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ABSTRACT
The partially Reynolds-averaged Navier–Stokes (PANS) model can be
used to simulate turbulent flows either as RANS, large eddy simula-
tion (LES) or DNS. Its main parameter is fk whose physical meaning
is the ratio of the modelled to the total turbulent kinetic energy. In
RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1.
Three different ways of prescribing fk are evaluated for decaying grid
turbulence and fully developed channel flow: fk =0.4, fk = k3/2tot /ε and,
from its definition, fk = k/ktot where ktot is the sum of the modelled, k,
and resolved, kres, turbulent kinetic energy. It is found that the fk =
0.4 gives the best results. In Girimaji and Wallin, a method was pro-
posed to include the effect of the gradient of fk. This approach is used
at RANS– LES interface in the present study. Four different interface
models are evaluated in fully developed channel flow and embed-
ded LES of channel flow: in both cases, PANS is used as a zonal model
with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the
LES region. In fully developed channel flow, the RANS– LES interface
is parallel to the wall (horizontal) and in embedded LES, it is parallel
to the inlet (vertical). The importance of the location of the horizon-
tal interface in fully developed channel flow is also investigated. It is
found that the location – and the choice of the treatment at the inter-
face – may be critical at low Reynolds number or if the interface is
placed too close to thewall. The reason is that themodelled turbulent
shear stress at the interface is large and hence the relative strength of
the resolved turbulence is small. In RANS, the turbulent viscosity –
and consequently also the modelled Reynolds shear stress – is only
weakly dependent on Reynolds number. It is found in the present
work that it also applies in the URANS region.

1. Introduction

Large eddy simulation (LES) is very expensive in wall-bounded flow. To be able to extend
LES to high Reynolds number, many proposals have been made in the literature to
combine LES with unsteady Reynolds-Averaged Navier-Stokes (URANS) near the walls.
The first and the most common method is detached eddy simulation (DES).[4–6] Later,
other researchers have proposed hybrid LES–RANS [7,8] and scale-adapted simulations
(SAS) [9,10]; for a review, see [11]. DES and hybrid LES–RANS use the cell size as the
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subgrid-scale (SGS) length scale. SAS does not use the cell size (except as a limiter) but
uses the von Kármán length scale instead.

The main object of the methods mentioned above is that they reduce the turbulent vis-
cosity in the LES region. There are three options to achieve this.

(1) The turbulent viscosity, νt, is reduced by modifying its formulation.
(2) The dissipation term in the equation for the modelled, turbulent kinetic energy, k,

is increased by decreasing the turbulent length scale.
(3) The destruction term in the length scale equation (ε or ω) is decreased. This

increases the dissipation term in the k equation as well as decreases the turbulent
viscosity directly, since ε (or ω) appears in the denominator of the expression for νt.

DES [12] is based on the first option. X-LES [13] and the one-equation hybrid LES–
RANS [8,14] use option number two: νt is decreased and the dissipation term in the k
equation is increased. The third option is used in the partially averaged Navier– Stokes
(PANS) model [1] and the partially integrated transport model (PITM).[15,16] PANS is
used as a zonal LES–RANSmethod in the present work where RANS is used near the walls
and LES is employed further away from the walls.We will also use PANS in embedded LES.

Much work has been presented on embedded LES lately. Menter et al. [17] present
embedded LES of channel flow and the hump flow. They use the SST–RANS model
upstream of the embedded LES interface. Downstream of the interface they use the model
of Shur et al. [6] which consists of the Smagorinsky model in the LES region and a mixing-
length model in the RANS region. At the interface, the modelled turbulence is converted
into resolved turbulence using synthetic turbulence from a vortex method.[18]

Shur et al. [19] proposed a new recycling method in a interface zone between RANS and
LES. The RANS and LES zones overlap and identical grids are used in the overlap region.
Only the fluctuating components are recycled since the mean components are available in
the entire overlap zone. They evaluated the method for flat-plate boundary flow and flow
over a two-dimensional (2D) airfoil.

Poletto et al. [20] made embedded LES of the hump flow. They used delayed detached
eddy simulation (DDES) in the entire region (both upstream and downstream of the inter-
face). At the LES interface, they added synthetic fluctuations from the divergence-free syn-
thetic eddy method.[21]

Gritskevich et al. [22] used the improved delayed detached eddy simulation (IDDES)
to make embedded LES of the hump flow. They first computed the entire flow with 2D
RANS. Then, they used the RANS solution to prescribe the inlet mean velocity profile at
the embedded LES interface. Themodelled kwas taken from the RANS solution andω was
computed from k and the grid size. Synthetic fluctuations were generated with a synthetic
turbulence generator.[23]

Shur et al. [24] present embedded LES of the flow over a hump. They used overlapping
RANS and IDDES in the embedded interface region. At the interface, they added synthetic
turbulence. They show very good agreement with measurement data.

Xiao and Jenny [25] presented a novel method for treating the RANS–LES interface in
hybrid LES–RANS. They solved the RANS and LES equations in the entire domain. The
RANSmesh in the LES region does not need to be the same as the LESmesh and vice versa.
Drift forces were added in the overlapping regions.

Asmentioned above, the PANSmodel is in the present work used as a zonal hybrid LES–
RANSmodel. fk is set to one in the RANS regions, and it is set to 0.4 in the LES region. The
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276 L. DAVIDSON

interface between the RANS and LES regions is defined along a grid plane, an approach
also chosen in ZDES.[26] As an alternative to using a constant fk in the LES region, fk can
be computed using the cell size and the integral length scale, k3/2tot /ε,[2] where ktot is the sum
of the resolved and the modelled turbulent kinetic energy, i.e. ktot = kres + k. The reason
why fk is not computed in the present study is that it has been shown that a constant fk =
0.4 works well in the LES region [27–30]; it was even shown in [30] that using constant fk =
0.4 works better than computing fk, not to mention that it is numerically more stable. Sec-
tion 4 compares three alternatives (fk = 0.4, computing fk according to the equation above,
and computing fk from its definition k/ktot) for decaying homogeneous grid turbulence and
fully developed channel flow. It should be mentioned that Basara et al. [2] have shown that
computing fk works well when using the k–ε–ζ–fmodel.

In [3], a method was proposed to include the effect of the gradient of fk. The gradient
appears because the PANS filtering operation does not commute with the the spatial gra-
dient. At RANS–LES interfaces, the spatial gradient of fk is large. The approach of Girimaji
and Wallin [3] is further developed in the present study and it is used at RANS–LES inter-
faces.

The appearance of the gradient of fk at RANS–LES interfaces is similar to the method
for treating RANS–LES interfaces in Hamba.[31] He shows that when the filter size varies,
an additional term appears because the filtering and the spatial gradients do not commute.
The divergence of a flux, qi, for example, will include an additional term

∂qi
∂xi

= ∂ q̄i
∂xi

− ∂�

∂xi
∂ q̄i
∂�

. (1)

Chaouat and Schiestel [32] used the approach in [31] tomodify their PITM approach. They
derived the modified transport equations including commutation terms as in Equation (1).
The gradients of the filter width,�, was replaced with gradient of the cut-off wave number,
κ c, which appear in the PITM approach. Themethod proposed byHamba [31] was recently
further developed and evaluated by Davidson [33] at RANS–LES interfaces using the PDH
k–ω model.[34]

Themodified approach of including the effect of the gradient of fk is in the present study
evaluated in fully developed channel flow and embedded LES of channel flow; in both cases,
PANS is used as a zonal model. In fully developed channel flow, the RANS–LES interface
is parallel to the wall and in embedded LES it is parallel to the inlet.

