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Abstract-Predicting the interaction process in transonic flow between the inviscid free stream and the 
turbulent boundary layer is a challenging task for numerical simulation, which involves complex physical 
phenomena. In order to capture the physics, a turbulence model capable of accounting for physical 
phenomena sue h as streamline curvature, strong non-local effects and history effects, and large irrotational 
strains should be used. 

In the present work a second-moment Reynolds Stress Transport Model (RSTM) is used for computing 
transonic flow in a plane channel with a bump. An explicit time-marching Rung+Kutta code is used for 
the mean flow <equations. The convecting terms are discretized using a third-order scheme (QUICK), and 
no explicit dissipation is added. -- 

For solving the transport equations for the Reynolds stresses u*, v*, and Z as well as k and E an implicit 
solver is used which-unlike the Runge-Kutta solver-proved to be very stable and reliable for solving 
source dominated equations. Second-order discretization schemes are used for the convective terms. As 
the RSTM is valid only for fully turbulent flow, a one-equation model is used near the wall. The two 
models are matched along a pre-selected grid line in the fully turbulent region. 

The agreement between predictions and measurements is, in general, good. 

1. INTRODUCTION 

Accurate prediction of shock wave turbulent boundary-layer interactions in transonic flows is of 
great practical importance for many industrial applications. The computers of today are sufficiently 
powerful to allow us to perform Navier-Stokes calculations on fine grids and-at the same 
time-use second-moment closure models for the turbulence. When assessing the performance of 
turbulence models it is important that the configuration is as simple as possible, but that it still 
possesses the essential details of practical configurations. The shock/boundary-layer interaction in 
a two-dimensional channel with a bumpwhich is investigated in the present study-fulfils these 
requirements. This configuration was a test case in a BRITEfEURAM project on CFD-validation 
called EUROVAL, [ 11. 

In the present work, the transonic flow in a two-dimensional channel with a bump is calculated 
using a Reynolds iStress Transport Model (RSTM), which has been implemented into an existing 
explicit Runge-Kutta time-marching finite volume code. In order to obtain stable and convergent -- 
solutions for the equations of the turbulent quantities (k, 6, u2, u* and G), they are solved with an 
implicit solver. In the viscosity affected flow near the wall (approximately for y + 6 50), the RSTM 
is matched with a one-equation model. 

Second-moment closures such as RSTM are superior to simpler turbulence models such as the 
k-c or the Baldwin-Lomax models. The main reasons for their superiority are their ability to 
account for (i) streamline curvature, (ii) strong non-local effects and history effects for the 
individual stresses, and (iii) irrotational strains, phenomena all of which are present in 
shock/boundary-layer interaction. 

(i) When the streamlines in a boundary layer flow have a convex (concave) curvature turbulence 
is stabilised (destabilised), which damps (augments) the turbulence [2, 31, especially the shear stress 
and the Reynolds stress normal to the wall. Bradshaw [2] demonstrates that even small amounts 
of convex curvature can have a significant effect on the turbulence. In the present configuration 
both wall curvature and streamline curvature are present. 

(ii) The shock produces strong anisotropy in the Reynolds stresses, which is transported 
downstream. 
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(iii) In boundary layer flow, the only term which contributes to the production term in the 
k equation is -pZaU/ay (x denotes streamwise direction). Thompson and Whitelaw [4] found 
that near the separation point, as well as in the separation zone, the production term 
- p(u’ - v’) au/ax is of equal importance. This is also the case for transonic flow 
where large irrotational strains (au/ax, aV/ay) prevail in, for example, the shock region. 

The interaction process between the inviscid free stream and the turbulent boundary 
layer involves complex physical phenomena. When a shock penetrates into a boundary layer, the 
Mach number of the upstream flow that the shock encounters decreases as the shock approaches 
the wall. The shock must adapt to this situation so that it vanishes when it reaches sonic conditions. 
The pressure signal carried by the shock is transmitted in the upstream direction when the Mach 
number in the inner part of the boundary layer falls below one. Thus, in the inner part of the 
boundary layer, the information of a sharp pressure increase caused by the shock is transmitted 
upstream. This causes a thickening of the boundary layer, which generates compression waves in 
the adjacent supersonic layer. These waves, in turn, weaken the shock. If the shock is strong enough 
an oblique shock is produced by the coalescence of the compression waves, giving a so-called 
A-shock. 

