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CALCULATION OF THE TURBULENT BUOYANCY-
DRIVEN FLOW IN A RECTANGULAR CAVITY USING
AN EFFICIENT SOLVER AND TWO DIFFERENT LOW
REYNOLDS NUMBER 4-« TURBULENCE MODELS

Lars Davidson
Beparmment of Applied Thermodynamics and Fluid Mechanics,
Chalmers University of Technology, §-41296 Gitehorg, Sweden

The buovancy-driven flow in a tall rectangular cavity of 5:1 aspect ratio with a Rayleigh
number of 4 X 1019 s calculated using finite volume methods. The CELS solver is extended
to be able to handle large density variations. CELS Is compared with SIMPLEC, and it is
shown to be up to more than 4 times as fast as SIMPLEC. A modified form of a low Reynoldy
number k- turbulence model is developed. This model is consistent in its near-wall
behavior, and it allows simulation of the decay of grid furbulence. The model developed
by Lam and Bremhorst [1} is also tested. Both turbulence models are shown to predict the
transitional and refaminarization regions according to experiments.

INTRODUCTION

Turbulent flow, driven or affected by buoyancy, is an important type of flow that
arises in many engineering applications. When calculating the flow in a ventilated room,
for example, where the velocities are very small, it is importan{ to account correctly for
buoyancy effects. The heat transfer at walls is, in some cases [2], essential for the
performance of the ventilation system. Near heating or cooling walls the flow can be
strongly affected by buoyancy, and the viscous effects are usually large. This means that
conventional wall functions, which are based on the use of local equilibrivm logarithmic
velocity and temperature assimptions, are not applicable.

In the present study the flow in a tall two-dimensional cavity of 5:1 aspect ratio is
calculated using finite volume methods. The results obtained are compared with exper-
imental data from Cheesewright et al. [3, 4]. The ciLs solver, which was developed and
applied to buoyancy-driven flows by Galpin and Raithby [51, is used. The solver was
originally formulated for flows where the Boussinesq approximation (small density vari-
ations) for the gravitational term is valid; as this is not the case in the present study, the
solver is extended to handle large density variations.

The development of low Reynolds number turbulence models has, so far, been
atmed at predicting low Reynolds number flows near walls. It is also important to be
ahle to predict low Reynolds number ffow in free recirculating flows. In ventilated rooms,
for example, the velocities are sinall, and it is possible that the flow is not fully turbulent
or that it can relaminarize due to buoyancy eifects.
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NOMENCLATURE
Cu» Cies O COBStants in the wrbulence model & contraction factor for the grid,
hafa hy damping fuactions in the wrbulence Eq. {6}
maodel B coefficient of thermal expansion
I3 acceferation due to gravity € dissipation of turbulent kinetic
Gy buoyancy source term in the energy
wurbulence models n = yat the hot wall; = H — v at
H height of cavity the cold wall
& turbulent kiaetic energy i, 5y, Moy dynamic viscosity (laminar,
L length of cavity turbulent, and effective, respectively)
# coordinate in the nopmal direction v kinematic viscosily
from the wall [} density
P pressure a; jaminar Prandt] mzmber
B turbulence-generating source term in &y, 0, a7, turbuleat Prandil number for k, 1,
the & and € equations and €, respectively
g local heat transfer rate at the vertical T time
walls per unit area, KW/m AT time step
Re, local Reynolds number (= pNEafn)  ATE nondimensional time step, Eq. (7)
Re, foczl Reynolds number [ = pki{pel} Tyef reference time step. Eq. (7)
' temperature, °C A stream function (¢ = JP/av)
u, v mean velocity in x and y directions,
respectively X
e friction velocity Subscripts
#; mean velocity in x, direction
X horizontat Cartesian coordinate C cold wall
(see Fig. 1) H hot wall
x* nondimensional distance from the max maximum
wall, { = xu./v) ref reference value for the room
xy =y W wall
X =y
X; Cartesian coordinate in the ¢
direction Superscript
¥ vertical Cartesian coordinate
(see Fig. 1) o referring to value at old time step

As a first step toward a turbulence model able to predict this type of flow, a modified
form of a low Reynolds number k€ model is developed. No near-wall terms are added
to the equations in this model, and the damping equations include no irrelevant distance
from the wails. It is hoped that this model can be used to predict free low Reynolds
number flows, where the viscous effects are not due to walis.