When the RANS–LES interface is parallel to the wall, the term including the gradient of
fk across the interface can be both positive and negative (because v′ is both positive and
negative). This term is included only when it reduces the modelled turbulence. Hence,
the term can be seen as a forcing term which represents backscatter. It is used to stimu-
late the growth of the resolved turbulence in the LES region adjacent to the RANS region.
The present method reduces the grey area problem described in [35].

The paper is organised as follows. The next section describes the equations and the inter-
facemodels. The following section describes the numericalmethod. Then, there is a section
comparing three different ways of treating fk, followed by a section which presents and dis-
cusses the results. The final section presents the conclusions.
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2. The PANSmodel

The low-Reynolds number PANS (LRN PANS) turbulence model reads [27]

Dk
Dt

= ∂

∂x j

[(
ν + νt

σku

)
∂k
∂x j

]
+ Pk + Pktr − ε,

Dε

Dt
= ∂

∂x j

[(
ν + νt

σεu

)
∂ε

∂x j

]
+Cε1Pk

ε

k
−C∗

ε2
ε2

k
,

νt = Cμ fμ
k2

ε
, Pk = 2νt s̄i j s̄i j, s̄i j = 1

2

(
∂ūi
∂x j

+ ∂ū j

∂xi

)
,

C∗
ε2 = Cε1 + fk

fε
(Cε2 f2 −Cε1), σku ≡ σk

f 2k
fε

, σεu ≡ σε

f 2k
fε

,

σk = 1.4, σε = 1.4,Cε1 = 1.5,Cε2 = 1.9,Cμ = 0.09, fε = 1, (2)

whereD/Dt = ∂/∂t + ū j∂/∂x j denotes thematerial derivative. The damping functions are
defined as

f2 =
[
1 − exp

(
− y∗

3.1

)]2 {
1 − 0.3exp

[
−

( Rt

6.5

)2
]}

,

fμ =
[
1 − exp

(
− y∗

14

)]2 {
1 + 5

R3/4
t

exp
[

−
( Rt

200

)2
]}

,

Rt = k2

νε
, y∗ = Uεy

ν
, Uε = (εν)1/4. (3)

The term Pktr in Equation (2) is an additional term which is non-zero in the interface
region becauseDfk/Dt� 0. The function fε, the ratio of themodelled to the total dissipation,
is set to one since the turbulent Reynolds number is high. fk is set to 1 in the RANS region
and to 0.4 in the LES region (in Section 4 it is also computed in the LES region).

It was shown in [30] that the k and ε equations in the LES region are in local equilibrium,
i.e.

〈Pk〉 − 〈ε〉 = 0, (4)

〈
Cε1

ε

k
Pk

〉
−

〈
C∗

ε2
ε2

k

〉
= 0 (5)

(〈.〉 denotes averaging in all homogeneous directions, i.e. t, z and, in fully developed channel
flow, also x). It seems that Equations (4) and (5) cannot both be satisfied since Cε1 �= C∗

ε2;
indeed, the equations are not satisfied instantaneously for which the convective terms play
an important role. Equation (5) is satisfied, but

Cε1
〈ε〉
〈k〉 〈Pk〉 −C∗

ε2
〈ε2〉
〈k〉 �= 0. (6)
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278 L. DAVIDSON

Equations (4) and (5) are both satisfied because the correlation between ε, k−1 and Pk (left
side of Equation (5)) is stronger than that between ε2 and k−1 (right side). The correlation
between the quantities on the left side is larger than that on the right side becauseC∗

ε2 > Cε1.
For more details, see [30].

2.1. The interface condition

The commutation error in PANS was recently addressed in [3]. In PANS, the equation for
the modelled turbulent kinetic energy, k, is derived by multiplying the ktot equation (ktot =
kres + k) by fk. The convective term in the k equation with constant fk is then obtained as

fk
Dktot
Dt

= D( fkktot)
Dt

= Dk
Dt

, (7)

where

fk = k
ktot

. (8)

Now, if fk varies in space, we get instead

fk
Dktot
Dt

= D( fkktot)
Dt

− ktot
D fk
Dt

= Dk
Dt

− ktot
D fk
Dt

. (9)

Since fk in the present work is constant in time, D fk/Dt = ūi∂ fk/∂xi. The second term on
the right side of Equation (9) is the commutation term: it represents (excluding the minus
sign) energy transfer from resolved to modelled turbulence. It can be written (on the right
side of the k equation) as

ktot
D fk
Dt

= (k + kres)
D fk
Dt

= k
D fk
Dt

+ 〈ū′
iū′

i〉
2

D fk
Dt

. (10)

The commutation term in the kres equation is the same but with opposite sign, i.e.

− k
D fk
Dt

− 〈ū′
iū′

i〉
2

D fk
Dt

. (11)

The question is now which term should be added to the momentum equations to get the
commutation term in the kres equation. We start by the second term in Equation (11). This
term can be represented by the source term

S1i = −1
2
ū′
i
D fk
Dt

(12)

in the momentum equation. To show that this term corresponds to the commutation term
in Equation (11), consider the momentum equation for the fluctuating velocity, ū′

i. Multi-
plying S1i by ū′

i = ūi − 〈ūi〉 and time averaging gives the source term in the kres equation
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as

−
〈
(ūi − 〈ūi〉) 12 ū

′
i
D fk
Dt

〉
= −

〈
1
2
ū′
iū

′
i
D fk
Dt

〉
= −1

2
〈ū′

iū
′
i〉
D fk
Dt

. (13)

Equation (13) is equal to the time average of the second term in Equation (11) as it should.
A term corresponding to the first term in Equation (11) can be added as a source term

in the momentum equation as

S2i = − kū′
i

〈ū′
mū′

m〉
D fk
Dt

. (14)

Multiplying S2i by ū′
i and time averaging gives

− 〈kū′
iū′

i〉
〈ū′

mū′
m〉

D fk
Dt

� −〈k〉D fk
Dt

, (15)

where we assume that the correlation between k and ū′
i is weak. Equation (15) is equal to

the time average of the first term in Equation (11) as it should.
In [3], the second term on the right side of Equation (9) is represented by introducing

an additional turbulent viscosity, νtr, in a diffusion term in the momentum equation as

∂

∂x j

(
νtr s̄i j

)
, s̄i j = 1

2

(
∂ūi
∂x j

+ ∂ū j

∂xi

)
, (16)

where

νtr = Pktr
|s̄|2 . (17)

The term, Pktr , is computed as

Pktr = ktot
D fk
Dt

. (18)

Pktr is an additional production term in the k equation (see Equation (2)). In [3], Pktr is
rewritten using Equation (8) as

Pktr = k
fk
D fk
Dt

. (19)

2.2. Modelling the interface

The gradient of fk across a RANS–LES interface gives rise to an additional term in the
momentum equations and the k equation. In the present work, these terms are included
only when the flow goes from a RANS region to an LES region. The effect of these terms
will reduce k and act as a forcing term in the momentum equations. Four different models
are investigated.
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280 L. DAVIDSON

... InterfaceModel 
This is based on the approach suggested in [3]. The additional turbulent viscosity, νtr, gives
an additional production term,Pktr , in the k equation (see Equation (19)). Sincewe are inter-
ested in stimulating resolved turbulence in the LES region adjacent to the RANS region,
only negative values of νtr are included. A negative νtr means physically transfer of kinetic
energy frommodelled to resolved. It is found that themagnitude of the positive values of νtr

is actually larger than the magnitude of the negative ones, which means that 〈νtr〉 > 0. The
negative values correspond to Dfk/Dt < 0 (see Equations (17)–(19)), i.e. when a fluid par-
ticle in a RANS region passes the interface into an adjacent LES region. However, νtr takes
such large (negative) values that νt + νtr < 0. To stabilise the simulations, it was found nec-
essary to introduce a limit νt + νtr > 0 in the diffusion term in the momentum equation.
No such limit is used in the k equation, and hence Pk + Pktr is allowed to go negative.