Up to day, use of second-moment closures in transonic-speed aerodynamics is not too 
common. Of earlier contributions, those of Vandromme and Haminh [5], Benay et al. 
[6], Dimitriades and Leschziner [7], Leschziner et al. [8] and Lien and Leschziner [93 should 
be mentioned. The present methodology-a compressible, time-marching code for the mean 
flow equations, and an implicit solver for the turbulent quantities-has previously been applied 
to airfoil flow [IO-121 and to transonic flow in a channel with a bump (incipient separation) 

[131. 
The first part of the paper outlines the numerical method for solving the mean-flow equations, 

the second part presents the RSTM. Then follows a section which shows how second-moment 
closures do respond to streamline curvature effects as well as irrotational strains. The final part 
presents an extensive comparison of computations and experiments including mean velocities, wall 
Mach number, and turbulent stresses. 

2. MEAN FLOW EQUATIONS 

The numerical scheme applied to solve the mean-flow equations is an explicit Runge-Kutta 
scheme [lo, 14, 151. The mean flow equations in Cartesian coordinates over a control volume I’ 
with boundary aV read 

where the vector of state variables U = (p pU PVPE)~ contains density p, together with x, y 
components of mean-flow velocity U, V, and energy per unit mass E. The flux tensor 2 is 
composed of inviscid, viscous and turbulent parts 

A?’ = (F, - F, - FT)e,v + (G, - G, - G,)e, (2) 

in the x, and y coordinate directions, respectively. 
The inviscid fluxes are given by 

PV 

F, = PUV 

PV2+P 

PVH 

(3) 
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and the viscous and turbulent fluxes are given by 

I - 
0 

F,+ FT= 
z CPU 
7 xJ-puV 2 

U(~,, - PU2) + w,x - PG I- 4x 

Gy+ GT= 

H is the stagnation enthalpy, H = E +p/p, and p is the static pressure. 
The heat flux terms in the energy equation are not calculated with RSTM, but the eddy viscosity 

assumption is used., i.e. 

qx= -c p LL+$ g 
( > t 

qy=-cp E+” !x 
( ) Pr, ay 

where the turbulent viscosity is obtained from k and 6 as 

pt=c,,p5 
6 

The value of the Prandtl number Pr = pep/A was taken as a constant 0.72, and Pr, was set to 0.9 
(constant) for the turbulent flow solutions presented in this paper. The laminar viscosity p is 
calculated using the Sutherland formula. The main reasons why the heat flux terms are computed 
using the eddy viscosity assumption is that these terms are only weakly involved in the 
hydrodynamic process. Furthermore, it reduces the complexity of the equation system, avoiding 
transport equations for another three or four turbulent quantities (q, 2, and maybe the dissipation 
of temperature fluctuations ct). 

The main features of the finite volume code can be summarised as: 
l explicit, compressible time-marching, cell-centered, local time stepping; 
. four stage Runge-Kutta scheme for the mean flow equations; 
. the convective terms in the mean equations are discretized using a third-order scheme 

(QUICK) P61; -- 
o the u2, u2, &, k and 6 equations are solved using an implicit line relaxation solver (TDMA) 

[17]; the convective terms are discretized using a second-order scheme of Van Leer [I 81; 

2.1. D@erencing scheme 

The QUICK scheme [16], i.e. Quadratic Upstream Interpolation Convective Kinematics, utilizes 
a second-order polynomial fitted to three nodes, two located upstream of the face, and one located 
downstream; the scheme is thus a form of upwind scheme which can be written, for a uniform grid, 
as 

Qi_+ = -0.125Q,_2 + 0.75&,-, + 0.375Qi, Ui_j > 0 

Qi_i = +0.375Qj_, + 0.75&, - 0.125Qi+,, Ui_+ < 0. 

where Q is the components of F, and G, in equation (3). The scheme combines accuracy 
(third-order) with the inherent stability of upwind differencing. This scheme is unbounded, which 
means that it can give rise to non-physical oscillations. This scheme was implemented into the 
Rung+Kutta method by Hellstrom [ 11, 121, and it has previously been applied to transonic flow 
in Ref. [19]. In the:se works QUICK was found to be superior to the other schemes. Generally, the 
author’s experience is that QUICK is better than second-order schemes; one problem is that it does 
not always give stable, converged solutions. 

The traditional Runge-Kutta method [14, 15,201 is based on central differencing together with 
explicit adding of second- and fourth-order numerical dissipation, which are tuned with numerical 
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premultiplying constants. The present QUICK scheme increases the accuracy and does not involve 
any tuning numerical constants. The overall accuracy of the method is believed to be close to 
second-order in space. 

