Numerical Methods i m

[.aminar and Turbulent R

Flow |
Volume VII, Part 2

Editors:

C. TAYLOR
J. H. CHIN
G. M. HOMSY

Proceedings of the Seventh International
Conference held in Stanford,
15th—19th July, 1991



852

Calculation of the Flow Around a High-Lift Airfoil Using
an Explicit Code and an Algebraic Reynolds Stress Model

L. Davidson

CERFACS (Eumpeén Centre for Research and Advanced Training in Scientific Com-
putation) 42, Avenue G. Coriolis, 31057 Toulouse, FRANCE 1

ABSTRACT

In the Computational Aerodynamic Team at CERFACS work is going on calculating
the flow around low-speed high-lift two-dimensional airfoils (K, = 2.1 x 10%; M = 0.15)
with the object to be able to predict stall. Work has been carried out improving the
numerical scheme [1}, as well as implementing and testing different turbulence models,
such as the Baldwin-Lomax model and various k — £ models {2,3]. The main problem
in these works was that the separation zone near the trailing edge was much under-
predicted compared with experiments, and when the angle of attack was increased the
predicted lift coefficient increased even though the experiments show that stall should
occur. It was believed that this failure of predicting stall could be due to inadequate
turbulence models.

The turbulence on the suction surface of the profile is affected by the wall curvature
and streamline curvature; near and in the separation region, the streamwise normal
Reynolds stress is much larger than that transversal one. None of the turbulence models
tested so far can model these important phenomena, but over-predict the Reynolds
stresses in the shear layer, and, consequently, predict the separation point too late and
the separation zone much too small. This paper treats calculation of the flow described
above using an explicit, compressible, time-marching code and an Algebraic Reynolds
Stress Model (ASM); this model has the ability to account for curvature effects on the
turbulence, as well as for the strong non-isotropy of the turbulence.

1 THE CODE

The code, which is based on that by Rizzi & Miiller [4], solves the continuity
equation p, the momentum equations pu, pv, and the equation for total energy

1Dresent adress: Department of Thermo and Fluid Dynamics, Chalmers University of Tech-
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peo; the pressure is calculated using the gas law. The main features of the code
are: '

e explicit, compressible time-marching, cell-centered finite volume, central
differencing, local time stepping - :

¢ four stage Runge-Kutia scheme for the mean flow equations

¢ the £ and ¢ equations are solved using a semi-implicit solver (hybrid cen-
tral/upwind scheme, ADI) [2]

e fourth-order numerical non-homogenous dissipation term in all mean flow

equations [5]

Initially, attempts were carried out to solve the k and ¢ equations explicitly
using the existing Runge-Kutta solver. However, no stable, convergent solution
was obtained. The main cause for these problems was probably the large source
terms. These terms contain the ratio ¢/k which in regions of weak turbulence
(laminar regions) causes problems since both & and ¢ tend to zero. In order
to remedy these stability problems a semi-implicit solver was implemented for
solving k and ¢ [2]. ‘

2 THE TURBULENCE MODEL

2.1- The Algebraic Stress Model

The algebraic Reynolds stress model is a standard .one, which — using Cartesian
velocity components - reads [6]

2 + k(1= co)(Pyj = 28 ) + @, + P

“‘:.—rx _&i'k
4t = g0 ¢1 + Ple — 1 (1)

where the standard modelization of the pressure-strain correlation terms [6] have
been used, and where the near-wall correction terms and the production term

have the form

£ — 3 3 ¢
9L, = c;};(u,%égj—Eunuiénj~§=_ﬂnﬁg'5ni)f(;i
3 3 £,
Ej,Z. = y(Pnn,26ij — 5 Pniabn; — §§n5,25ni)f(;:)
oU; ____8U; |
Py = "uiuk’é';i‘ "ujuk‘a‘;;;

The f-function is a damping function which reduces the effect of the wall correc-
tion with increasing distance z,, (n denotes normal direction), and which has the
form f = k%?2/(2.552,¢). The constants are standard ones [6]: c1 =1.8,¢) =
0.5, ¢ = 0.6, ¢, = 0.3.