... InterfaceModel 
This model is identical to Model 1 except that Equation (18) is used instead of Equa-
tion (19). ktot in Equation (18) is defined as

ktot = k + 1
2
〈ū′

iū
′
i〉r.a (20)

where subscript r.a denotes running average. Is is averaged in all homogeneous directions
including time (note that time is not a homogeneous direction in decaying grid turbulence,
see Section 4.1). Since ktot is mostly larger than k/fk,[30] this approach will give a larger
magnitude of the (negative) production thanModel 1. It will be seen that this modification
is of utmost importance.

... InterfaceModel 
The right side of Equation (10) is added to the k equation, but only when the flow goes from
a RANS region to an LES region (i.e. Dfk/Dt < 0), i.e.

Pktr = ktot min
(
D fk
Dt

, 0
)

(21)

where ktot is computed as in Equation (20). The production term Pktr < 0 whichmeans that
it reduces k as it should. The sum of the S1i and S2i terms (see Equations (12) and (14)) in
the momentum equations read

Si = −min
(
D fk
Dt

, 0
)(

0.5 + k
〈ū′

mū′
m〉r.a.

)
ū′
i. (22)

SinceDfk/Dt< 0, the source Si has the same sign as ū′
i; this means that the source enhances

the resolved turbulence as it should.
It may be noted thatDfk/Dt in Equation (21) assumes the correct (i.e. negative) sign irre-

spectively of the orientation of the RANS–LES interface. Consider, for example, the RANS–
LES interfaces at the lower and upper walls in fully developed channel flow (Figure 1). For
these interfaces, the gradient of fk in Equation (21) reads v̄∂ fk/∂y. When a fluid particle at
the lower interface goes from the RANS region to the LES region, v̄ > 0 and �fk/�y < 0,
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x

y

wall

yint

LES, fk = 0.4

URANS, fk = 1

Figure . Fully developed channel flow: the URANS and LES regions.

RANS
fk = 1

LES
fk = 0.40.

4
<

f k
<

1

ū , v̄ , w̄

L

xI xtr

2δ

x

y

Figure . Embedded LES. The vertical thick line shows the interface at xI = .. fk varies linearly in the
grey area (width xtr) from  to .. δ = .

so that v̄∂ fk/∂y < 0 as intended. Also, for the upper interface, we get v̄∂ fk/∂y < 0 since
v̄ < 0 and �fk/�y > 0. For non-Cartesian grids, the material derivative, Dfk/Dt < 0, has to
be formulated in local grid coordinates.

It is, however, found that the forcing often becomes too strong when Si is added to the
momentum equation. The effect of adding or neglecting Si in the momentum equations is
evaluated in Section 5.

The differences between Models 3 and 2 are that:
� When Si = 0, no explicit modification is made in the momentum equation in Model
3 (recall that −ν < νtr < 0 is used in the momentum equation in Models 1 and 2).

� Model 2 (andModel 1) may need regularisation in case |s̄| → 0 in the denominator of
νttr in Equation (18). No such regularisation, however, is used in the present work. It
can be argued that the commutation term inModel 3 is introduced in a more physical
way compared to Models 1 and 2 where artificially negative viscosities are used.

... InterfaceModel 
This interface model was developed in [30] for horizontal interfaces. The modelled tur-
bulent kinetic energy in the LES region adjacent to the interface is reduced by setting the
usual convection and diffusion fluxes of k at the interface to zero. New fluxes are intro-
duced in which the interface condition is set to kint = fkkRANS (fk = 0.4), where kRANS is the
k value in the cell located in the URANS region adjacent to the interface. Nomodification is
made for the convection and diffusion of ε across the interface. The implementation is pre-
sented in some detail later.Wewrite the discretised equation in the y direction (see Figures 1
and 2) as follows [36]:

aPkP = aNkN + aSkS + SU , aP = aS + aN − SP
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282 L. DAVIDSON

where aS and aN include to the convection and diffusion through the south and north faces,
respectively, and SU and SPkP include the production and the dissipation term, respectively.
For a cell in the LES region adjacent to the interface (cell P), aS is set to zero, setting the
usual convection and diffusion fluxes to zero. New fluxes, including fk, are incorporated in
additional source terms as

SU = (Cs + Ds) fkkS, SP = −(Cs + Ds)

Cs = max (v̄sAs, 0) , Ds = μtotAs

�y
, (23)

where Cs and Ds denote convection (first-order upwind) and diffusion, respectively,
through the south face, and As is the south area of the cell. As can be seen, the kS is mul-
tiplied by fk and hence the new convective flux is a factor fk smaller than the original one.
Also, the diffusion flux is smaller; it is Ds(fkkS − kP) compared with the original flux Ds(kS
− kP).

The treatment of the k equation for a vertical interface (the embedded interface in the
channel flow) is exactly the same as for a horizontal interface. The difference is that an
interface condition is needed also for the ε equation which reads [28]

εI = C3/4
μ

k3/2I

�sgs
, � = V 1/3, CS = 0.1, �sgs = CS�, (24)

where subscript I denotes inlet or interface; V is the volume of the cell. The sensitivity to
the value of the Smagorinsky coefficient, CS, was investigated in [30] and was found to be
weak.

3. Mean flow equations and numerical method

The momentum equations with an added turbulent viscosity reads

∂ūi
∂t

+ ∂ū jūi
∂x j

= δ1i − 1
ρ

∂ p̄
∂xi

+ ∂

∂x j

(
(ν + νt )

∂ūi
∂x j

)
+ Si, (25)

where the first term on the right side is the driving pressure gradient in the streamwise
direction, which is used only in the fully developed channel flow simulations. The last term
on the right side is the additional source term in Model 3 (see Equation (22)). The effect of
this term is shown in Figures 15 and 25.

An incompressible, finite volume code is used.[7] The numerical procedure is based
on an implicit, fractional step technique with a multigrid pressure Poisson solver and a
non-staggered grid arrangement. For the momentum equations, second-order central dif-
ferencing is used for the fully developed channel flow. For the embedded channel flow,
we use the second-order upwind [37] scheme in the RANS region upstream of the inter-
face and second-order central differencing in the LES region downstream of the interface.
The Crank–Nicolson scheme is used in the time domain and the first-order hybrid cen-
tral/upwind scheme is used in space for solving the k and ε equations.
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4. Should fk be constant or should it be computed?

The physical meaning of fk is the ratio of modelled to total turbulent kinetic energy (see
Equation (8)). Hence it is expected that it should be smaller when the grid is refined. One
way to compute fk is as proposed by [2]

fk = C−1/2
μ

(
�

Lt

)2/3

, Lt = k3/2tot

ε
, � = (�V )1/3. (26)

Kenjeres and Hanjalic [38] have made a slightly different proposal which reads

fk = �

Lt
. (27)

This expression was found to give far too small fk and hence the formula in Equation (26)
was chosen for evaluation.

Since the running average of ktot is computed inModels 2 and 3, the option of computing
fk from its definition is also evaluated, i.e.

fk = k
ktot

(28)

where ktot is computed using the running average (see Equation (20)); the instantaneous
value of k is used.

In this section, we evaluate the difference between computing fk from Equation (26) or
Equation (28), or using constant fk = 0.4 in the LES regions. For comparison, the results
using the dynamic Smagorinsky model [39,40] are also included in Section 4.1.