The objectives of the present study are (1) to develop a modified form of a fow
Reynolds number k-€ model, as described above, that is consistent in its near-wall
behavior and allows simutation of the decay of grid turbulence; (2} to test this medel and
the model of Lam and Bremhorst [1] in a flow driven by natural convection, to compare
the predictions with the experimental data to investigate how well the models predict this
type of flow and how well the models predict low Reynolds number phenomena such as
transition and relaminarization; and (3) to investigate how efficient the modified CELS
solver is in turbulent flow.

In the following sections, the solution procedure is described, the turbulence models
are presented, the performances of CELS and SIMPLEC are compared, results are discussed,
and conclusions are drawn.
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SOLUTION PROCEDURE

The continuity, the momentum, and the temperature equations can be writter as
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where x is the horizontal direction and vy is vertically upward. The density is calculated
from the gas law, and the viscosity is calculated from Sutherland’s formula:

1458 % 1070 + 27H)'S

. [+ 3834 (le)

Although only the steady solutions of Eg. (1) are of interest in this study, the
equations are given in transient form, and the time step A7 is used as a free parameter
by which the convergence rate may be optimized. These equations are solved using the
CELS method, combined with Newton-Raphson linearization of the convective terms in
the temperature equation {5]; this linearization results in a temperature-to-velocity coupling
that is lost when standard Hnearization methods are used. A Newton-Raphson linearization
{(i.e., a Taylor expansion ignoring terms of order higher than 1) of the product wt gives

d d
ut = ue + —7- (™Y — u"y + :;; (W eyt — ) = uwr + w® ~ u’t’ {2y
¢4 /3

The original ceLs method assumes that the Boussinesq approximation is valid for the
gravitational term, which is not valid in the present study, since there exist temperature
differences of up to 453°C. The gravitational term in the v equation is rewritten so that
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=8P~ Prer) = PreefBU L) — 8P T Prer)  Per8BE — )

where the first term on the righthand side of the equation was used in the CELS formulation
and the two remaining terms were included in the constant source term.

The CELS method 1s described in detail in the works by Raithby’s group [5-7], and
more details on the present implementation of CELS can be found in [8].

LOW REYNOLDS NUMBER k-¢ MODELS

The object here, as mentioned in the introduction, is to develop a low Reynolds
number k—e turbulence model able to handle viscous effects near walls and, hopefully,
in free tlows. The model should also be consistent in its near-wall behavior and in allowing
simulation of grid turbulence. The viscous effects in free flows are due to low velocities
that make the production term very small and/or to relaminarization caused by buoyancy
effects (stable stratification); both these effects may occur in ventilated rooms {2].

The & and e equations can be written

3 3 2 w ok

2ok + = (ouky = = (o + BV E 4 Pt Gy~ pe (3

o (pk) o {pu; k) o=, (éi- Uk) o, & B P )
d & af p,f\) de €
Lope) + = pue) = — [+ BV E L S 0 Pk 01Gy ~ facape] (4
P (pe) &Xi(P“;‘E) i (f* g k{flcl  t €.Gg — ficapel (4)

where
X =X X2 =¥
au,  au; | au, wgR or fuc.pk?
P, = — = Gy o= — = — e
* M‘[&rj &x,] ax; " o, ay €
o, = 1.0 o, = 1.3 o, = 0.9 ¢, = 0.09 e = 144 € = 1.92

Patel et al. [9] have tested a number of low Reynolds number k—e models. They
concluded that the model of Jones and Launder [10] (hereafter denoted J1) was the best
and that the model of Lam and Bremhorst [1] (hereafter denoted LB) also gave results
in good agreement with experiments. In the test case chosen in the present study, there
are, according to experiments, transition regions from laminar to turbulent flow (as well
as relaminarization). Rodi and Scheuerer [11] used the LB model for predicting the flow
along turbine blades, and in that flow there was also a transition region, which the LB
model was shown to predict well in agreement with experimental data. For these reasons
the LB model has been chosen for the present study. The functions and the boundary
conditions for the LB model are given below.
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LB Model
/205 (005
fo =1 = exp(—0.0165Re,)]? (\1 + “gg") f=1 ( - )
k* pVikn
£, = 1 — exp{—Re}) Re, = Px Re, =
e m

where # is the normal distance from the nearest wall and k = de/dn = 0 at walls.
In the original LB model, another boundary condition at the walls was used for the

€ equation, namely,
€ = v—s3 (&3]

The boundary condition used in the present work (de/dn = 0, which is more con-
venient) was tested by Patel et al. [9], who found that this boundary condition gave the
same results as Eq. (3).