Note that the near-wall correction terms are in simplified form, .which is
based on the assumption that the walls are parallel to the Cartesian velocity
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components. This assumption seems to be reasonable, see Fig. 1. However,
tests were also carried out_using the general formulation [7], and it was found
that the contribution from u? in the expression for @1, 1 gave alarge amplifying
effect, which almost cancelled the damping effect due to the TD-term. The wall
correction term $3,, has the form :

gl

[y

i

. — A
121 =~ 75T + (v + Uz)”x?y]f(”j‘
and it becomes almost zero on the suction side near the trailing edge (in the
separation region). This is due to that the product n.n, is not negligible (up
to 0.2), and that the normal stress u? is much larger than the shear stress. For
these reasons the simplified formulation, which does damp the shear stress in

the separation region, was used.

The Reynolds stresses are stored at the cell centres.. This is contrary to
what is normally done in implicit codes based on SIMPLE-methods (8], where
the shear stresses are staggered and stored on the faces of the control volumes.of
the velocities in order to enhance stability. In this work the solution procedure
was found to be stable without staggering the shear stresses; this is probably
because the mean flow variables are solved explicitly, which means that all terms
are at the right-hand-side of the discretized equations, and thus the solution
procedure is less sensitive to the explicit adding of the Reynolds stresses than
the SIMPLE-methods. For more details on the implementation of the ASM, see

[9].

2.2 The k and ¢ Equations

Since k and ¢ appear in the equation for the Reynolds stresses T7%; in Eq. 1,
the equations for k£ and ¢ have also to be solved. The standard modellized %
and ¢-equations in the ASM have the form:

5] d k. ok
%(PUjk) = '3}";[(#+Ckpuﬂm;)m}+&~ﬁ€

d d k e 13
Fa-(pUse) = H—[(p+ CePUilm =5 ]+ 7(e1: Py — cacpe)
J i m
P, = ~pu¢uj~gm%, ¢ = 0.22, ¢ = 0.17, ¢1, = 1.44, ¢9p = 1.92
i _

Normally the diffusion terms in the & and ¢-equations have little influence on the
flow field. Calculations modelling these diffusion terms using the eddy viscosity
assumption were also carried out, but no noticeable changes in the calulated
results were observed. ' ' .

The £ and e-equations are solved implicitly, which considerably enhancés
the stability [2]. This solution method is used in codes based on SIMPLE-
methods [10]. The main characteristics are hybrid central /upwind differencing,
and Three-Diagonal-Matrix-Algorithm for solving the discretized linear equa-
tions in both coordinate directions. : o
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2.3 Near-Wall Treatment

Near the walls the one-equation model by Wolfshtein [1 1], modified by Chen and
Patel [12], is used. In this model the standard & equation is solved; the diffusion
term in the k-equation is modelled using the eddy viscosity assumption. The
turbulent length scales are prescribed as:
by = con[l - e:cp(w—Rn/A#)], e = cenfl - exp(“f“Rn/As)]
(n is the normal distance from the wall) so that the dissipation term in the
k-equation and the turbulent viscosity are obtained as: :
k3/2 :

€2~ = cp\/!;if# (2)

The Reynolds number R, and the constants are defined as

__\/En

R, = i 0.09, ¢ = HC;3/4, A, =70, Ag = 2¢,

The one-equation model is used near the walls (for R, < 250; the matching
line is chosen along a pre-selected grid line), and the standard & and e-equations
in the remaining part of the flow. Since the ASM is not valid near the wall, the
Reynolds stresses are here computed using the Boussinesq assumption, j.e.

