the nice property
that imposed divergence on the velocity field should decay in time. This may be
important since we do not want to converge the PPE more than to the level of
the truncation error. That would impose a divergence error on each time step,
and thus it is important that no accumulation of divergence is possible. It was
confirmed in our simulations that the divergence errors do not increase with time.

The consistent pressure Poisson equation reads:
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We have used the boundary condition dp/dn = 0, approximating the physical
correct one sufficiently well in most applications [7].

4 Discretization

The space discretization of Eq. 1 and Eq. 3 is a central difference finite volume
method on a collocated grid, and the time discretization is the Crank-Nicholson
scheme [8, 9] . In our previous explicit fractional step method, we used the Adam-
Bashford time discretization [2].

In both the old formulation and the present one, the PPE is discretized via
a fractional step method, reading:
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As we use a zero Neumann boundary condition, we must satisfy the compat-
ibility condition of the PPE. In the fractional step decomposition, it is satisfied
if 4} (interpolated to the cell faces) satisfies global continuity, which we strongly
enforce.

This method will be able to take significantly longer time-steps (~ 100 times)
as compared with a fully explicit method (fully compressible formulation) where
the time-step must be based on the speed of the acoustics. However, the success
of a fractional step method will greatly depend on the effectiveness of the PPE
matrix solver. This will be investigated in the next section.

When using an explicit velocity formulation, however, the CFL number based
on convection and diffusion should be below 1. It turned out that it was necessary
in practice to have CFL less then 0.3 everywhere to obtain numerical stability with
the dynamic subgrid model [2, 3].

This may be a severe restriction if there are different scales in different parts of
the domain or if the mesh is stretched. In terms of accuracy, however, it is possible
to take larger time steps than CFL = 1, and we have experienced that the use
of an implicit formulation allows us to use CFL = 2 without any degeneration of
accuracy, which is the same as the experience reported in [10]. They claim that
it is possible to use CFL = 2 — 3 without losing the accuracy for a second order
time and space discretization.

The properties of the discretized problem should not be affected significantly
if we use CFL = 2 instead of CFL = 0.3. Therefore the matrices resulting from
discretizing the velocity-equations should converge within a few sweeps with a
relaxation method, and the feed-back from the PPE to the velocity equations
should be small.



These assumptions were verified on a 500 000 node mesh where, on each time
step with (CFL = 2) the velocity equations converged to double machine preci-
sion within seven symmetric point Gauss-Seidel (spGS) sweeps. When an efficient
matrix solver was used for the PPE, solving the PPE exactly in each iteration, it
turned out that the whole system converged a factor of five for each global iter-
ation. That confirms our assumption of weak feedback between the pressure and
the velocities. Thus there is no use in reducing the error by more than a factor of
five to ten in each sweep for each equation within each global iteration.

That is easily achieved by one to two spGS sweeps for the velocities but it is
much more complicated to reduce the pressure equation by a factor of five. It is
sufficient to converge the solution to the level of truncation errors, so converging
the solution two decades will probably be sufficient in our cases. This means that
3-4 global iterations would be enough.

It was found that performing 3 x 4 (three velocity components) pGS sweeps
takes approximately the same time as calculating the sub-grid viscosity, so it is of
paramount interest to have as fast a pressure solver as possible.

5 Solution procedure of the pressure Poisson equa-
tion

LES calculations are very time consuming and it is therefore crucial to use the
most efficient PPE solver possible. We thus compared, a geometrical multigrid
method (GMG) with a modified incomplete Cholesky preconditioned conjugate
gradient method (MIC-CG) and with an algebraic multigrid method (AMG) for
some typical LES applications, i.e. for structured grids with varying cell aspect
ratios.

The MIC-CG solver is a part of the SLAP package (Sparse Linear Algebra
Package) available on netlib and was implemented by Renard and Gresser [11].
They found that the choice of preconditioner was important and that the incom-
plete Cholesky factorization was most efficient. The incomplete Cholesky factor-
ization is fairly expensive in terms of CPU but, fortunately, the coefficients in
the matrix stemming from the discretized Poisson equation (Eq. 7) are constants,
which means that the preconditioner need to be applied only at the first time step.