4.1. Decaying homogeneous isotropic turbulence

The first test case is decaying homogeneous isotropic turbulence (DHIT). The compu-
tational domain is a cubic box with side length 2π . Three different meshes have been
employed: 323, 643 and 1283 cells. Periodic boundary conditions are prescribed at all
boundaries.

The predictions are compared with experiments.[41] We have made the experimen-
tal data non-dimensional using the characteristic scales, uref = (1.5urms, 0)1/2 and Lref =
11Mg/(2π), where urms, 0 denotes the initial measured RMS fluctuation andMg is the mesh
size of the turbulence generating grid in the experiments. The turbulence spectra in the
experiments were measured at three downstream locations corresponding to the times
tU0/Mg = 42, 98 and 171. The corresponding non-dimensional times in the simulations
are 0, 0.87 and 2, respectively.

The initial velocity is obtained by inverse Fourier transformation using the measured
spectrum at tU0/Mg = 42. The initial velocity field is generated by a widely used computer
program from the group of Prof. Strelets in St. Petersburg. Initial boundary conditions for
the turbulent quantities are set as in [27], i.e. k= fkkres (fk = 0.4) and ε = C3/4

μ k3/2/�sgs with
the SGS length scale, �sgs, taken from the Smagorinsky model as �sgs = Cs� (Cs = 0.1).
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Figure . Control volume, P, in the LES region adjacent to the interface.
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(b) Computed fk, Eq. 26.
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(c) Computed fk = k/ktot, Eq. 28; :
DNS, 1283.
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(d) The Dynamic Smagorinsky model.

Figure . DHIT, decaying turbulence. : ; : ; : .

Figure 3 presents the decay of resolved turbulence versus time. The predictions are com-
pared with two experimental data at t = 0.87 and 2. The decay is initially stronger when fk
is computed from Equation (26) compared to fk = 0.4, but at the last measurement station
(t = 2), the two approaches give similar resolved turbulence. Computing fk from Equa-
tion (28) gives a more consistent behaviour compared to Equation (26): the decay rate
increases smoothly when the grid is refined. The decay with DNS (no model) with the
1283 mesh is also included in Figure 4(c); DNS gives, as expected, a slightly slower decay
than when computing fk from Equation (28). The predicted decay by the dynamic model
is in slightly better agreement with experiments than all PANS models. Figure 5 explains
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(b) Computed fk = k/ktot, Eq. 28.

Figure . DHIT, computed fk. : ; : ; : .
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(c) Computed fk = k/ktot, Eq. 28.
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(d) The Dynamic Smagorinsky model.

Figure . DHIT, turbulent viscosity. : ; : ; : .

the strong decay with the 323 mesh when fk is computed using Equation (26): the reason is
that the computed fk is close to one. As expected, the finermesh, the smaller fk. For the 1283
mesh, Equation (26) gives fk � 0.4. Computing fk from Equation (28) gives much smaller
fk than Equation (26).

Figure 6 presents the turbulent viscosities. Considering the fk in Figure 5, it is consistent
that fk from Equation (26) gives much larger turbulent viscosity than when using Equa-
tion (28) (with fk = 0.4 between the two). fk from Equation (28) gives even a smaller viscos-
ity than the dynamic model on all three meshes. Furthermore, when using Equation (26),
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(d) 1283 mesh. DNS (no turbulence model).

Figure . DHIT, energy spectra. : fk = .; : computed fk (Equation ()); : dynamicmodel;
: computed fk = k/ktot (Equation ()); : t= .; : t= .

the turbulent viscosity increases with time, especially so for the coarse mesh. In RANS, the
turbulent kinetic energy and its dissipation decay as k�t−5/4 and ε�t−9/4, respectively, so
that νt�t−1/4, i.e. the turbulent viscosity decreases with time. We expect that the turbulent
viscosity should decrease with time also in LES; this is the case for both the dynamicmodel,
constant fk and using Equation (28) (Figure 6(a), 6(c) and 6(d)), but not when computing
fk from Equation (26) (Figure 6(b)).

Figure 7 shows the energy spectra for the four models on the three meshes and DNS on
the fine mesh. On the coarse mesh, computing fk from Equation (26) gives slightly better
agreement with experiments than fk = 0.4, but on the other twomeshes, fk = 0.4 gives better
– or much better – agreement. Comparing fk = 0.4 with using Equation (28), we find that
the latter model gives too small a decay at high wave numbers. The PANS simulations in
Figure 7 can be summarised as follows: fk from Equation (26) gives too large a decay at high
wave numbers, fk from Equation (28) too small a decay, and fk = 0.4 in between the two.
This is consistent with the turbulent viscosities in Figure 6. The spectra using the dynamic
model give better agreement with experiments than all the PANS models.

For the fine mesh, the spectrum using Equation (28) gives good agreement with experi-
ments. The PANSmodel is supposed to behave as DNS when fk becomes small. fk is indeed
small for the finest mesh (see Figure 5(b)). It is, therefore, interesting tomake a comparison
between fk from Equation (28) and DNS (see Figure 7(d)). It can be seen that DNS gives
reasonable spectra, but the increase at high wave numbers reveals – as expected – that the
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(b) Computed fk, Eq. 26.
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(c) Computed fk = k/ktot, Eq. 28.
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(d) Dynamic model.

Figure . DHIT, SGS dissipation, εsgs = −τi j
∂ ū′

i
∂x j

(τ ij denotes the SGS stress tensor). : ; : ;

: .

dissipation is insufficient, i.e. the mesh is too coarse for DNS. Nevertheless, comparison
between Figure 7(c) and 7(d) shows that the PANS simulations using Equation (28) and
DNS are fairly similar; an even finer mesh would probably increase the similarity. Using
Equation (26), the similarity with DNS is much smaller (cf. Figure 7(b) and 7(d)) and the
reason is that the predicted fk is much larger than when using Equation (28). However, if
the mesh is strongly refined, it is expected that the PANS results using Equation (26) will be
similar to DNS since it is expected that the mesh refinement will make fk go towards zero
(the mesh refinements from 323 to 1283 do indeed reduce fk; see in Figure 5(a)).

Finally, we plot the SGS dissipation (see Figure 8). This quantity dissipates resolved tur-
bulent kinetic energy. According to the theory, the cut-off is located in the −5/3 region.
Hence, when the grid is refined/coarsened and the location of cut-off moves in wave num-
ber space, the SGS dissipation should not change in theory. This means we would like our
model to dissipate the same amount of turbulence as we refine/coarsen the mesh. In other
words, the SGSmodel should be grid-independent. As seen in Figure 8, the constant fk does
a fairly good job in keeping εsgs constant as the grid is coarsened. Computing fk from Equa-
tions (26) and (28) both give a larger spread in εsgs when refining the grid; the dynamics
model gives a εsgs as grid-independent εsgs as fk = 0.4. It may be noted that for the fine
mesh, εsgs using fk from Equation (28) goes to zero for t> 2.1; the reason is the small fk (see
Figure 5(b)).
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Table  Grids. Fully developed channel flow. fy denotes geo-
metric stretching.

Re
τ

�y+ �x+ �z+ Ny fy

 .−     .
 .−     .
 .−      .

Often, we take it for granted that the turbulent viscosity should increase when the grid is
coarsened. But in order to keep εsgs constant when the grid is coarsened, the finite volume
methodmust respond in an appropriatemanner and reduce the resolved velocity gradients,
∂ū′

i/∂x j so that εsgs stays constant (for wave numbers in the −5/3 region ∂ū′
i/∂x j ∝ �−2/3

and, since εsgs��0, νt must be proportional to �4/3). When coarsening the grid, the key
question is neither that the viscosity should increase nor that the resolved velocity gradients
should decrease, but that the product of the modelled, turbulent stresses and the velocity
gradient, εsgs = −τi j∂ū′

i/∂x j, should stay constant.