. aU; 5Uj 2 _8Um 2 -
PUuj; = "“#t('é‘;; amz_ - 351j"é";“n:) + 361319]9 (3)

where u, is calculated using Eq. 2. The matching of the one-equation model
and the k& and e-equations does not pose any problems but gives a smooth
distribution of u; and ¢ across the matching line. However, the matching of the
ASM and the one-equation model gives rise to non-continuity in the Reynolds
stresses across the matching line. The one-equation model gives more or less
isotropic normal Reynolds stresses according to Eq. 3, whereas ASM gives highly
non-isotropic Reynolds stresses, which results in a jump in the profiles of u2
and v2 across the matching line. Also the %o-profile is non-smooth across the
matching line due to an inconsistency between the one-equation model (or the
k — ¢ model) and the ASM. In order to illustrate this, a boundary layer flow is
chosen where the only important velocity gradient is U /8y, and where

auv
fo,P;cms,sz—fﬁ"?}—w—
dy

so that Eq. 1 gives
;—j—z-m Ek01 -1 —I-CQ(l - 2(3’2)
3 c1 + 2¢)

Inserting values for the constants gives ~ut = 0.065 k% /e 9U/Jy. The coefficient
0.065 should be compared with ¢y = 0.09 which the £ — ¢ model as well as the
one-equation model gives, :

I-"Cg-f*%CgCé Tﬁa{f
1+ 24 € dy

—UT =

(4)

3

The matching problems discussed above do not seem to create any serious
problems: the equations remain stable, despite small jumps in the Reynolds
stress profiles.
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Figure 1. The grid near the profile. Figure 2. Streamlines near the trailing edge.
(only every 4th grid line is drawn)

3 RESULTS

A C-mesh with 353 x 65, generated by Chanez and Palicot [13], has been
used (see Fig. 1). The near-wall nodes are located at y* ~ 1, and 7 to 10 nodes
~ in the normal direction — are situated in the region 0 < y* < 20.

The calculated results (for more details, see [9]) are compared with experi-
mental data taken from [14,15]. The Reynolds number and the Mach number
are 2.1 x 10% and 0.15, respectively. Measurements have been carried out in
two windtunnels, F1 and F2. In the F'1 windtunnel, global characteristics such
as Iriction coefficients and surface pressures were measured. The flow field was
studied more in detail in the F'2 windtunnel, where mean velocity profiles and
Reynolds stresses were measured using a three component LDV-system. The
blockage effect in the F'2 tunnel was more important than in the F1 tunnel,
leading to three-dimensional effects for o > 13°.

F'1l Data | F2 Data | ASM

CL (13.39) 1.55 1.49 1,53
separation (13.3°) 0.94 - 0.78
Cy, (15.39) 1.65 1.29 1.64
separation (15.3°) 0.82 - 0.68
Cr, (16.3%) 193 | 1.25 153
separation (16.3°) - - 0.54

Table 1: Comparison of calculated global characteristics with experiments.
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Figure 3: U and —m~préﬁles on the suction side. Solid lines: Us/Uqs; dashed
lines: —w;u, /U2 ; markers: experiments. a) z/c = 04, b) z/c = 0.775, c)
rfe=09,d) z/c=093, ¢) z/c =0.96,1) z/c = 0.99. '

The global characteristics are compared with experimental data in Table 1.
The ASM gives Cp-values in good agreement with experiments. When « is
increased, a decrease in (' is predicted (i.e. approaching stall) for o = 16.3°,
which is in agreement with experiments. The point of separation in Table 1 is
defined as where the skin-friction changes sign. The ASM seems to predict too
large a separation. When the velocity profiles are studied (see beiow), it will
turn out, however, that the separation zone is predicted weil in afrreemenfz with
experiments. '

The calculated results are presented below more in detail for @ = 13.3°. The
U,-velocities and the shear stresses on the suction side of the airfoil are presented
in Fig. 3. Note that in Fig. 3 an orthogonal s — n coordinate system is used.
The s-coordinate is tangential to the airfoil, with origin on the surface. The U,-
velocities on the profile are well predicted. The somewhat poorer agreement in
the Us-profiles in the outer part of the shear layer may be due to that the mesh
is here rather coarse. As separation is approached, it is seen that the predicted
Us-profiles follow the experimental ones, the profiles getting progressively less
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Figure 4: Influence of curvature on the turbulence. Calculations. , 6/ R;
— = ——, Ry; —e——e— U [Us,.. a) 2/c=02,b) z/c=0.775, c) zfc=0.9

full and that an inflextion point in the profiles appears.

