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ABSTRACT

Three difference schemes have been compared for calculating the flow in a two-
dimensional room : the standard hybrid upwind/central scheme, the skew-upwind
scheme, and the QUICK scheme. The two latter schemes are generally considered to be
more accurate than the first. In the present study, however, no large differences were
found between the different schemes ; rather the opposite, in fact, as QUICK was shown
to produce totally unrealistic results when a coarse grid was used.

Usually wall-functions are used when boundary conditions are prescribed at walls, which
means that the boundary layers have not to be resolved (i.e. very few grid lines are placed
in the boundary layer). An alternative is to resolve the boundary layer using a Low-
Reynolds number k- = model (LR-model). These two alternatives are compared in the
present study, the LR-model giving slightly better predictions.

1. INTRODUCTION

Much work has been carried out on numerical simulation of the flow in ventilated rooms.
In most (if not all) works the hybrid upwind/central difference scheme (HDS) or pure
upwind difference scheme (UDS) has been used. The most common method of treating
the wall-boundaries is, furthermore, the use of wall-functions.

The object of the present study is twofold : to investigate if a more accurate difference
scheme such as QUICK [1] (quadratic upstream-weighted interpolation scheme) or SUDS
[2] (skew-upwind differencing) predicts the flow better than HDS, and, to investigate if a
Low-Reynolds k-c model gives better predictions in a ventilated room than wall
functions.

2. MATHEMATICAL MODEL
2.1. Governing equations

The equations for steady-state, incompressible flow can be written in Cartesian tensor
notation as follows (U =u, U2 =v, X1 =X, X2=¥):

p : density k : turbulent kinetic energy
u, v, u; . velocity components e : turbulent dissipation
P : pressure
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The effective viscosity hypothesis has been used to represent the combined molecular and
turbulent stresses, where :

Heff = M+ Ht

2.2, Turbulence model

The standard k-e model, valid for high Reynolds number, can be extended so as to be
valid for low Reynolds number as well, where viscous effects become important. The
model by Jones and Launder [3] has been used in the present study, and it can be
written as :
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The boundary conditions k = ¢ = 0 at walls were used. In order to insure stability, a
12
linearization of the source term 2 (%?}2 has been made : we wrote it as a(k)k ; a is

updated at each iteration.

In the standard k-« models the last term in the k-equation, as well as the last term in the
e-equation are zero (standard boundary conditions are used for k and ) ; the functions
Cgz and ¢y, are furthermore constants (= 1.92 and 0.09 respectively) [4].

3. THE FINITE-DIFFERENCE SCHEMES

Every transport equation in fluid dynamics contains convective terms : the general

transport equation for the variable ¢ contains the d(pu¢)/dx for example. In control-
volume formulations the equations are discretized by first integratin g them over a control
volume. When the term above is integrated in the x-direction (see Fig. 1), we obtain :

(pud)e - (pudlw

The problem now arises : how to estimate ¢ (¢ is stored in the nodes W, P and E) ?
Three different schemes, used in the present study, are briefly presented below.



3.1. Hybrid Upwind/Central Differencing Scheme (HDS)
This scheme approximates the convective terms by central difference scheme (CDS) if the

Peclet number (= local Reynolds number) is below two, and by upwind differencing
otherwise, i.e. (see Fig. 1) :

0w = 0w, if [Pyl 22 anduw > 0 ;6w = ¢p,if [Py| 22 anduy < 0
Ow = adp + (1- @) dw,if | Pyl < 2

where o is an interpolation factor, which is equal to 0.5 if the face w lies midway
between W and P.

3.2. Quadratic Upstream-Weighted Interpolation (QUICK)

This scheme of Leonard [1] utilizes a polynomial of second order fitted to three nodes,
two nodes located upstream of the face, and one node located downstream ; the scheme is
thus a form of upwind scheme. It combines the accuracy of CDS (second order accuracy)

with the inherent stability of UDS (due to its upwind character). For a uniform grid the ¢w
is approximated as :

Ow = 0.125 ww + 0.75 0w + 0.375¢p, uy > 0

o= 03750w + 0.75¢p - 0.125¢g Uy < 0

3.3. Skew-Upwind Difference Scheme (SUDS)

This is only a first-order scheme of Raithby [2], but it has the advantage of reducing one
of the most important and frequent agencies of numerical diffusion for two-dimensional
recirculating flows : flow-to-grid skewness. The basic idea of the scheme is to apply
upwind differences in a vectorial rather that in a componential sense. If, for example, the
angle between the velocity vector at face w and the x-axis (see Fig. 1) is 45°

(i.e. uy = vy > 0) ¢y is approximated as :

Ow = Ow + Osw

U Contrl volume

Figure 1. Contro! volume



4. RESULTS

The three difference schemes (HDS, QUICK and SUDS) are compared with either
numerical or experimental data in two test cases : driven cavity, and the flow in a two-
dimensional room. The first case was chosen in order to verify that the difference
schemes had been correctly implemented.