2.2. Boundary conditions 
2.2.1. Inlet. Total temperature and total pressure are prescribed. V is set to small negligible 

values (lo-“) and the density is extrapolated from inside. The U-velocity and the total energy are 
set as: 

E,, = $+)+;w+ V2) 

All turbulent quantities are set to zero. The calculations showed to be insensitive to the choice 
of inlet values on the turbulent quantities, probably because the inlet is located far upstream of 
the shock. The same experiences were made in Ref. [I]. 

2.2.2. Outlet. The pressure is fixed at the outlet. For the remaining variables the Riemann 
invariants are used, which are based on the theory of characteristics for the locally one-dimensional 
problem. The four Riemann invariants are: 

2 
R, =U.n--c 

Y-l 

2 
R,=U.n+-c 

Y-l 

R, = In 
0 

p 
PY 

R,=n,U -n,V 

where n and c denote normal vector and speed of sound, respectively. The normal gradients of the 
Riemann invariants are set to zero, i.e. 

R, is taken from outside and R,, R, and R4 from inside (outside and inside refer to the calculation 
domain). R, gives the density since the pressure p/p0 is given at the outside. R4 gives the tangential 
velocity V. Finally, knowing the speed of sound both inside and outside, R, gives the U-velocity. 

The streamwise gradients of the turbulence quantities are set to zero. 
2.2.3. Wall. The normal gradients for temperature and pressure are set to zero, and the -- 

remaining variables are set to zero. No boundary conditions are needed for a*, a’, Uv and E, since 
the one-equation model is used near the walls (see Section 3). 

2.2.4. Symmetry line. V and Uu are set to zero, and the normal gradient is set to zero for the 
remaining variables. 

3. THE REYNOLDS STRESS TRANSPORT MODEL 

When computing compressible flow either mass-averaging (compressible) or time-averaging 
(incompressible) variables can be used. In weakly compressible flow (Mach number below 2) as 
in the present study, the incompressible time-averaging concept can be used. 

The Reynolds Stress Transport Model, neglecting compressibility, has the form [21]: 

&(p”kuiuj)= -p~~-p~~+~ij+Dij-pe, \ k I I k k I 

convection production Pij 

(4) 
+ @ij + Dij - PCij 



RSTM of shock-induced separated flow 251 

The convection and production terms are exact and do not need any modelling assumptions. The 
pressure strain Qii and the dissipation cij are modelled in a standard way (see e.g. Gibson and 
Launder [21]). The diffusion term D, is modelled using the Generalized Gradient Diffusion 
Hypothesis GGDH [22] 

with @ = G. A simpler eddy viscosity assumption 

D,= & 
” 

was also tested. The difference in the obtained results using the two diffusion model was found to 
be negligible. The constants in the Reynolds stress model are taken from Gibson and Younis [23]. 

The Reynolds stresses are stored at the cell centres. In implicit SIMPLE codes apparent viscosity 
is used in the momentum equations to enhance stability via stability-promoting second derivatives 
[24]. When using Runge-Kutta solvers for the momentum equations, no such stability promoting 
remedies are needed, because the mean flow variables are solved explicitly, which means that all 
terms are on the right-hand-side of the discretized equations, and thus the solution procedure is 
not sensitive to the explicit adding of the Reynolds stresses. 

Near the walls the one-equation model by Wolfshtein [25], modified by Chen and Pate1 [26] (see 
also Ref. [27]), is used. In this model the standard k equation is solved; the diffusion term in the 
k-equation is modielled using the eddy viscosity assumption. The one-equation model and the 
RSTM are matched along a pre-selected grid line at approximately y + = 50. The location of the 
matching line has been varied, and the results were found to be insensitive to the exact location 
of the matching line. For further details, see Ref. [13]. --- 

In an RSTM there are two equivalent sets of equations which can be solved. Either u*, u2, w2, -- 
E and c or u’, Y*, Ic, Z and t. The latter set has been chosen in the present study. The main reason 
for this choice that the k-equation has to be solved in the one-equation region under any 
circumstances. 

The standard k and c-equations in the RSTM have the form: 

The diffusion terms Dk, D, are, as for the Reynolds stresses, calculated using GGDH, see equation 

(9. 
In Ref. [IO], attempts were made to solve the k and t equations explicitly using the existing 

RungeKutta solver. However, no stable, convergent solution was obtained. Instead an implicit 

Fig. 1. Curved boundary layer flow along r = constant. U(, = u,,(r), II, = 0. 
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discretization method usis an implicit line relaxation solver (TDMA) has been employed for the 
turbulent quantities (7, v*, Uv, k and c). It has been used for the last 20 years in incompressible 
codes based on pressure-correction procedures such as SIMPLE [28]. For more details, see Refs. 
[lo, 171. 