Present Modei

In the present model, as well as in the LB model, the physical (isotropic) dissipation
is solved, and the same form of the f, function as in the LB model is chosen. The
disadvantage of the LB model is that the f, function includes the distance from the wall.
Since the f, function, according to Patel et al. [9], is the most important damping function,
f,. is taken from the JL model, ie.,

[ 34
T = PN T T Rey/30)

The abject of the £, function is to increase the production of e near the wall in order
decrease the turbulent kinetic energy. Since the f, function in the LB model damps the
viscosity {and &) much more than £, in the JL. model, the constant in the i function
{ =0.05) has to be increased to increase € so that the turbulent kinetic energy decreases,
Values between 0.05 and 0.16 on the constant were tested, and the value 0,14 was found
to be optimum.

There are three main requircments for the function f5:

It should force the dissipation term in the e equation to vanish at the wall.

In order to render the € equation consistent at the wall, f; ~ n° is necessary [9].
The constant ¢, is determined from the decay of isotropic grid turbulence, where
ko~ x7", and m = 1.25 for high Reynolds numbers; in the final stage the
exponent changes to n = 2.5, and the f; tunction must take this into account.

o
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It may be noted that the f, function in the LB model meets only one of these
requirements (it does go to zero at the wall). In the present model the form of the f;
function is taken as

£ = [l = 0.27 exp(~ReHH [l ~ exp(—Re,)]

which meets all three requirements. The first term in square brackets changes, for low
Reynolds numbers, the exponent in k ~ 17" fromm = 125 tom = 2.5; regions where
this occurs are normally far from walls, so that the second term should be close to | even
if k is small. To show that, close to the wall, the second term of f; in square brackets
~p?, it i expanded in a Taylor series, so that

I — exp(—Re,) = Re, — Rej +

The local Reynolds number is defined as Re, = Vkn/v, and since & ~ n? close to the
wall, it can be seen that f; ~ r® as required.

To summarize the present model, the functions and the boundary conditions are
given:

m_._____.___3'4 f = } + (%\1
P+ Re/50)2 . fi )

{1 — 0.27 exp{ —ReD ][I — exp(—Re,}]

fu

fa

and k = de/on = (O at walls.

COMPARISON OF ceLs AND SIMPLEC

In this section the buoyancy-driven flow in a rectangular cavity (see Fig. 1) is
calculated using CELS and siMPLEC [12]. A transient formulation is adopted as a convenient
means of introducing relaxation into the iterative solution. When, as in this study, only
the steady-state solution is of interest, the time step AT is used as a free parameter by
which the convergence rate may be optimized. An underrelaxing factor of 0.5 was,
furthermore, used in the k and e equations, as well as in updating the viscosity.

At each {false) time step the & and € equations were solved after the «, v, 1, and
p equations {using CELS of SIMPLEC) had been solved. First the & equation was solved,
then the € equation, and finally, the viscosity was updated. This sequence (solving k and
¢ and updating ) was carried out three times for each time step, which was found to
increase the convergence rate both for crs and SIMPLEC; perhaps three times is not
optimal, but it was found to be superior (o one time.

The grids were generated using Eq. (6), where the coordinates of the x grid lines,
X,,. WEIE Set 83

X, = xﬂm{wﬂﬁ tanh [a (Zn—1 — 1 )];’{anhfwa} + O.S} (6}

. B 7
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where n is the number of x lines and « is a contraction factor; the same formula was
used for the y lines. A gnid with 28 % 28 interior nodes (with « = 2) and a 36 X 36-
node grid (@ = 3.5) were used in this section. When using the coarse grid the standard
high Revnolds number k—e model [f, = f; = f; = 1 in Eqs. (3)~(4)] was used to reduce
the influence of the turbulence model on the convergence rate, and the boundary conditions
at the walls were then prescribed using wall functions [13}.