4.2. Fully developed channel flow at Reτ = 8000

The Reynolds number is defined as Reτ = uτ δ/ν where δ denotes half-channel height. The
streamwise, wall-normal and spanwise directions are denoted by x, y and z, respectively.
The size of the domain is xmax = 3.2, ymax = 2 and zmax = 1.6. The mesh has 32 × 32, 64
× 64 or 128 × 128 cells in the x–z planes. Details of the grids are given in Table 1. The
location of the interface is y+ � 500. fk is set to one in the RANS regions near the walls (see
Figure 1). In the LES region, fk is either set to 0.4 or it is computed from Equation (26) or
(28). Model 4 (see Section 2.2.4) is used at the RANS–LES interfaces. A running average is
used when computing ktot (Equation (20)) in the definition of fk. Since the simulations are
always started from results obtained from earlier simulation (using, for example, another
interface model), the running average is always started from the first time step. The same
procedure is used when Models 2 and 3 are used in the next section. The sensitivity to
running averaging for ktot in evaluated in Section 5.

Figures 9–12 present the velocity profiles, the turbulent viscosities, the computed fk and
the total, turbulent kinetic energy. As can be seen, when computing fk from Equation (26)
on the coarse mesh, it attains values close to one. The result is a poorly predicted velocity
profile, very large viscosities (〈νt〉max/ν � 415, not shown) in the LES region; furthermore,
the resolved turbulence is zero in the entire domain. The predictions on the fine mesh are
not very good either. The velocity profile near the centre on the fine mesh of the channel is
somewhat over-predicted (Figure 9(b)); it seems that the turbulent viscosity gets too small
in the LES region (see Figure 10(b)). Computing fk fromEquation (28) gives accurate results
for the coarse grid; this is probably rather fortuitous because the turbulence viscosity is
essentially zero in the LES region for all three meshes. On the medium and the fine mesh,
Equation (28) predicts very poor velocity profile; the reason is the small fk (Figure 11(b))
and consequently a very small turbulent viscosity (Figure 10(b)).

The results using Equation (26) on the coarse grid may seem somewhat surprising: we
get fk � 1 (Figure 11(a)) in the entire region, but yet the solution does not correspond to
a RANS solution as expected. The reason is the interface term (Model 4), which decreases
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(a) fk = 0.4.
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(c) Computed fk, Eq. 28.

Figure . Fully developed channel flow. Reτ = . Model  is used at the interface. Thick vertical line
shows the location of the RANS–LES interface: : ; : ; : ; : U+ = ln (y+)/.+
..

the turbulent viscosity near the RANS–LES interface (see Figure 10(b)). Without interface
term, we get a steady RANS solution as expected (not shown). This is also the case when
using Equation (28): without the interface term, the flow gives a steady RANS solution as
it should (not shown).

Contrary to computing fk from Equation (26) or (28), using fk = 0.4 in the LES region
gives velocity profiles which are in good agreement with the log law. It may be noted that
the turbulent viscosity stays constant as the grid is refined; the turbulent viscosity is grid-
independent. The is probably a big advantage when using the model in flow with complex
geometries where the cell size may vary strongly. The total, turbulent kinetic energy agrees
fairly well with DNS on Reτ = 4200 for all three meshes; however, it is somewhat over-
predicted in the RANS region.

5. Results

In the previous section, it was found that a constant fk = 0.4 in the LES region is superior
compared with computing fk from Equation (26) or (28). In the literature, there are sev-
eral proposals on how to compute fk. The proposals by Basara et al. [2] and Kenjeres and
Hanjalic [38] are given in Equations (26) and (27), respectively. Other formulations are
proposed by Girimaji and Abdol-Hamid [43] who compute it as 3(�min/Lt)2/3, where �min

is the smallest grid cell size and Lt = (k + kres)3/2/ε. Foroutan and Yavuzkurt [44] derives
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(c) Computed fk, Eq. 28.

Figure . Fully developed channel flow. Reτ = . Model  is used at the interface. : ; :
; : .

an expression from the energy spectrum which reads

fk = 1 −
[

(�/�)2/3

0.23 + (�/�)2/3

]9/2

. (29)
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(a) Computed fk, Eq. 26.
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(b) Computed fk, Eq. 28.

Figure . Fully developed channel flow. Computed fk. Reτ = .Model  is used at the interface. :
; : ; : .
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(a) fk = 0.4.
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(b) Computed fk.

Figure . Fully developed channel flow. Reτ = . Total, turbulent kinetic energy. Model  is used at
the interface. : ; : ; : ; : DNS at Reτ =   [].

It may that Equation (26) – or any other formulation – could be better calibrated, but that
is out of the scope of the present work. In this section, we will evaluate the four interface
models presented in Section 2.2 in two flows, fully developed channel flows (at different
Reynolds numbers) and embedded LES. In the LES region, we set fk = 0.4.

5.1. Fully developed channel flow

Simulations at different Reynolds numbers are made, Reτ = 2000, Reτ = 4000 and Reτ =
8000. The size of the domain is xmax = 3.2, ymax = 2 and zmax = 1.6. The mesh has 32 × 32
cells in the x–z planes. A simulation with twice as large domain in the x–z plane (xmax = 6.4
and zmax = 3.2) with 64× 64 cells was also made for Reτ = 4000, and identical results were
obtained as for the smaller domain. Details of the grids are given in Table 1. The location
of the interface is y+ � 500.

... Reτ = 
Figure 13 presents the velocity profiles, the turbulent viscosities, the production terms in
the k equation and the shear stresses. The vertical thick dashed lines show the location
of the interface. The momentum source in Model 3, Si (see Equation (22)), is set to zero.
Models 2 and 3 give a velocity profile in good agreement with the log law. Model 1 does
not sufficiently reduce the turbulent viscosity in the LES region and the result is that the
turbulent viscosity is much too large but somewhat smaller than ‘no interface model’.

WithModel 2, the magnitude of the additional turbulent viscosity, νtr, near the interface
in Figure 13(b) is actually larger than νt, whichmakes their sum, νt + νtr, go negative. Recall
that in the momentum equations, νt + νttr is not allowed to go negative; it is negative only
in Pktr (see Section 2.2.1). As a consequence of the large, negative νttr the production term,
Pk + Pktr , is negative at the interface, see Equation (13 c). The production terms in Models
2 and 3 are very similar, which is expected since νtr in Model 2 is defined from Pktr (see
Equations (17) and (19)). The shear stresses in Figure 13(d) show that without interface
condition the flow goes steady. The reason is that the turbulent viscosity in the LES region
is too large because there is no commutation term to reduce k. Note that to enhance the
readability of Figure 13(d), the viscous andmodelled shear stresses are plottedwith negative
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Figure . Fully developed channel flow. Nk = . Reτ = . : Model . : Model . :
Model , Si = ; : no interface model.

sign. Recall that the total shear stress, τ tot, will always – irrespectively of model – obey the
linear law:

τtot = 1 − y, τtot = τ ν
12 + τ12 − 〈ū′v̄ ′〉 = 〈(ν + νt )

∂ū
∂y

− ū′v̄ ′〉. (30)

With Model 1, the flow is neither in RANS mode nor in LES mode, but it ends up in being
in the middle (modelled and resolved stresses are both rather large), which is a most unfor-
tunate condition for a hybrid LES–RANS model. The stresses predicted by Models 2 and 3
are virtually identical.