Central differencing is employed for the diffusive terms, and for the convective terms a scheme 
of Van Leer [18] (see also Ref. [13]) is used. The Van Leer scheme is bounded and of second-order 
accuracy, except at local minima or maxima, where its accuracy is of the first order. 

4. THE EFFECTS OF STREAMLINE CURVATURE AND IRROTATIONAL STRAINS 

Second-moment closures such as RSTM are superior to simpler turbulence models such as the 
k-+ and the Baldwin-Lomax models. Two reasons (see Introduction) for the superiority of the 
RSTM are its ability of taking into account the influence of streamline curvature and normal 
stresses and irrotational strains. The physics of both these phenomena are faithfully reproduced 
by second-moment closures because the production terms need not to be modelled. 

4.1. Streamline curvature 

When the streamlines in a boundary layer flow have a convex curvature the turbulence is 
stabilised, which damps turbulence [2,3], especially the shear stress and the Reynolds stress normal 
to the wall. Concave curvature destabilises the turbulence. The ratio of boundary layer thickness 
6 to curvature radius R, 6/R, is a common parameter for quantifying the curvature effects on the 
turbulence. The work reviewed by Bradshaw [2] demonstrates that even such small amounts of 
convex curvature as 6/R = 0.01 can have significant effects on the turbulence. Thompson and 
Whitelaw [4] carried out an experimental investigation on a configuration simulating the flow near 
a trailing edge of an airfoil, where they measured 6/R 2: 0.03. They report a 50% decrease of pv* 
(Reynolds stress in the normal direction to the wall) due to curvature. The reduction of pu’ and 
-puU were substantial as well. They also report significant damping of the turbulence in the shear 
layer in the outer part of the separation region. 

Curved boundary layer flow is an illustrative model case. A polar coordinate system r - 0 (see 
Fig. 1) with 0 locally aligned with the streamline is introduced. As U, = U,(r) (with XJ,/ar > 0 
and U, = 0), the inviscid radial momentum equation degenerates to 

The centrifugal force exerts a force in the normal direction (outward) on a fluid following the 
streamline, which is balanced by the pressure gradient. If the fluid is displaced by some disturbance 
(e.g. turbulent fluctuation) outwards to level A, it encounters a pressure gradient larger than that 
to which it was accustomed at r = r,, as (U,), > ( Uo)o, which from equation (6) gives 
(ap/ar), > (ap/Br),. Hence the fluid is forced back to r = ro. Similarly, if the fluid is displaced 
inwards to level B, the pressure gradient is smaller here than at r = r, and cannot keep the fluid 
at level B. Instead the centrifugal force drives it back to its original level. 

It is clear from the model problem above that convex curvature, when au,/& > 0, has a 
stabilising effect on (turbulent) fluctuations, at least in the radial direction. How the Reynolds stress 
model responds to streamline curvature is discussed below. 

Assume we have a flat-plate boundary layer flow. The ratio of the normal stresses p2 and pv’ 
is typically 5. At one x-station the flow is deflected upwards, see Fig. 2. How does this affect the 

Y 
A 

streamline 

L x - 

Fig. 2. The streamlines, which in flat-plate boundary layers are along the x-axis, are suddenly deflected 
upwards (concave curvature) e.g. due to an approaching shock. 
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Table 1. Effect of streamline curvature on turbulence 

dU.ldr > 0 dU./dr < 0 

convex curvature 
concave curvature 

&bilking 
destabilisinn 

destabilising 
stabilisine 

turbulence? Let us study the effect of concave streamline curvature. The production terms P, in 
equation (4) due to rotational strains can be written 

RSTM, z-es.: P,, = -2pu0c 
ay 

RSTM, Z - eq.: p,,= -pss-pg!!! 
ay 

RSTM, 2 - eq.: Pz2 = -2pE g 

2 

k --L: pk=/Jt 

As long as the streamlines in Fig. 2 are parallel to the wall, all production is due to aU/ay, but 
as soon as the streamlines are deflected we get more terms due to aV/ax. Even if aV/ax is much 
smaller than aU/a,y it will still give a non-negligible contribution to P,* since pu’ is much larger 
than pu’. Thus the magnitude of P,2 will increase (P,* is negative) since aV/ax > 0. An increase of 
the magnitude of P,2 will increase-& which, in turn, will increase P,, and P22. This means that 
pu’ and p? will be larger and the magnitude of P,, will be further increased, and so on. It is seen 
that we have positive feedback, which continuously increases the Reynolds stresses. We say that 
the turbulence is destabilised due to concave curvature of the streamlines. 