In Tables | and 2 the convergence data for CELS and SIMPLEC are summarized (all
calculations were performed on a work station VAX-2000, which is approximately half
as fast as VAX-785); for more details, see {8}, The time steps given in the tables are
nondimensional, i.e. [5, 14],

; - 172
ATt = At Tret = (gﬁé”{) {7

Tres (9}

where T,; was taken as the largest in the field. The size of 7. was approximately 0.2
and 0.35 s for the fine and coarse grids, respectively,

Two different schemes were tested: QuUICK developed by Leonard {15] (the form
of the coefficients for a nonuniform grid is given in {8}) and the hybrid/central differencing
scheme (HDS) were both used in the u, v, and ¢ equations. In the k and € equations,
only the MDS was used. The reason that QUICK was not used in the k and € equations is
twofold. First, the k and € equations are rather insensitive to the choice of differencing
scheme, since they are very source dominated [16], and second, QUICK can produce
unphysical overshoots and undershoots, which could give negative values of & and e,
which, of course, is unphysical, and furthermore, normally leads rapidly to divergence
in the iterative solution. From the tables, it can be seen that the CELS solver is much
more efficient than siMPLEC, especially in connection with the less stable QUICK scheme.
Much larger time steps could be used with CELS than with SIMPLEC, the time steps presented
in Tables I and 2 are the largest time steps with which convergence could be obtained
(except when using CELS with HDS on the coarse grid, where infinitely large time steps

Fable 1 Convergence Data for ¢ELS and SIMPLEC
High Reynelds Number ke Mode! Together with Wall Functions

Number of
CPU, hours Ar* time steps
HDS on 28 = 28 Grid
CELS (.68 33 104
SIMPLEC 2.3 £.7 336
HDS on 38 x 56 Grid
CELS 21 6 F13
SIMPLEC &3 :SQ 0.5 187
Quick on 28 ® 28 Gnid
CELS 2.35 339

1.7
SIMPLEC 9.5 (.3 1984
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Table 2 Convergence Data for CELS and SIMPLEC.
Present Low Reynolds Number k¢ Model

Number of
CPU, houss Ar* ane seps

HDS on 56 x 56 Gnid

CELS 7.2 & 260

SIMPLEC 22.8 0.3 1221
Quick on 36 % 506 Grid

CELS 7.8 3 264

SIMPLEC 40 0.003-0.157

Calenlations were carried out using results obtained with the high Rey-
noids number ke model as initial fields.

TVarious time steps were tested, but ne convergent solution was ob-
tained. The normalized residuals (see text) varied during the iteration
procedure between 0.4 and 1.1

could be used [8]). From Tables 1 and 2, it can be seen that for CELS the time steps
should be on the order of, or slightly larger than, =, irrespective of turbulence model
and differencing scheme. On the fine grid it was not possible to aobtain a converged
solution with SIMPLEC using QUICK together with the low Reynolds number k—e model
(see Table 2}; no convergence problems were encountered with CELS,

A fixed number of sweeps performed by the CELS solver at each (false) time step
was used, namely, five. The linear relaxation factor was set to 5 (sce [5~8] for details).

RESULTS USING ceLs AND LOW REYNOLDS NUMBER k- MODELS

In this section the buoyancy-driven flow in the cavity in Fig. [ is calculated using
the two different low Reynolds number ke models presented above. The CELS solver is

Hot wall Cold wall
Y Fig, 1 Configuration using 1y = 80°C. 4. = 34.2°C,H = 2.5 m,
t L= 0.5 m. Verucal walls are isothermal, and horizontal walls are
LS adiabatic.
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used as described above, the QUICK scheme was used in the u, v, and f equations, and
HDS was used in the k and e equations. The results are presented in more detail in [8].

The calculated results are compared with the experiments by Cheesewright et al.
[3], who made laser Doppler measurements in an air cavity with Rayleigh number 4 X
1019 {4] (this case has also been numericaily simuiated by Ince and Launder [17]). These
experiments suffer from two problems: there is considerable heat loss through the side-
walls, and there is a small heat loss through the (well-insulated) top wall. Near the top
wall the flow is exposed to a positive vertical temperature gradient, which acts to reduce
the turbulent kinetic energy [see Egs. (3-4)]; this should cause relaminarization {which
occurs near the bottom wall). Due to the small heat loss through the top wall, the
temperature gradient is reduced, and the expected relaminarization does not occur. This
results in asymmetry of the flow in the experiments, and for this reason the comparison
between calculations and experiments is concentrated at the midplane, where end effects
should not be so large.