In the last section the flow in a ventilated room is calculated using the Low-Reynolds k-«
model presented in chapter 2.

All calculations were carried out on a SUN workstation.

4.1. Comparison of three difference schemes
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Figure 2. Configuration for the wall-driven square cavity

Driven Cavity Flow. The wall-driven square-cavity (see Fig. 2) has been examined by
many workers, and accurate numerical data exist. The Reynolds number
Re = ul/v = 1000 was chosen. The results are compared with data obtained by

Schreiber and Keller [5].

The calculated u-profiles at x/L. = 0.5 (using a 22 x 22 nodes grid) are shown in Fig. 3.
As can be seen, QUICK is superior to SUDS and HDS, and the results predicted with
QUICK are in close agreement with those in [4].
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Figure 3. Vertical u-velocity profile (driven cavity)



A Two-dimensional Ventilated Room Using Wall Functions. The
configuration of the room is shown in Fig. 4. Two computed velocity profiles are
compared to experimental values [6] in Fig. 5; a 53 x 44 nodes grid was used. The three
schemes all perform well.
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Figure 4. Description of the configuration
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Figure 5a. Horizontal u-velocity profile Figure 5b. Vertical v-velocity profile
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A coarser grid (28 x 24 nodes) was also tested. With this grid the resuits using HDS and
SUDS were good, whereas the results predicted using QUICK were disastrous. This was
due to severe under -and over- shoots near the outlet, where steep gradients prevail. The
dimensions of the outlet is smaller than the inlet for this configuration ; this is the reason
why steeper gradients occur near the outlet rather than, as normally is the case, near the

inlet.
4.2. Low-Reynolds calculation of the flow of the ventilated room

A 65 x 76 grid was used with high resolution near walls. In particular, 17 grid points
were put into the inlet in order to get a detailed analysis of the lower wall jet. We have no
experimental data very close to the walls, nevertheless the Low-Reynolds model
influences the core of the flow.

Two velocity profiles (computed with and without the Low-Reynolds model) are
compared to experimental data [6] in Fig. 6. The Low-Reynolds model predictions are

slightly better.



We now give an analysis of the lower wall jet to show that we recover some known
features about wall jets and about Low-Reynolds predictions. It is convenient to use the

variables :

Ut = ufve 3yt = yvepli s kK = kA2,
where u is the velocity component paraliel to the wall, v« is the friction velocity, and y is

the normal distance to the wall (see Fig. 4).

Since we are dealing with a cavity flow, these wall variables are x dependent.

In Fig. 7 we compare the Low-Reynolds prediction of u* (fog y*) to the universal law :
ut=55log y* + 545

As noticed in [3] the slope of the computed u* function in the semi-logarithmic region

(15 £ y* £ 50) is distinctly higher than the 5.5. Actually we do not

universal regime.

_(in principle valid for y+ > 30)

reach here the

We can however check that u* (y*) starts linear :

as it should be.

for y* < 5

Looking at k+ (y*) for several x/l values we can show that k* takes its maximum at

y* =15 (independently of x) which corresponds to the location of the maximum
production of k (see Fig. 8). This fact has been verified experimentally for a lot of near

wall flows see [7].

Figure 6a. Horizontal u-velocity profile
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Figure 7. Calculated velocity profile and fog-law
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Figure 6b. Vertical v-velocity profile
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Figure 8. Calculated turbulent energy profile



5. CONCLUSION

The usual hybrid discretization scheme and the use of wall functions are very often
considered as crude approximations producing some inaccuracy in numerical fluid flow
simulations. We have shown in this paper that for standard ventilation flows, more
envolved discretization schemes yields very similar predictions to those obtain with the
hybrid scheme. Moreover in the case of coarse grid, the QUICK scheme produces
erroneous results.

We have also shown that the Low-Reynolds k-e turbulence model gives only slight
improvements of the predictions in the core of the flow, eventhough wall functions have
been applied in the standard k-e model in regions where y* is moderate (y* < 50). In the
future more complex configurations including obstacles will be considered to see whether
our conclusions remain true.
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