However, the k--c model is not very sensitive to streamline curvature, since the two rotational 
strains are multiplied by the same coefficient (the turbulent viscosity). 

If the flow in Fig. 2 is a wall-jet flow where aU/ay < 0 the situation will be reversed: the 
turbulence will be stabilised. 

If streamline curvature has a stabilising or destabilising effect is dependent on if momentum in 
the tangential direction increases or decreases with radial distance from its origo (i.e. the sign of 
aU,/ar), and on type of curvature (convex or concave). For convenience these cases are summarised 
in Table 1. 

4.2. h-rotational strains 

In pure boundary layer flow the only term which contributes to the production term in the k 
and ~-equations is - pZ aU/ay. Thompson and Whitelaw [4] found that near the separation 
point, as well as in the separation zone, the production term -p(u’ - u’) dU/ax is of equal 
importance. As the exact form of the production terms are used in second-moment closures, the 
production due tat irrotational strains is accounted for correctly. 

In the case a,f stagnation-like flow (see Fig. 3), where 2 N 7, the production due 
to normal stresses is zero, which is also the result given by second-moment closure, whereas k-c 

JL 
Y 

I- X 

Fig. 3. Stagnation flow. 

CAP 241SF 
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0.3 

Y/L 

0.0 

0.0 0.5 1 .o 1.5 
x/L 

Fig. 4. Configuration of the channel with a bump. Left boundary: inlet; right boundary: outlet; upper 
and lower boundary: wall. 

models give large production. In order to illustrate this, let us write the production due to the 
irrotational strains aU/ax and d V/ay for RSTM and k-c : 

RSTM: Pk=0.5(P,,+Pz2)= -pfg-pzz 
ay 

k-t: Pk = :/it{(g)’ + ($y} 

If 2 N 2 we get P,, + Pz2 2: 0 since au/ax = -aV/ay due to continuity (nearly incompressible). 
The production term Pk in k-c model will, however, be large, since it will be sum of the two strains. 

5. RESULTS 

The configuration is shown in Fig. 4. Grid lines are concentrated in the shock region and near 
the wall (the first grid line near the wall is located at y+ 2: 2). One advantage of using a 
one-equation model as compared with using a standard low-Re model where E is solved all the way 
to the wall, is that the former model does not need as fine a grid near the walls; the latter do need 
a fine grid in order to resolve the steep gradients of E. Two different grids have been tested, one 
with 200 x 100 nodes and one with 100 x 147 (see Fig. 5). The predicted results are compared with 
detailed laser velocimetry data of Dtlery and his group [29, 301 (Case C). The Mach number at 
the inlet is approx. 0.6. The flow is accelerated over the bump and reaches supersonic conditions 
with Mu N 1.4 just in front of the shock at x/L 2: 0.94. After the shock the flow separates. 

The exit pressure in the experiments wasp,,i,/p, = 0.62. If this value is used, the shock is predicted 
too late. In order to get a meaningful comparison between different turbulence models, it is 
important that the shock location is the same for all models. The same conclusion was drawn in 
EUROVAL [l] and by Dimitriades and Leschziner [7] and Lien [31]. It should be noted that the 
post-shock pressure is below that given by inviscid theory for a normal shock, which indicates that 

Mach 

0.600 

Fig. 5. Isentropic Mach number at the lower wall. 
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Y/L 

02 

0 1’ 

00 
09 1 0 

X/L 

Fig. 6. (a) Contours of constant Mach numbers. RSTM. (b) Contours of constant Mach numbers in the 
shock region. RSTM. 

the cross-section area is reduced in some way, e.g. by growing boundary layers on the lateral walls 
causing three-dimensional effects as suggested in Refs [l, 7,311, or, as proposed by Dtlery and 
Marwin [32], through the rapid increase of the thickness of the boundary layers at the upper and 
lower walls. The reason for the low pressure after the shock is probably a combination of the two 
effects. In the calculations the exit pressure has been set to Pe.it/Po = 0.660 for RSTM and 0.670 
for kt so as to give the shock at the experimental position. 

In Fig. 5 the calculated isentropic Mach number at the wall is compared with experiments. 
Predictions using two different grids are included, and it can be seen that there is no major 
difference between the two grids. All results presented below have been obtained with the 
200 x loo-mesh. It can be seen that after the shock (x/L 1: 1.5) the predicted Mach number is 

0.03 

Fig. 7. Displacement thickness. (-) RSTM; (---) k-c. 
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smaller (the pressure is larger) than the experimental one. This is because the exit pressure has been 
increased in the calculations in order to obtain the shock position according to experiments. The 
experimental values exhibit an increase in the Mach number for x/L > 1.6. This is because there 
was a contraction in the wind tunnel, which has not been included in the calculations. 