The AMG solver is available from the database mgnet.casper.yale.edu.
This is a black-box routine to solve a sparse system of algebraic equations and was
applied directly to the PPE.

The GMG method for the Poisson equation is well developed and documented
[12] [13]. The multigrid method is based on the fact that only N scales are repre-
sentable on a N-node grid and that the most simple iterative methods (smoothers)
are locally averaging, which quickly smooth an initial approximation. With the use
of a sequence of grids with different grid sizes, all error components will be viewed
as oscillatory on one of the grids and be reduced effectively by the smoother.

We have constructed two model cases in order to compare these solvers. Case



1 is a uniform 3D mesh of a unit cube with a randomly generated source term.
Case 2 is a 10 x 4 x 2.4m domain with a (4 * #¢) x (2 x i2) x (i¢) stretched mesh
with aspect ratios of over 10 at all walls. This is a case in which where the GMG
shows its worst behaviour, and it is also a typical LES application in ventilation
[2, 3]. We used zero Neumann boundary conditions in both cases so the randomly
generated source term is modified to satisfy the compatibility condition of the
Neumann problem.

5.1 Construction of the 3D multigrid method

In LES we have a pressure field from the previous time step serving as an initial
guess and thus we use only the MG and not the FMG method. Our coarse grid is
obtained by merging eight fine grid cells into one coarse grid cell. Note that the
nodes of the coarse grid are not a subset of the fine grid’s nodes since we place the
nodes in the geometric centre of the cells. We choose linear projections for both
restriction and prolongation. In LES we can expect smooth meshes, and thus we
use fixed weights in the projections as non-fixed weights will simply imply extra
work.

The smoother must be designed carefully, since we have Neumann boundary
conditions and we may have quite high cell aspect ratios, Ar ~ 10 — 100. The
proper way to treat the Neumann boundary condition for finite differences is to
reduce the stencil at the boundary using the boundary condition [12]. In a finite
volume context, this corresponds to specifying the diffusive flux at the boundary.
When doing so, we achieved for Case 2, with iz = 16,log(e) = —10, the asymp-
totic convergence factor p = 0.15. For the same case with homogeneous Dirichlet
conditions instead of the Neumann conditions, we achieved an only slightly higher
convergence rate (p = 0.06). When the Neumann boundary condition was imposed
explicitly after each smoothing sweep, we noticed a significant slowdown (p = 0.7),
probably due to bad smoothing near the boundary.

The second problem addressed earlier was how to treat aspect ratios. The
aspect ratio enters the Poisson equation as anisotropic diffusion with p31/pe0 =
(Ar)? and thus an aspect ratio of five will act as an anisotropy of 25. This results
in bad smoothing in the direction of weak couplings [13]. A remedy for that is
to coarsen the mesh only in the geometrically smooth directions of the residual.
These directions vary in the domain, however, since there are high aspect ratios at
each wall, making this concept difficult to realize within a geometrical multigrid.
Instead, strongly connected points can simultaneously be relaxed, which provides
good smoothing. This is made by using alternating plane relaxation, where each
(v,z)-plane is first solved exactly, followed by each (x,z)-plane and each (x,y)-plane.

To solve such a 2D plane efficiently, we constructed a 2D multigrid, see Fig.
2. To be able to construct such a 2D multigrid, we must first note that what we
actually wish to solve is a 3D problem, where the extent of the domain in the
normal direction is one cell. In the normal direction, we have non-homogeneous
Neumann boundary conditions. Note that the physical thickness of this 3D slice
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Figure 2: 3D-alternating plane GS multigrid

is constant throughout the 2D cycle.