The heat loss through the sidewalls reduces the core temperature, which further
increases the asymmetry of the flow in the experiments, i.e., the ‘“diagonal symmetry”’
is lost (the flow in the upper right part of the cavity should be similar—or identical if
temperature effects on density and laminar viscosity are not taken into account—to that
in the lower left part of the cavity).

Grid and Convergence Criteria

A grid with 56 X 56 interior nodes is generated using Eq. (6 withoo = 3.5 Itis
important that the grid is sufficiently fine in the boundary layers at the vertical walls,
where large gradients prevail. The grid used gives two grid lines with constant x located
inside £* = 1 {i.e., near the vertical walls), which was considered sufficient.

The (absolute) residuals for the u, v, and r equations {the CELS solver ensures that
the continuity equation is satisfied exactly at each time step) were summed for all cells
and scaled with an appropriate value. For ¢ the scaling value was taken as the total heat
transfer through the hot wall, and for « and v the scaling value was calculated as

x=f

Z I’hsz!

x=0

at y/H = 0.5, where m; is the vertical mass flux through control volume i. When the
scaled residuals for the u, v, and 1 equations were all smaller than 0.5%, the solution
was considered to be converged. Tests were made with convergence criteria of 0.1%.
which gave a change in the calculated local heat transfer at the wall (see Fig. 5) of less
than 0.1%.

Mean Velocities and Temperatures

In Fig. 2 the velocity field is presented in the form of contours of the stream function
V. The flow consists of a large clockwise vortex, and from the contours of the stream
functions, it can be seen that there are two small clockwise vortices near the midplane
y/H = 0.5. The calculated v profiles are compared with experimental data in Fig. 3. It
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Fig. 2 Predicted contours of the stream fuaction, Preseat
model. Note change of scale in x direction (see Fig. 1).

can be seen that the agreement between prediction and experiments is good in the left
half of the cavity and that predictions using the two different turbulence models are close
to one another. The predictions with the LB model appear, in the core region, to be
slightly better than those obtained with the present model, but both predicted profiles are
probably within the bounds of experimental uncertainty. The sinusoidal form of the
velocity profile near the midplane, predicted with the present model, is probably due to
the fact that the predicted secondary vortices are stronger. The discrepancy between the
predicted profiles and the experimental profile near the cold (right) wall is due to the
aforementioned incomplete relaminarization at the top wall in the experiments. Careful
examination of the predicted velocity profiles reveals a slight asymmetry in the predicted
profiles as well. The velocity profiles near the hot wall are slightly fuller, which is to be
¢xpected, since (considering that the maximal velocities near the hot and the cold wall
are the same; see Fig. 3) the density is greater near the cold wall than near the hot wali.
it should be noted that the asymmetry in the predicted profiles is larger with the present
model than with the LB model; this difference is discussed in the following section.

.42
r B b
““““ Prasant
\ = Exep E
L

B.28 b ~
ki 2.00 - .
-0.28 ot 7]
L iy
r "t ]
- Y

3. 43 i ottty Fig. 3 Predicted and experimental v ve-

2.92 @. a4 g.68 g8 1.gp  locty profiles at wH = 0.5, Experiments
wAL by Cheesewright et af. [3].
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The predicted and experimental core temperatures are shown in Fig. 4, and it can
be seen that the predicted core temperatures are nearly symmetric (as expected) in the
sense that the local temperature difference ty — I at y is equal to £, — fc at H —
y. This symmetry is lost in the experiments due to heat loss through the side walls.

In Fig. § the predicted local heat transfer rates are compared with the experimental
rate. First, it should be noted that the predicted local heat transfer rates along the hot
and cold walls are close to equal. The predicted heat transfer rate along the hot wall is
slightly larger than that at the cold wall because the laminar viscosity is higher at the hot
wall [see Eq. (1e)}. The experimental local heat transfer rates along the two walls,
however, differ considerably. This is due, as mentioned before, to heat loss through the
sidewalls, which reduces the core temperature, and to the incomplete relaminarization
near the top wall,