Contours of constant Mach numbers are shown in Fig. 6. It can be seen that the shock occurs 
at x/L 2 0.94 and there is no clear I-structure, indicating a relatively weak interaction between 
the shock and the turbulent boundary layer. In Fig. 6(b) a zoom presents Mach number contours 
in the shock region. Here is is clearly seen that the second leg in the I-shock is not captured in 
the predictions. 

In Fig. 7 the predicted displacement thickness is compared with experiments, and it is seen that 
the predicted interaction is somewhat too weak both with RSTM and k-r, but that after the shock 
the RSTM-predictions are in better agreement with experiments than are the k+-predictions. 

The predicted U-velocities and the Reynolds stresses (divided by density) are compared with 
experiments in Figs 8 and 9 (all velocities have been made non-dimensional with the stagnation 
speed of sound a,, and X, y have been made non-dimensional with the length of the bump L). From 
the U-profiles it is seen that well ahead of the shock (x/L = 0.81) the predicted boundary layer 
is slightly thinner than the experimental one. The velocity profile at x/L = 0.944 shows that the 
flow in the lower part of the channel (y/L < 0.05) has entered the shock region, whereas further 
away from the wall the flow has not yet reached the shock. In the shock region on an airfoil, Alber 
et al. [33] found similar velocity profiles. This is due to the interaction process between the boundary 
layer and the external flow. The information of an approaching shock is transmitted upstream in 

(4 

0.06 - 

0.06 

0 0 0 1 

u/a0 

0 0 0 1 

u/a0 

Fig. 8. U/u,: (-) RSTM; (---) k*. (a) 0, x/L=O.81; w, x/L =0.944; 0, x/L =0.979; 
0, x/L = 1.014; x , x/L = 1.049. (b) 0, x/L = 1.084; n , x/L = 1.119; 0, x/L = 1.154; 

l , x/L = 1.224; x , x/L = 1.503. 
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(a) 0 06 

0.00 

0.06 
@I 

0.04 

Y/L 

0.02 

0.00 

0.06 

Cc) 

c.04 

Y/L 

0.02 

0.00 

0 0 0 

-TiiT/a~ 

0 0.05 

0 0 0 0 0.06 

G/a; 

0 0 
F/a: 

0 0.005 

Fig. 9. Streslr profiles. (a) -Z/u:. (b) s/a:. (c) &I:. (---) RSTM; (---) k+. n , x/L=O.944, 
0, x/L = 1.049; 0, x/L = 1.084; 0, x/L = 1.503. 

the subsonic part of the boundary layer, which causes a thickening of the boundary layer. This 
thickening, in turn, generates compression waves in the outer supersonic region. As a result the 
shock-wave is inclined and the width of the shock region is increased, see Fig. 6. 

After the shock, the predicted velocity profiles indicate a weaker tendency of the flow towards 
separation than is suggested by the experimental data, illustrating a stronger interaction between 
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the shock and the turbulent boundary layer in the experiments. This can be due to three- 
dimensional effects in the experiments. The fact that the predicted boundary layer is thinner 
(“fuller” velocity profile) ahead of the shock can also affect the tendency towards separation. 
Generally, velocity profiles with low value of the form factor H,, (“full” boundary layer velocity 
profiles) has greater resistance to separation as compared with profiles with high H,?. However, 
this lower resistance to separation for the profiles with high H,, is somewhat increased because the 
interaction length L* (the distance between the point where the wall pressure starts to rise and the 
point where the wall Mach number falls to one) increases for increasing H,, [32]. Such an increase 
in L* leads to a decrease of the adverse pressure gradient, since the supersonic compression takes 
place over a longer distance, which limits the tendency towards separation. 

The velocity profiles in the recovery region show that the predicted recovery rate is too slow as 
compared with experiments, and the predicted shear stresses are too small (except at the last x 
station). Comparing the RSTM and the k+ predictions, one finds that the Reynolds stresses 
obtained from the RSTM are somewhat smaller than those from k-c, although the velocity 
gradients are larger in the former case, giving a larger production term. This is an example of the 
sensitivity of the second-moment closure to streamline-curvature-induced damping of turbulence. 

The velocity profiles in Fig. 8 show that the recovery rate after the separation region is too slow. 
It seems that this weakness is worse for RSTM than for k--c, but this is more a result of history 
effects from the separated region, where the RSTM predicts a larger separation region than k-c. This 
weakness of the turbulence models has, as pointed out in Ref. [9], also been observed in other flows. 