A coefficient C in a finite volume discretization of the diffusion equation reads
C ~ pA/d, where A is the face area, p the diffusivity and d the distance between
the two adjacent cell centres. We have no coarse grid operators (coefficients) for
this quasi 2D-problem so they are constructed algebraically. Define first a coarse
cell as the union of four fine cells. Second, note that the coefficients tangential to
the plane are invariant with respect to coarsening on a non-stretched mesh, as both
d and A increase by a factor of two when coarsening the mesh. To account for the
stretching we average the two corresponding fine grid coefficients when defining the
coarse grid coefficient. However, the coefficients normal to the plane correspond
to a flux boundary condition whereby d remains the same on the fine and the
coarse grid while A increases by a factor of four. Thus the coarse grid coefficient is
achieved by summing the four corresponding fine grid coefficients together. Note
that this corresponds to a pressure correction diffusion flux conservation in the
normal direction.

Note that the 2D multigrid is performed for each plane on each level in the
3D multigrid but the number of levels in the 2D multigrid varies depending on the
level at which we are in the 3D multigrid, see Fig. 2.

The smoother in the 2D multigrid is alternating line Gauss-Seidel, which has
good smoothing properties for a stretched 2D grid and is performed by first a
z-line Gauss-Seidel sweep followed by a y-line Gauss-Seidel sweep.

In this 2D multigrid we use linear restriction and prolongation analogously as
in the 3D multigrid. We attempted to use injection for the prolongation operator
(in both the 2D and the 3D multigrids) which in our case should correspond to the



pre,post V-cycle F-cycle \ W-cycle

relaxation || CPU-time | p CPU-time ] p | CPU-time | p
L 1T 4.1 0.22 4.6 0.22 5.2 0.22
(1,0) 4.1 0.25 4.3 0.23 4.8 0.23
(1,1) 5.4 0.12 5.1 0.08 5.3 0.08°
(2,1) 6.3 0.07 6.1 0.04 6.3 0.04

Table 1: Comparison of different cycles for Case 1 log(€) = —10 on the 32* mesh.

transpose of the restriction operator. However, for Case 2, the convergence rate was
reduced from p = 0.15 to p = 0.51. Similar behaviour was observed when the same
projection operators were applied to the Navier-Stokes equations [14]. Another
choice would be to select the restriction operator as the transpose of the linear
prolongation operator, but this choice also demonstrated a poorer performance
(p = 0.35). We are unable to offer an explanation for this, but instead accept the
fact and use the linear transfer operators.

We found that the number of cycles required in the 3D multigrid was almost
independent of the type and the number of 2D cycles used. We therefore chose the
cheapest alternative, which is V' (1, 0), i.e. a V-cycle with one pre-smoothing sweep
and zero post-smoothing sweeps.

The cycles tested (in the 3D GMG) were W-cycle, F-cycle and V-cycle. The
most efficient cycle we found was V/(1, 1)*, which is V (1, 1) without post-smoothing
at the finest level, see Tables 1-2. The V/(1,1)* and V(1,0) have almost the same
asymptotic behaviour but the first has a superior initial behaviour the first cycles.
This is very important because, in practical calculations, we reduce the residual
by only about two magnitudes.

It is possible on an isotropic mesh to use almost any type of smoother. In
Case 1, with a V(1,1)* cycle, a symmetric point GS smoother had p = 0.22, an
alternating line GS smoother had p = 0.10 and an alternating plane GS smoother
p = 0.04. To do one smoothing sweep with alternating line GS is roughly three
times as expensive as one symmetric GS sweep, however, and alternating plane GS
is almost seven times more expensive than a symmetric pointGS, so it is obviously
most efficient to use the point GS smoother for this case.

In practice, we usually have quite high aspect ratios in all directions in dif-
ferent parts of the domain which force us to use the more expensive alternating

plane GS.
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pre,post V-cycle F-cycle W-cycle
relaxation || CPU-time | p CPU-time p CPU-time P

(1,1)* 202 [015] 235 [ 0.16 245 | 0.15
(1,0) 202 [017( 222 [o0a8 | 233 | 017
(1,1) 208 | 0.0 | 25.1 0.05 28.0 | 0.05
(2,1) 40.1 o008 331 {0.035 35 0.035

Table 2: Comparison of different cycles for Case 2 log(¢) = —10 on the 7 = 16
mesh.