3.1 Turbulent Quantities

When the streamlines of the mean flow have a convex curvature (on the suction
side for z/c < 0.6; see Fig. 2) the turbulence is stabilized, which dampens the
turbulence [6,16], especially the shear stress and the Reynolds stress normal to
the wall. The ratio of boundary layer thickness § to curvature radius R is a
common parameter for quantifying the curvature effects on the turbulence. The
work reviewed by Bradshaw [16] demonstrates that even such small amounts of
convex curvature as §/R = 0.01 can have significant effect on the turbulence.
Thompson and Whitelaw {17] carried out an experimental investigation on a
configuration simulating the flow near a trailing edge of an airfoil, where they
measured § /R = 0.03. They report a 50 percent decrease of uZ (Reynolds stress
in the normal direction to the wall of the airfoil) on the suction side due to
curvature. The reduction of u? and —W, %4, were also substantial. They also
report significant damping of the turbulence in the shear layer in the outer part
of the separation region.

Since Cartesian velocity components have been used in the calculations, no
explicit curvature terms appear in the Reynolds-stress equations (see Eq. 1).
Of course, also the Reynolds stresses formulated in Cartesian coordinates are
affected by curvature, but implicitly. In order to investigate the curvature effects,
let us — in the post-processing ~ study the equations in polar coordinates r ~ 8,
with the flow in the circumferential 6-direction (i.e. Uy = Up(r),U, = 0). The
@-axis is thus chosen so that the flow is locally aligned with this axis. Curvature
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terms appear now because the r = const.-coordinate lines are curved. If the
curvature terms due to diffusion are neglected, the Reynoids stress equation
can, in symbolic form, be written [18] :

Cij=Dij = FBj+Qy—e;+P5+C5 )

where supérscript c on Py and C}; denotes curvature terms originating from
production and convection, 1espec‘swe3y, see Table 2. The larger these terms,
the more important the curvature effects.

The flux Richardson number

ZUg/f‘

Ry = Ug/r+ Uy /Or

is a convenient parameter for stv.dymg curvature effects. Its physxcal meaning
is (minus) the ratio of the production of zz? due to curvature, to the total pro-
duction of u? (see Table 2). The Reynolds stresses can, using 7 — 6§ coordinates,
be expressed as a function of Ry; assuming f = 0 Eq. 1 gives

u? 2¢1— 1+ cPfe 2R, 1 (6)
k 3 C1+Pk/8"“1 1"RfC1+Pk/E“1
u3 201 =1+ (3~-2¢)PJe  2R; 1 )
k3 c1+ Pife~1 L-Rie; + Ppfe~1
(1= c3) R; ul k u? 8U,
T = — - 2= 1)) == Z8 (g
trto C}“{‘Pk/é‘—-l-[ (1—62)(2“Rf)( u? : )}&‘ k T ()

Note that this is not the same expression as derived in [6], since they included
the curvature terms Cf; in P;; when calculating the pressure-strain terms. The
ratio §/R, the flux Rlcha,rdson number, and the velocity profile (in order to
faciliate the identification of the boundary layer) are shown in Fig. 4 at three
different z-stations: at #/c = 0.2 where the wall curvature is most important,
near the separation point (z/c = 0.775), and in the separation zone (z/c = 0.9).
As can be seen the streamline curvature is positive at zfe = 0.2 (cempare

[o4 [+
Ptj Pz‘;’ C‘z?
Ug Usg
u? - QUG — DUy UG ——
o ' U
— .. 0Ug
uf | —2U g —— - — oy =2
adr r
—= Uy e (/g — Uy
e ) 7 Ve 7.y e
T uj (ug — u? .