The predicted shear stresses in the shock region are smaller than in the experiments, which seems 
logical, as the predicted velocity gradients are smaller, thus generating smaller -@-stresses. Turning 
to the normal Reynolds stresses, it is striking how large is the experimental level of anisotropy in 
the shock region. It is increasing from z/7 N 5 at x/L = 0.81 to its maximum of 15 at x/L = 1.049, 
whereas the predicted value (2: 3) is almost unaffected by the shock. The experimental value of 15 
is surprisingly high. Delery [29] argues that the cause for the large values of anisotropy can be found 
by studying the production terms in the 2 and z-equations, which read: 

u2 - eq: P,, = -2pUr;c’ - 2pIlig 
+ 

G - eq.: P22 = -2pzg - 2pv2~v 
ay 

(7) 

In the shock region au/ax is large and negative, which means that the second term in equation 
(7) increases the production PI, and the second term in equation (8) gives a negative contribution 

to p,,, since aV/ay = -all/ax (nearly incompressible) which reduces v2. Hence, the anisotropy 
should increase at the shock, but the question is whether the increase should be as strong as 
indicated in the experiments. In Fig. 10 the peak values of u’ E s/a,, and v’ are compared with 
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Fig. IO. Comparison of predicted, using RSTM, and measured peak values of turbulent intensities 
u’ z (ti2)112/a, and v’. 
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experiments. The predicted (~‘)r_~ and (a’&_+ increase both rapidly at the shock and seem not to 
be very much influenced by the normal strains, although they should according to equations (7, 
8). In the experiments the maximum of u;,_~ occurs approximately x/L = 0.05 ahead of that of uL,~. 

In a later paper by Dtlery and his group [6] they indicate the existence of oscillations of the 
shock-wave, which act as a turbulence amplifier. These oscillations appear as fluctuations in the 
x-direction which amplify 2 more than v ‘. However, it should be mentioned that other 
experimental invesugations also report very high turbulence fluctuations and large anisotropies in 
the normal stresses. Seegmiller et al. [34] report turbulent kinetic energies of k/a: IV- 0.12 on an 
airfoil in the immediate post-shock region. Johnson and Bachalo [35], who studied transonic flow -- 
on a symmetric airfoil, present anisotropies of u2/u2 ‘v 5.8 at 67% of the chord (the shock is located 
at x/c = 0.37). It is an open question whether this means that shock-oscillations also exist in the 
experiments presented in Refs. [34,35]. 

As Cartesian velocity components have been used in the calculations, no explicit curvature terms 
appear in the Reynolds stress equations [see equation (411. Of course, the Reynolds stresses 
formulated in Cartesian coordinates are also affected by curvature, but they are affected implicitly. 
To investigate the curvature effects, it is appropriate to study the equations in polar coordinates 
r-8, with the flow in the circumferential 8 direction (i.e. U, = Ue(r), U, = 0). The e-axis is thus 
chosen so that the flow is locally aligned with this axis. Curvature terms now appear because the 
r = const. coordinate lines are curved. The Reynolds stress equation can, in symbolic form, be 
written 

C, - D, = P, + Qij - cij + P; + C> (9) 

where superscript c on P, and C, denotes curvature terms originating from production and 
convection, respectively, see Table 1. The larger these terms, the more important the curvature 
effects. 

The flux Richardson number 

is a convenient parameter for studying curvature effects (for details on how to compute curvature 
radius of streamlines, see Ref. [36]). Its physical meaning is (minus) the ratio of the production 
of 2 owing to curvature to the total production of 2 (see Table 2). The ratio 6/R and the flux 
Richardson numbler are shown in Fig. 11 at three different x stations: at x/L = 0.81 where we have 
boundary layer flow, after the shock in the separation point (x/L = 0.979) and in the reattachment 
zone (x/L = 1 .15). As can be seen, the streamline curvature is positive (convex) at x/L = 0.81, 
which gives an increasing flux Richardson number in the outer part of the boundary layer. The 
flow here is parallel to the curved wall, which gives constant 6/R, N 0.01, i.e. boundary layer 
thickness over wall curvature. The boundary layer is very thin, which explains the strong increase 
in the Richardson flux number at y/L N 0.014, close to the outer edge of the boundary layer. In 
the separation region, the streamlines bounding the separation region are still convex at 
x/L = 0.979. Near the point of reattachment the streamlines become concave, which destabilises 
the turbulence, which is seen in Fig. 11 where 6/R and R, become negative for x/L = 1.15. These 
values should be compared with reported values on the criticalflux Richardson number (the R,-value 
at which the turbulence collapse, suppressed by dissipation and buoyancy/curvature effects) in 
buoyant flows, ranging between 0.15 [37] and 0.5 [38]. 