5.2 Comparison of the different solution methods.

In general, full-multigrid FMG (multigrid + nested iteration) proves to be asymp-
totic optimal( work = O(IV)), while the multigrid method is slightly non-optimal
(O(NlogN)). The algebraic multigrid should have the same properties as the ge-
ometric multigrid, while the MIC-CG should have a O(N'-17) dependency for the
Dirichlet problem.

For the Neumann problem, however, it was found that the MIC-CG had
O(N1-33) dependency. The AMG solver also proved to have a slight N behaviour,
while the geometric multigrid had grid independent convergence. Table 4 shows
that the GMG is four times faster than the MIC-CG on the 128 x 64 x 32 mesh
of Case 2. If the asymptotic behaviour is taken into consideration, the GMG is
eight times faster than the MIC-CG method on a 256 x 128 x 64 mesh. This is
significant, as the last mesh is relevant for LES.

This comparison was based on the asymptotic behaviour, although in practice
we are interested only in the convergence rate the first two decades. Table 5 shows
that the MIC-CG has a poorer initial behaviour than asymptotic behaviour, while
the GMG has the same initial convergence rate as the asymptotic convergence
rate. Therefore, in Case 2 on the 128 x 64 x 32 mesh, GMG is eight times faster
than MIC-CG and, when extrapolating Table 5 on a 256 x 128 x 64 mesh, the
GMG is 16 times faster than the MIC-CG, reducing the first two decades of error.

The GMG is even more superior on the unit cube with a uniform mesh size as
compared with the MIC-CG because it is possible here to use a cheaper smoother,
see Table 3. It should also be mentioned that the GMG needs only ten words per
node work space while the MIC-CG uses 20. The AMG method, at the other hand,
uses approximately 100 words per node, which is twice as much as the whole LES
code uses, thus making AMG of limited interest. Furthermore, the AMG was two
times slower than the GMG@G, see Tables 4-5.

11



MG AMG MIC-CG
CPU-time | cycles || CPU-time | cycles || CPU-time | iterations
83 0.088 14 0.070 10 0.045 22
163 0.522 14 1.12 11 0.979 43
328 4.06 14 15.9 14 20.6 83
643 32.0 14 185 20 353 162
Table 3: Comparison of work for Case 1 log(€) = —10 using geometric multigrid, al-

gebraic multigrid and the incomplete Cholesky preconditioned conjugate gradient
method.

ii MG AMG MIC-CG
CPU-time | cycles || CPU-time | cycles || CPU-time | iterations
0.44 12 0.89 15 0.070 36
2:11 13 3.78 16 1.60 78
16 22.2 14 29.0 22 38.6 164
32 180 14 360 26 733 334
Table 4: Comparison of work for Case 2 log(¢) = —10 using geometric multigrid, al-

gebraic multigrid and the incomplete Cholesky preconditioned conjugate gradient
method.

ii MG AMG MIC-CG
CPU-time | cycles || CPU-time | cycles || CPU-time | iterations
0.07 3 0.18 3 0.028 15
0.55 3 0.71 3 0.759 37
16 4.35 3 6.3 4 17.4 74
32 38.8 3 77 5 307 140
Table 5: Comparison of work for Case 2 log(e) = —2 using geometric multigrid, al-

gebraic multigrid and the incomplete Cholesky preconditioned conjugate gradient
method.

12
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Figure 4: Grid in the z — y plane.

6 Results: ventilated room

This section presents LES predictions of the flow in a three-dimensional room,
Fig. 3. Unless otherwise stated, the results are obtained with a CFL number of
approximately two, and we use values at all time steps when averaging. The predic-
tions are compared with Laser-Doppler measurements of Restivo [15] (also avail-
able in [16]). Inlet boundary conditions and the geometry are given by:

Uinh
L/H=3, W/H=1, h/H =0.056, t/H = 0.16, Re = ‘;
where H = 3 m, U;,, = 0.455 m/s, and air of 20°C.