It can be seen in Fig. 5 that the predicted heat transfer rates at the vertical walls
are larger with the present model than with the LB model because the predicted turbuient
viscosity close to the wall is farger with the present model than with the LB model (sce
Fig. 7). The predicted heat transfer rate with the present model agrees rather well with
experimental data at the hot wall (sce Fig. 5a), but is higher at the cold wall. The predicted
heat transfer rates with the LB model are lower than experimental data at the hot wall,
and vice versa at the cold wall. It is to be expected that, due to heat losses through the
sidewalls in the experiments, the experimental values should be too high at the hot wall
and too low at the cold wall. Accordingly, the heat transfer rates predicted with the
present model should be too high; however, due to problems in the experiments, no
definite conclusion can be drawn as to whether the predicted local heat transter rates with
the present model are better or worse than those obtained with the LB model.

The present model predicts a sharp increase in g at 7/H = 0.25-0.3. The model
predicts transition here. There is also a small “‘bump’’ in the curve for the LB model at
n/H = 0.3 at the hot wall, and this reflects a predicted transition region as well. This is
in rather good agreement (shightly better for the present model) with the experiments {3},
where a transition region was found at approximately n/H = 0.2

1.2
y/H @5 o
0.0 bt ettt s B e Fig. 4 Predicted and experimental local
2.2 @a.2 a.4 2.6 a.8 1.8 coretemperstures. Experiments by Cheese-

{teora~te) / (te) wright et al. [3L
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Turbulent Quantities

In Fig. 6 the predicted turbulent fluctuations are compared with experimental data,
and both turbulence models perform well. Even though the experimental \/k profile is
asymmetrical, it can probably be concluded that the turbulence models predict too high
a turbulence level in the core region. Further, it can be seen that the predicted \/k profiles
are, like the predicted v profiles (see Fig. 3), fuller near the hot wall than near the cold
wall, and that the predicted \/k profile with the present modet is more asymmetric than
that predicted with the LB model; this is further discussed below.

Turbulent viscosity profites at different vertical levels are presented in Fig. 7, which
shows that the turbulent viscosity falls from a value of 1520 u at the top of the hot wall
{hottom of the cold wall) to zero at the top of the cold wall (bottom of the hot wally.
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Fig. 6 Predicted and experimental tur-
bulent fluctuations, Vk, at wH = 0.5,
Expariments by Cheesewright et ai. {31

Close to the walls (x/L = 0.04 and x/L = 0.96), the turbulent viscosity predicted with
the present model is higher than that predicted with the 1.B model, and vice versa farther
from the walls. This is explained by the different f, functions: see Fig. 8. Close to the
walls the £, function damps p, more in the LB model than in the present model, whereas
the f, function in the present model is smaller farther from the walls.

in Fig. § the predicted heat transfer rate indicates a transition region near wH =
0.25--0.3. To further illustrate this, the predicted turbulent viscosity near the hot wall is
shown in Fig. 9. Here it can be seen that at y/H = 0.25 the turbulent viscosity is just
above zero, and that at y/H = 0.3 the turbulent viscosity has increased to approximately
3 .

In Figs. 1011 the calculated turbulent kinetic energy budgets for the two turbulence
models are shown. The dissipation term, — pe, attains a value (similar for the two models)

52
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B/ g 26 - N
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a.o0 2.22 0.40 /Lﬂ—ﬁﬁ .82 1.  Fig. 7 Predicted turbulent viscosity
.
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{a} £ o= (UL




142 L. DAVIDSON

&
L %] p
e present p
L FExp, J
Iq‘
T N -
Bt/ H 26 N /
\ /.-“
r \ i -
\ ¢
M [
N p
N [
. 4
- ~ f
- L
- -
‘w-"‘
PR ST RO BSOS A AU SN

4]
2.0 .28 P.40 .60 2.5 i.08
/.