The turbulent viscosity is too large with Model 1 (Figure 13(b)). If fk is reduced to 0.3,
the turbulent viscosity is reduced (not shown) because the gradient of fk across the interface
increases; furthermore, a smaller fk gives a smaller turbulent viscosity in the LES region
which promotes the growth of resolved turbulence. With fk = 0.3, Model 1 gives a velocity
profile that is almost identical to that of Model 2; the maximum streamwise fluctuation,
〈ū′ū′〉max, is 10% larger with Model 1. If fk is reduced to 0.3 also in Model 2 (not shown),
the prediction with the two models is even closer to each other (〈ū′ū′〉max is a couple of per
cent larger with fk = 0.3 compared to fk = 0.4).
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Figure . Fully developed channel flow. Reτ = . For legend, see Figure .

... Reτ = 
Figure 14 shows the same quantities as Figure 13, but now for Reτ = 8000. Again, Models 2
and 3 give good velocity profiles. Model 1 and the ‘no interface condition’ give rather good
velocity profiles although the velocity is somewhat too high in the LES region. The reason
for the larger velocity levels is seen in Figure 14(b) which presents the turbulent viscosities.
The ‘no interface model’ does not manage to reduce νt in the LES region; also Model 1 is
much less efficient in reducing νt than are Models 2 and 3. This is also clearly seen in the
shear stresses (Figure 14(d)) which show that the transition fromRANS to LES is fastest for
Models 2 and 3; the transition is much slower for Model 1 and for ‘no interface condition’.
The production of k becomes negative for Models 2 and 3 as for Reτ = 4000. It can be
noted that the magnitude of the negative production at the interface for both Reτ = 4000
(Figure 13(c)) and Reτ = 8000 (Figure 14(c)) is slightly larger with Model 2 than Model
3. The reason is probably that Model 2 reduces the turbulent viscosity in the momentum
equations by νttr (but its magnitude is not allowed to exceed ν, i.e. νtr > ν when νtr < 0)
which slightly reduces the damping of the resolved fluctuation which in turn increases the
fluctuating velocity gradients and themagnitude of Pk. It could be noted that if fk is reduced
to 0.3, Model 1 gives virtually identical velocity profile and resolved stresses as Model 2.

Figure 15 presents results where the momentum source Si (Equation (22)) has been
activated. It can be seen that the predicted velocity profile is slightly worse than without
momentum source term (Figure 14(a)). The source terms in the momentum equation are
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Figure . Fully developed channel flow.Reτ =.Model . Si �. : the locationof the computational
cell centres. Thick vertical line shows the location of the RANS–LES interface.

- - as is Pktr – very large; recall that the driving pressure gradient (the first term on the right
side of Equation (25)) is one. It may at first seem somewhat surprising that the source term
Si is non-zero since it includes the time average of a resolved fluctuation which should be
zero, i.e. 〈u′

i〉 = 0. The reason is that Si, at the lower RANS–LES interface, for example, is
added only whenD fk/Dt = v̄∂ fk/∂x2 < 0, i.e. when v̄ > 0 (recall that at the lower RANS–
LES interface �fk/�x2 < 0); the average of the samples of ū′

i when v̄ > 0 is not zero.
It may be noted that the magnitude of the resolved shear stress near the RANS–LES

interface exceeds one (see Figure 15(d)) and hence it is larger than the wall shear stress.
This seems to violate Equation (30). However, when S1 � 0, the right side of Equation (30)
includes also the integral of S1, i.e. the global force balance reads

2δxmaxzmax − 2τwxmaxzmax +
∫
V
S1dxdydz = 0 (31)

where the first term is the driving pressure gradient (the first term on the right side of
Equation (25)). Since S1 < 0 (see Figure 15(b)), the wall shear stress, τw, is reduced when
S1 is added and this explains why the magnitude of the resolved shear (scaled with τw)
exceeds one.
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Figure . Fully developed channel flow. Reτ = . : Model . : Model . : Model , Si= ; : Model .

... Reτ =  
Figure 16 presents the same quantities as Figure 13, but now for Reτ = 2000. The results of
Model 4 are included here; it was shown in [30] that this interface model gives good results
for Reτ = 4000 and 8000. Model 4 predicts a good velocity profile also for this Reynolds
number. However, Models 1–3 fail; they all give a steady RANS solution. The reason is that
the interface conditions do not manage to decrease the modelled, turbulent kinetic energy
– and hence not the turbulent viscosity – on the LES side of the interface. Obviously, it is
more difficult for the flow to switch from RANS to LES at Reτ = 2000. The same effect
is seen if the mesh in the wall-parallel plane is refined to 64 × 64 cells (not shown). One
difference between the Reτ = 2 000 and the higher Reynolds numbers is that, in the former
case, the resolved stress is much smaller at the interface.

... Failure of Models –
In order to find the reason for this failure of Models 1–3, the sensitivity to the location of
the interface was investigated. Figure 17 presents the velocities, turbulent viscosities and
the shear stresses using Model 4 for Reτ = 2000, 4000 and 8000 for different locations of
the interface. The velocity profiles are well predicted for all cases expect for Reτ = 8000 and
y+
interface = 250. Note that the turbulent viscosities are plotted using outer scaling (i.e. they
are scaled with friction velocity, uτ , and half-channel width, δ) contrary to Figures 13–16,
where inner scaling is used (i.e. scaled by ν). The results from a 1D RANS simulation using
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Figure . Fully developed channel flow.Model .Reτ =  (lower lines),Reτ =  (middle lines), and
Reτ =  (upper lines). Vertical dashed thick lines show the location of the interfaces. : y+

interface =
250; : y+

interface = 500; : y+
interface = 1000; : D RANS using AKNmodel.[]

the AKN model [45] (i.e. PANS with fk = 1) are also included. When plotted versus y+,
the RANS turbulent viscosity is virtually independent of Reynolds number and hence all
the green dotted lines in Figure 17(c) collapse. Actually, this is also the case for the PANS
simulations when the interface is defined in outer scaling (i.e. in y): in Figure 17(b), the
turbulent viscosity in the URANS region for

� {Reτ = 2000, y+
interface = 250}, and {Reτ = 4000, y+

interface = 500} and {Reτ = 8000,
y+
interface = 1000} (i.e. y = 0.125)

� {Reτ = 2000, y+
interface = 500}, and {Reτ = 4000, y+

interface = 1000} (i.e. y = 0.25)
� {Reτ = 4000, y+

interface = 250}, and {Reτ = 8000, y+
interface = 500} (i.e. y = 0.0625)

is very similar. As a result, this applies also for the viscous plus modelled shear stresses (see
Figure 17(d)). It is interesting to note that the viscosity in the RANS region in the PANS
simulations is much smaller than that in the 1D RANS simulation. The reason is, as noted
in [30], that low modelled k values are transported from the LES region into the RANS
region near the lower wall when v′ < 0 (ε in the LES region in the two simulations are very
similar [30]).