Since we resolve the large-scale turbulence, we should impose turbulent flow
conditions at the inlet. As an approximation, random fluctuations are superim-
posed on the time-averaged experimental flow conditions at the inlet according

13



AImin/H

Aymin,g JH

Aymin,c/H

Azmm /H

AT e/ H

Aymaz/H

Azmar[H

0.0042

0.0076

0.00067

0.0034

0.061

0.042

0.025

Table 6: Geometrical details of the mesh. The min distances are from the near-wall
node to the boundary. Indices ¢ and f denote ceiling and floor, respectively.

to:

tUin = Uin + random - ug,,, Bin = random - u,,,, Wi, = random - Uy (6)

Note that the random function is called at different times @;,, 9;,, and W;n, which
means that the resolved velocities, ii;,, 9;n and w;,, at the inlet fluctuations are
not correlated. Thus the shear stresses 4w, 4w and 7w, are approximately zero
at the inlet. The exit velocity at the outlet is computed from global continuity,
and it is taken as constant over the outlet. Zero gradient is set for the remaining
variables.

A steady computation is first carried out using the k — ¢ model, and the
results are used as initial start fields in the LES calculations. The number of time
steps used in the calculations was 25000 when using CFL = 2, which corresponds
to approximately 1300 seconds in real time. The stream-wise average of the peak
velocity in the wall jet along the ceiling is close to Uy, = 0.5U;, (= 0.228 m/s).
Thus the time it takes for a fluid particle to move from the inlet to the opposite
wall can be estimated as L/U,, =~ 40 seconds, which means that 1300/40 = 33
characteristic time units (L/U,,) are covered in our simulations.

We used a 98 x 66 x 66 mesh (96 x 64 x 64 interior cells), see Fig. 4. This means
that the multigrid solver used for the pressure employs six multigrid levels. A
geometrical stretching is used in the y-direction, and a hyperbolic tangent function
is used in the z and the z-directions. These are summarized in Table 6.

In [2, 3], we found it necessary to place limits on C in Eq. 3 and to perform
local and span-wise averaging in order to achieve numerical stability. Furthermore,
the total viscosity (laminar plus turbulent) is not allowed to become negative, but
we do not use a maximum limit on C. The same procedure was employed in this
study and is similar to that chosen in [17]. The cross-diffusion terms are neglected
in these simulations because they were causing problems with the dynamic subgrid
model. These problems were present for all solution algorithms. However, they were
not present when using a Smagorinsky model or a dynamic one-equation model

[18].

6.1 Comparisons of the numerical methods for the venti-

lated enclosure

This section presents the speedup of our implicit fractional step method with the
GMG PPE solver, compared to our explicit fractional step method with the MIC-

14



CPU/time-step

CFL | U+V4+W |y | P | total
implicit-GMG 2 44 14 | 36 94
explicit-MICCG || 0.3 6 14 | 180 | 200
explicit-GMG 0.3 6 14 | 25 45

Table 7: Time measuring of the parts in the implicit-GMG and in the explicit-
MICCG algorithm. (For the implicit method we used three global iterations at
each time step.)

CG PPE solver for the ventilated enclosure previously described. In the previous
sections, we have seen the potential of this new method and we expect the same
performance for this LES application. It is seen in Table 7 that the GMG PPE
solver is about eight times faster than the MIC-CG PPE solver when CFL = 0.3.
There is also also shown that the implicit GMG formulation requires only twice
the CPU time per time step as does the explicit, even though the time step is 6.7
times longer in the implicit case.

The implicit method is also significantly more robust and converges nicely
for CFL > 5, while the explicit method works only for CFL < 0.3.