{&)

B/ u 26 -

NIRRT BRI o b ddmdd ti b

2
6.00 020 0.42 0.6 280 1. Fig. 7 Predicted turbulent viscosity
x/L scaled with the faminar viscosity (Con-
{c} tinnedy: (b)Y yiH = 0.5, {¢} viH = 0.9.

at the wall according to the boundary condition de/dx = (. In a boundary layer the value
of e at the wall, according to experiments, is 0.05 = €, = 0.1, where

Ve,

€, =

wl

{see, e.g., [91). The present model and the LB model givee = 0.016ande) = 0.017,
respectively. The predicted values are thus considerably lower than the experimental
values for a boundary layer, but it must be remembered that the two flows are rather
different. The two models behave similarly for 0.04 = #/L = 0.96, where the production
term is baianced by the dissipation and diffusion terms. The present model gives larger
€ near the cold wall than the LB modei. This is due to the different constants in the f,
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function; f is farger in the present medel than in the LB model, and thereby the production
of e is larger. It can also be seen that the dissipation predicted with the present model is
larger near the cold wall than near the hot wall. This is explained by the fact that the
velocity profile (see Fig. 3) near the coid wall is sharper than near the hot wall, which
gives larger production of € near the cold wall. This is also true for the LB model, but
here it is not so pronounced, since the constant in front of the production term in the €
equation is larger in the present model than in the LB model.

The high values on € near the cold wall have been explained above by the sharp
velocity gradients prevailing there; it can equaltly well be cxplained the other way around:
high values on the dissipation give low fwrbulent viscosity, which in turn gives sharp
velocity gradients. However, the important feature. when explaining the high values on
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¢ and the sharp velocity gradients, is the connection between them, and the f; function
enhances this connection, especially in the present model.

In Figs. 10b and 11b the calculated turbulent kinetic energy budgets close to the
not wall for the two turbulence models are presented. In the LB model the dissipation
and the diffusion balance each other for x/L = 0.012. In the present model, production
increases close to the wall {x/L = 0.01) because the function f, does not damp k suffi-
ciently; however, the f; function increases € so that production at x/L == 0.008 starts to
fall off as the wall is approached. 1f the constant 0.05 is used in the f, function in the
present model, the production term increases up to 0.05 at a/L = 0.004.

It can be scen in Figs. 105 and 115 that the diffusion term close to the wall goes
to zero instead of balancing the dissipation term. This problem is of a numerical nature
and does not affect the predicted results, as the turbulence in this region is fully damped.
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The source term in the & equation is divided into one constant part (5.} and one proportional
part (Sp), so that the source can be written {18}

S = Spk + Se

where Sy = 0. All sinks (negative sources) must be inciuded in §p in order to prevent &
from becoming negative. The dissipation term, - pe, is rewritten using the expression
for p, {see section on low Reynolds number models, above}, so that

—pe = —pie, fukiip,
which gives
Sp = —pleufukipy

Close to the wall, all turbulence is efficiently damped, which makes any linearization of
the dissipation term inappropriate. In order to prevent a division by zero (in the expression
for Sp) when p, - 0, a tiny value is added to y., in the denominator; thus the linearized
dissipation term in the k equation goes to zero at the wall. Note that the dissipation, —e,
rather than the linearized dissipation term in the & equation is plotted in Figs, 10 and 11
the linearized dissipation term balances, of course, the diffusion term.

CONCLUSIONS

The turbulent flow in a rectangular cavity with 5:1 aspect ratio and Rayleigh number
of ¢ x 10'C has been calculated using two different solution methods (CELS and SIMPLEC)
and two different low Reynolds number k—e turbulence models.

The CELS solver was originally formulated for flows where the Boussinesq ap-
proximation (small density variations) for the gravitational term is valid. As this is not
the case in the present study, the solver was extended to handle large density variations.

A modified form of a low Reynolds number k-¢ turbulence model that may have
the capacity of predicting low Reynolds number effects in free flows has been developed.
An example where this is of importance is in ventilated rooms [2], where the flow, far
from walls, can relaminarize due to buoyancy. This model is consistent in its near-wail
behavior, and it allows simulation of the decay of grid turbulence. The model of Lam
and Bremhorst {1], which also is used, meets neither of these requirements.

The following conclusions can be made.

1. The meodified crLs solver proved to be up to more than four times as
fast as the SIMPLEC solver, and in one case (using QUICK and a low Reynolds
number k—¢ mode!l on the fine grid), no convergent solution was obtained with
SIMPLEC.

2. Considerably larger time steps could be used in CELS than in SIMPLEC.

3. The present modet as well as the model of Lam and Bremhorst are shown to
give results in good agreement with experimental data,

4. Flow along the vertical walls is, according to experiments |3, 19}, characterized
by a laminar, transitional, and fully turbulent region: both turbulence models
predict these regions in agreement with expetiments. The location of the tran-
sition region is slightly better predicted with the present model.
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