Now we need to address the question why Models 1–3 fail at Reτ = 2000. The inter-
face location was moved away from the wall to y+

interface � 1000, but the same results
were obtained (not shown). Next, the interface location was moved closer to the wall, to
y+
interface � 250. Model 1–3 still fail to predict a good velocity profile (not shown). It was
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Figure . Fully developed channel flow. Reτ = , y+
interface = 250. Resolved (upper lines) and viscous

plus modelled (lower) shear stresses. For legend, see Figure .

mentioned above that the reason for the poor prediction of the velocity profile at Reτ =
2000 could be that the resolved shear stress is too low at the interface, and that the low level
of resolved turbulence in the interface region would make the transition from RANSmode
to LES mode difficult. However, this theory does not hold when we look at the resolved
shear stresses at the interface in Figure 18 which for Reτ = 2000 are as large or larger than
those at Reτ = 8000 for which good velocity profiles are obtained (see Figure 14). The rea-
son for the poor prediction at Reτ = 2000 is that the turbulent viscosity (in outer scaling) –
and, consequently, the modelled shear stress – is much larger than at the higher Reynolds
number (see Figure 17(b)–(d)). Because of this, Models 1–3 do not manage to sufficiently
decrease νt in the LES region adjacent to the interface. Large modelled shear stresses at the
interface (Figure 17(d)) are also the reason for the somewhat poorly predicted velocity pro-
files (Figure 17(a)) – using Model 4 – at Reτ = 4000 and 8000 with the interface located at
y+ = 250.

5.2. Embedded LES of channel flow

The Reynolds number is Reτ = uτ δ/ν = 950. The domain size is 12.8 × 2 × 1.6 in the
streamwise (x), wall-normal (y) and spanwise directions (z) (see Figure 17). The mesh has
256 × 80 × 64 cells. A geometrical stretching of 1.13 in the y direction is used from the
walls to the centre.

Anisotropic synthetic fluctuations are superimposed to the mean flow profiles at the
inlet. The methodology used in [28,47] is somewhat extended and involves the following
steps.

(1) A precursor 1D RANS simulation is made using the AKN model [45] (i.e. PANS
with fk = 1).

(2) The Reynolds stress tensor is computed using the EARSMmodel.[48]
(3) The Reynolds stress tensor is used as input for generating the anisotropic synthetic

fluctuations.
(4) Since the method of synthetic turbulence fluctuations assumes homogeneous tur-

bulence, we can only use the Reynolds stress tensor in one point. We need to chose
a relevant location for the Reynolds stress tensor. In boundary layer flow, the turbu-
lent shear stress is the singlemost important stress component. Hence, the Reynolds
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ẑ
(b) Two-point correlation. Markers denote
location of cell centers.

Figure . Embedded LES. Channel flow. Added synthetic Reynolds stresses at the vertical RANS–LES
interface.

stress tensor is taken at the location where the magnitude of the turbulent shear
stress is the largest.

(5) Finally, the synthetic fluctuations are scaled with

(|u′v ′|/|u′v ′|max
)1/2
RANS , (32)

which is taken from the 1D RANS simulation.
In order to introduce a time correlation, the inlet fluctuations, U ′, are computed as

U ′
m = aU ′

m−1 + bu′
m, (33)

wherem is the current time step. Constant a is related to the integral timescale, T , as

a = exp(−�t/T ), (34)

where �t is the computational time step and b = (1 − a2)1/2. Constant b is given by the
requirement that 〈U ′2〉 = 〈u′2〉. Equation (33) introduces a time correlationwith an integral
timescale T which is taken as T = L/Ub (L = 0.15δ) using Taylor’s hypothesis, where Ub

and L denote the inlet bulk velocity and the integral length scale, respectively.
The inlet mean velocities are set as Vin = Win = 0 and [49]

U+
in =

⎧⎨
⎩
y+ y+ ≤ 5
−3.05 + 5 ln(y+) 5 < y+ < 30
1
0.4 ln(y+) + 5.2 y+ ≥ 30.

(35)

The time-averaged interface fluctuations and the two-point correlation of w′ are shown
in Figure 19. It can be noted in Figure 19 that the sign of the shear stress changes at the
centreline. This was achieved by simply switching the sign of the wall-normal synthetic
fluctuation, v′, for y > 1. It can be seen that the variation of all the synthetic stresses across
the channel follow the formof the eddy viscosity shear stress (which ismore or less identical
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Figure . Embedded LES. Friction velocity and turbulent viscosity (νtot = ν + νt + νtr). Model . Black,
thick, vertical dashed lines show the location of the interface. : xtr = ; : xtr = .; : xtr =
 (see Figure ).

to the EARSM shear stress). The reason is that Equation (32) was used to scale all fluctua-
tions. As a consequence, the synthetic normal stresses agree with the EARSM stresses at the
location where the EARSM shear stress has its maximum.When creating the synthetic tur-
bulent interface fluctuations, the integral length scale was set to 0.15δ. Figure 19(b) shows
that the two-point correlation of the generated fluctuations agrees well with this value. A
MATLAB file to generate the synthetic fluctuations can be downloaded at [50]. RANS is
used upstream of the interface (fk = 1) and LES is used downstream of it (fk = 0.4) and
in the transition region of length xtr (see Figure 17), fk varies linearly between 1 and 0.4.
Models 1–4 are used at the vertical interface.

We start by investigating the effect of the length of the transition region. Figure 20
presents the turbulent viscosities for three different transition lengths, xtr = 0, 0.5 and xtr =
1.Model 2 is used at the interface. A large xtr means that the gradientDfk/Dt in Equation (9)
is small but that it is active over a large region. We see immediately in Figure 20(a) that xtr
= 1 is too large. The skin friction does not go back to its target value of one downstream of
the interface because the resolved turbulence is much too small (not shown). Reducing xtr
to 0.5 gives an improvement but the transition region is still too long. xtr = 0 (no transition
region, fk goes from 1 to 0.4 abruptly) gives good friction velocities; the fully developed
values of uτ � 0.95 is reached at x � 10, i.e. nine half-channel widths downstream of the
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Figure . Embedded LES. Model . Running average (Equation ()) in a computational cell at (x/δ, z/δ)
= (., .). : y/δ = .; : y/δ = .; : y/δ = .; : y/δ = .; : every th time
step.

interface. The reason why the friction velocity does not reach the target value of one is
that the resolution is somewhat too coarse (or the Reynolds number too high) so that the
velocity profile for fully developed PANS does not agree with the inlet log-law profile in
Equation (35) (see Figure 11a in [27]). When the inlet mean velocity instead is taken from
fully developed flow on the same mesh using PANS (with fk = 0.4), the friction velocity
goes to one as expected (see green dotted line in Figure 20(a)).

Figure 20(b) and 20(c) shows that the turbulent viscosity takes negative values for all
transition region lengths, which gives negative production in the k equation; the smaller
the transition region, the larger the magnitude of the negative viscosity. With no transition
region (xtr = 0), it can be seen that the magnitude of νtot gets very large downstream of the
interface (|νtot|/ν > 550). Despite the large negative viscosities adjacent to the RANS–LES
interface, they rapidly get back to positive values as seen in Figure 20(c) which show the
turbulent viscosities five cells downstream of the interface. Since xtr = 0 is found to give the
best results earlier, this choice is used when presenting the results in more detail later.

In Models 2 and 3, a running average is used for computing ktot (see Equation (20)).
The running average is applied at the start of the simulations. Figure 21 shows how fast
the running average converges. The inlet conditions are used as initial conditions in the
entire computational domain. Figure 21(a) shows that the running average converges fairly
well within 0.1 time units. One test was also made where the running average was made
only in time, not in the spanwise direction. In this case, νtr in Equation (17) was set to zero
during the first 10 time steps in order to get some reasonable value of ktot in Equation (20).
Figure 21(b) shows the convergence of the running average, and as can be seen, it converges
fairly quickly but slightly slower than in Figure 21(a). The predicted results (not shown)
using the two different running averages in Figure 21(a) and 21(b) are identical.