Fig. 6- 7 shows that the difference is much smaller than the errors in the
solution when using CFL = 2 instead of CFL = 1, and thus we expect that
even longer time-steps could be used, without sacrifice accuracy. We should point
out that here CFL is the highest value in the domain. Note that in Fig. 6- 7
have we used a somewhat modified subgrid model (SWIDSM). That because,
recently it was found that the dynamic subgrid model were somewhat wrongly
implemented in the code where we applied this implicit multigrid solver. However,
as we only had time to recalculate the CFL = 2 case and as the results not were
dramatically changed (see Fig. 5-6) we here show the influence of the CFL-number
for this modified problem instead. We thus expect these results to hold also for the
correctly implemented dynamic subgrid model. All other result shown are made
with the correctly implemented dynamic subgrid model.

The speedup factor between GMG and MIC-CG is likely to increase even
more when the number of nodes is increased, because the CPU time for the multi-
grid method increases linearly with the number of nodes, while the MICCG was
found to use CPU ~ N1-33,

However, with  this comparison on the 400 000 node mesh, we find that the
implicit GMG PPE method is 14.4 times faster than the explicit MIC-CG PPE
method. However, on a one million-node mesh, we would achieve a speedup of 20
times. This is VERY important, as we then avoid using CPU months on such
calculations, and use only CPU days on a work station.

15



[

1 % 5
08 0.8
0.6 0.6
2/H = 2.0
0.4 0.4
0.2 0.2t
8402 o o0z 04 06 08 84 oz 0 o0z 04 06 08
(ﬁ)t Urms (ﬁ)t Urms
Us'n ’ Ui Uin, Ul'n

Figure 5: Time-averaged velocity and resolved rms velocity profiles. Symmetry
plane z/H = 0.5. Solid lines: {@);/Uin; dashed lines: trms/Uin; +: experimental
mean velocity; o: experimental fluctuations.

6.2 Results of the calculations

In Fig. 5, the time-averaged stream-wise velocities and resolved fluctuations are
compared with experiments, showing fairly good agreement. The width of the wall
jet seems to be under-predicted, and the magnitude of the reverse flow is too small.
In general, the resolved rms fluctuations

Urms = \/((@(£)) %), () = A(t) — (@(t))e

are under-predicted.

When making comparisons with experiments, we must time-average over a
certain time, T', in the same way experimentalists measure over a certain time when
they record a turbulent signal. The question is the length of time (T') required. In
Fig. 8, we investigate the influence of T' on the time-averaged @ profile. In general,
the (i), does not seem to be very sensitive to the choice of T'.

The resolved @ velocities versus time at four chosen points are presented in
Fig. 9. It can be seen that the fluctuations in @ are strong. It can also be seen that
the frequency of @ is much higher in the wall jet near the ceiling (Figs. 9a,c) than
in the middle of the room and in the back-flow region close to the floor (Fig. 9b,d).

Fig. 10 presents the C coefficient in the dynamic model (see Eq. 3). Fig. 10a
shows the time history of C at one chosen point, in the wall jet close to the ceiling.
The average of C' in Fig. 10a is 0.048, which corresponds in the Smagorinsky model
to

Cs =+vC =0.21

16
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Figure 7: Time-averaged turbulent kinetic energy (E)t /Kin. Influence of CFL num-

ber (SWIDSM). Symmetry plane z/H = 0.5. Solid lines: CFL = 2; dashed lines:
CFL=1.
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1300 seconds (25000 time steps); dashed lines: T' = 800 seconds (the first 15000
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Fig. 10b shows the instantaneous C versus y. Fig. 11 shows the power density
spectrum for the resolved stream-wise fluctuation (u”)2. In fully turbulent flow, it
should behave as @ o« n{=5/3) (inertial region), which is included as a dashed line.

7 Conclusions

* The geometrical multigrid pressure Poisson solver is 10 times faster on a 10°-

node mesh than an incomplete Cholesky preconditioned conjugate gradient
pressure Poisson solver.

The implicit treatment of the Navier-Stokes equations allows CFL numbers
10 times larger than does the explicit without losing accuracy

The overall speedup of this implicit multigrid solver is about 20 on a 10%-node
mesh.

The flow in a ventilated room is predicted well with LES.
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