Table 2: Source terms in the Reynolds stress equations (see Eq. 5) due to
production and convection ir a polar coordinate system ‘
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Fig. 2), which in the outer part of the boundary layer gives an increasing flux
Richardson number. The curvature effects are largest in the outer boundary
layer, where the curvature term Us/R becomes comparable with the velocity
gradient Uy /dr. The direct influence of the curvature effects are thus largest in
the outer part of the boundary layer, but they will also have indirect influence
via the k and e-equations. The Reynolds stresses, augmented or damped by cur-
vature, increase or decrease the production terms in the k and ¢-equations and,
through convection and diffusion, also affect the surroundings. As separation is
approached the streamlines become concave (see Ilig. 2), which destabilizes the
turbulence. In Fig. 4 it is seen that §/R and R; are negative.

In separated flows the streamlines bounding the separation region are usually
convex. It may be noted that in the present case, the turbulence in the shear
layer bounding the separation zone on the suction side is mostly destabilized
due to the concave curvature of the streamlines; these become convex first when
the flow on the suction side reaches the wake.

The last term in square brackets in the equation for the shear stress (Eq.
8) is due to curvature. It expresses the importance of curvature effects on the
shear stress; for negligible curvature effects it is zero. At z/c = 0.2, where the
stabilizing curvature effects are most important, it attains values of approxi-
mately 1.5 (in the very outer part of the boundary layer). Further downstream
it decreases, and near the separation point it becomes negative because of the
destabilizing curvature effects. In the shear layer of the separation region the
term reaches values close to ~1.5.

In boundary layer flow the only term which contributes to the production
term in the k£ and c-equations is —u;4,0U,/dn. Thompson and Whitelaw [17]
found that near the separation point, as well as in the separation zone, the
production term —(u? — u2)dU,/ds was of equal importance. In Fig. 5 these
terms are presented. At z/¢ = 0.2 the production term due to the normal
stresses is not very large (at the most, ten percent of that due to the shear
stress). Near the separation point and in the separation region, the two terms
are of equal importance. In Fig. 5 the dissipation is also presented, and it is
seen that production and dissipation balance each other at z /¢ = 0.2, but that
near the separation point and especially in the separation region, this is not the
case. The production term using the eddy viscosity assumption v,(8U,/dn)?
(the contribution from the normal stresses is negligible) is also included in Fig.
5, which should be compared with —%;u,0U,/0n. Note that thisis a comparison
between the shear stress obtained with the ASM, and that obtained using the
eddy viscosity assumption T;a, = —11dU,/0n. It can be seen that the shear
stress obtained using the eddy viscosity assumption is considerably larger than
that obtained using the ASM. This is because the ASM accounts for the damping
of the shear stress and the Reynolds stress normal to the wall; for boundary layer
flow the ASM yields, with damping, a ¢,-coeflicient of 0.065 (see Eq. 4), which
is 28 percent smaller than the ¢, used in k& — £ models.
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y U, 0U, [On; — — —— (ul —u2)dU,[/ds; — — v [0U, ) n)?;
e, e a)efe=0.2,b) 2/c = 0.775, ¢c) 2 /c = 0.9

4 CONCLUSIONS

The flow around a two-dimensiona] high-lift airfoil has been calculated using
an algebraic stress model. As the ASM is only valid for fully turbulent flow
it has been matched with a one-equation model close to the wall (y* < 50).
This turbulence model has been shown to be able to predict stall for an angle
of attack of 16°, which is in agreement with experiments. Earlier work [2-3] has
shown that & — ¢ models are not able to predict stall, and that these models
over-predict the shear stress, and consequently predicts separation too late and
separation regions too small. The main reasons for the superiority of the ASM
are believed to be its ability of taking into account the influence of streamline
curvature and the large difference in the normal Reynolds stresses. -

It was found that the general formulation of the near-wall correction terms
in the ASM gave too small damping (or none at all) of the shear stress in the
separation region. The simplified form — which assumes walls parallel to the
Cartesian velocity components - was used, which gave predicted results better
in agreement with experiments. It was found, furthermore, that this damping
is very important, and that it contributes to the superiority of the ASM over
the £ - ¢ model.
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