Figures 22 and 23 present velocity profiles, resolved turbulence, friction velocity and
turbulent viscosity. The momentum source, Si (Equation (22)), is set to zero. First, it can
be seen that with Model 1, too small a part of the resolved turbulence survives in the LES
region because it is killed by the large turbulent viscosity. The friction velocity (Figure 23(a))
is themost critical parameter.Models 2–4 give very similar uτ for x> 5 and reach their fully
developed values at x � 10. The velocity profile and resolved turbulence are also fairly well
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(e) Resolved shear stress

Figure . Embedded LES. x= .. Reτ = . xtr = .. : Model ; : Model ; : Model , Si= ; : Model ; : DNS of fully developed flow.[]

predicted at x = 5.9 (i.e. five half-channel widths downstream the interface; see Figure 22).
In the case ofModel 1, the resolved turbulence further downstream (x 6.4) will probably
be completely killed first and then the flow will eventually go into RANSmode.WithMod-
els 2–4, the resolved turbulence at the interface increases strongly (Figure 23(b)), thanks to
the added non-isotropic fluctuations, but also thanks to interface conditions of Models 2–4
which succeed in drastically decreasing the modelled turbulent kinetic energy and thereby
the turbulent viscosity (see Figure 23(c)). ForModels 1 and 2, the reduction in the turbulent
viscosity is clearly seen in Figure 23(d). Model 2 gives a much larger magnitude in negative
viscosity than Model 1 and as a consequence the turbulent viscosity for Model 2 is zero for
y < 0.8 at x = 5.9 (see Figure 23(e)).

D
ow

nl
oa

de
d 

by
 [

C
ha

lm
er

s 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 0

2:
34

 0
6 

M
ar

ch
 2

01
6 



302 L. DAVIDSON

0 5 10
0.8

0.9

1

1.1

x

u
τ

(a) Friction velocity.

0 5 10
0

5

10

15

x

m
ax y

(u
2 r
m

s
(x

,y
))

(b) Streamwise fluctuations

0 5 10
0

20

40

60

80

x

m
ax y

((
ν t

o
t(

x
,y

)/
ν

(c) Turbulent viscosities.

−300 −200 −100 0
0

0.2

0.4

0.6

0.8

1

νtot /ν

y

(d) Turbulent viscosities. x = 0.975

0 5 10 15
0

0.2

0.4

0.6

0.8

1

νtot /ν

y

(e) Turbulent viscosities. x = 5.9

Figure . Embedded LES. Reτ = . xtr = . νtot = ν + νt + νtr. For legend, see Figure .

For the fully developed channel flow atReτ = 4000, it was found thatwhen fkwas reduced
to 0.3 using Model 1 (see Section 5.1.1), the predictions were found to be very similar to
those of Model 2. When fk is reduced to 0.3 for this flow with Model 1, the results improve
somewhat (not shown), but they are still considerably poorer compared with Model 2. The
skin friction reaches a value of 0.9 near the outlet of the domain (cf. Figure 23(b)) and the
peak of the resolved shear stress is approximately 0.5 (cf. Figure 22(e)) near the outlet of
the domain. The reason is that the turbulent viscosity at x = 5.9 is reduced only by a factor
of two compared to fk = 0.4 (cf. Figure 23(d)).

The production of k in the LES region adjacent to the RANS–LES interface is shown in
Figure 24. As for the fully developed channel flow, it is found that the productions by the
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Figure . Embedded LES. Reτ = . xtr = . Production in the plane in the LES region adjacent to the
interface. : Pk + Pktr , Model . : Pk + Pktr , Model . : Pktr , Model , Si = ; : Pk, Model ;
: Pk in RANS region, x= ..
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(d) Spanwise fluctuations

Figure . Embedded LES. x= .. Reτ = . xtr = . : Model . Si �  (see Equation ()); : no
interface model; : DNS of fully developed flow.[]

interface models, Pktr , are very large and negative for Models 2 and 3. These large negative
productions ensure the strong decrease in turbulent viscosity across the RANS–LES inter-
face (see Figure 23(d)), which in turn facilitates the rapid increase in resolved turbulence
downstream of the interface (see Figure 23(b)).

Figure 25 presents results usingModel 3 with the momentum source term, Si (see Equa-
tion (22)(. Comparing with Figure 22, we can see that the momentum source has a similar
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influence as for fully developed flow: the resolved turbulence is slightly stronger. The pre-
dicted friction is as a consequence increased and somewhat closer to the target value of
one.

Figure 25 includes also results when no interface model is used at all. When comparing
with the results when using an interfacemodel (Figure 22), the differences are clear: without
interface model, the turbulent viscosity is not reduced on the LES side of the interface and
the consequence is that almost all resolved turbulence are killed. If the domain in Figure 25
were made larger in the streamwise direction, the flow would surely return to steady RANS
further downstream.

6. Conclusions

Simulations using zonal PANS are made where fk = 1 in the URANS region and fk = 0.4 in
the LES region. There is a a strong gradient of fk across the RANS–LES interface. Recently,
a modification of the PANS model was proposed by Girimaji and Wallin [3] where they
take the gradient of fk into account. This approach is used at the RANS–LES interfaces and
it is further developed and evaluated in the present work. Four different treatments of the
interface are evaluated; one is the approach proposed in [3] (calledModel 1). Models 2 and
3 are modifications of Model 1, and Model 4 is the approach presented in [30]. The beauty
of Models 1–3 is that they do not depend on any constants or tuning; they use the gradient
of fk across the interface. The advantage of Model 3 is that it – unlikeModels 1 and 2 – does
not involve any unphysical negative viscosities and does not require any regularisation. The
disadvantage of Model 4 is that it depends on how the modelled k and ε are treated at the
interface. The four models are evaluated in fully developed channel flow and embedded
LES in channel flow.

Before evaluating the different interface models, the paper evaluates different ways to
prescribe fk. Two different ways of computing fk are employed (Equations (26) and (28)).
In the third option a constant fk is used (fk = 0.4). The three different options are evaluated
for decaying grid turbulence and fully developed channel flow, and it is found that the best
option is to use a constant fk = 0.4.

Model 1 does not give good results. Its effect is too weak and the model does not suffi-
ciently decrease the turbulent viscosity on the LES side of the interface. For fully developed
channel flow, it works well if fk is reduced to 0.3. For embedded LES, a reduction of fk to 0.3
inModel 1 improves the predictions, but Model 1 still performs much worse thanModel 2.

Models 2 and 3 give mostly good results and virtually identical results. Model 3 includes
an additional production term, Pktr , and a source term in the momentum equations, Si
(Equation (22)); it is found that it is preferable to set Si = 0. TomakeModels 1 and 2 numer-
ically stable, the additional turbulent viscosity, νttr , from the models must be positive in the
momentum equations. In the production term in the k equation, νttr is permitted to go
negative. The magnitude of the negative added production, Pktr , in Models 2 and 3 is much
larger than the ordinary Pk in RANS. This is the key to the success: Pktr is large and nega-
tive in the LES region adjacent to the interface which reduces k and thereby the turbulent
viscosity. Models 2 and 3 fail for the fully developed flow at the lowest Reynolds number
(Reτ = 2000); they both give steady RANS results. Model 4 works well for all flows.

In fully developed channel flowusing RANS, the turbulent viscosity, and hence themod-
elled Reynolds shear stress, is virtually independent of the Reynolds number. Using zonal
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PANS, it is found that this also applies for the turbulent viscosity and themodelledReynolds
shear stress in the URANS region.

The conclusion is that interface Model 4 works best and that Models 2 and 3 fail in one
flow (fully developed channel flow at Reτ = 2000). The disadvantage of Model 4 is that it
depends on the prescribed boundary conditions of k and ε at the RANS–LES interface.
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