Table 2. Source terms in the Reynolds stress equations [see equation 
(9)] due to production and convection in a polar coordinate system 

p,, P; Cf 

7 2i;Ti;;s 
I 

2ii;ii;;s 
I 
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Fig. 11. Parameters describing streamline curvature effects on the turbulence. RSTM. (a) Flux 

(W 

Richardson number R,. (b) Boundary layer thickness over streamline curvature radius 6/R,. 

The curvature effects are largest in the outer boundary layer, where the curvature term U,/R 
becomes comparable with the velocity gradient XJ,,/ar. The direct influence of the curvature effects 
are thus largest in the outer part of the boundary layer, but they will also have an indirect influence 
via convective and diffusive transport. The Reynolds stresses, augmented or damped by curvature, 
increase or decrease the production terms in the equations and, through convection and diffusion, 
also affect the surroundings. 

In Fig. 12 the predicted production terms using RSTM are presented. Note that a wall-oriented 
s-n coordinate system is used, with s defined along the lower wall. It can be seen that the 
normal-stress induced production is indeed important in the shock region, where it is larger than 
that resulting from the shear stresses. The question then arises as to why the k-c model predicts 
this flow relatively well, even though the model is unable to account for the normal-stress-induced 
production. One part of the answer lies in the fact that, in the momentum equations, the pressure 
is the dominating term in the shock region. Another part of the answer can be found in Fig. 12, 
where the production using the eddy-viscosity assumption is included v,(aU,/an)” (computed from 
the RSTM flow field). Here it is seen that the inability of the k-+ model to account for the 
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Fig. 12. Comparison of contribution to the production term Pk due to shear and normal stresses. RSTM. 
The production resulting from the ed_dy vv&cosity assumption is also included. (-) -GdU,/d,; 

(---) 424: -u;) avs/as. (----) v,(av,ian)*. 
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normal-stress induced production is compensated for by overprediction of the shear stresses (and 
shear-stress induced production). Note that the shear stress -$U,/an used to compute the 
production in Fig. 12 is larger than that predicted with the k-e model in Fig. 9, since the RSTM 
flow field (with larger velocity gradients) has been used in Fig. 12. 

6. CONCLUSIONS 

In the present paper transonic computations of the flow in a plane channel with a bump are 
performed. The flow at the inlet is subsonic (Ma N 0.6), accelerates over the bump and reaches a 
maximum Mach number of Ma N 1.4, where a shock occurs. In the interaction region between the 
shock and the turbulent boundary layer an extended separation region is formed. 

A Reynolds Strlzss Transport Model (RSTM) has been implemented into an explicit time- 
marching Runge-Kutta code. The equations for u , T 2, Uv, k and E, which are solved in an RSTM, 
are solved using an implicit solver which-unlike the Runge-Kutta solver-has proved to be very 
stable and reliable when solving these source-dominated transport equations. 

The RSTM should be superior to eddy viscosity turbulence models, mainly due to the fact that 
the production terms need not be modelled. In the paper it is shown that RSTM accounts for 
streamline curvature effects in a physically correct way, and that it responds properly to large 
irrotational strains. 

Detailed comparisons of predictions, using both RSTM and k-r, and measurements are 
presented, and the agreement is, in general, good. The interaction between the shock and the 
boundary layer is stronger in the RSTM-prediction than in the k--E-predictions. The k-c model 
is shown to handbz this flow fairly well. The reason for this seems to be more due to fortunate 
circumstances, than to accurate modelling of physical processes. It was found, for example, that 
in the shock region the contribution in the RSTM to the production stemming from the normal 
stresses is larger than that from the shear stresses. The inability of the k-6 model to account for 
normal-stress induced production is (fortuitously) ‘compensated’ for by overprediction of the shear 
stresses. _ _ 

The ratio u’/v’ z 15 between the experimental normal stresses in the shock region is surprisingly 
high; oscillations of the shock-wave observed in the experiments may explain this. 

If the conclusion can be drawn that the oscillations in the shock-wave in the experimental flow 
are of considerable importance, it means, as pointed out in Ref. [6], that a numerical method 
capable of accounting for these unsteady phenomenon should be used. Using Large Eddy 
Simulation (LES) methods could be one future way of solving this type of flow. 
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