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CALCULATION OF THE TURBULENT FLOW AND THE LOCAL AGE IN A
NON-RECTARGULAR ROOM USING A FINITE VOLUME COMPUTER CODE
WRITTEN IN GENERAL NON-ORTHOGONAL COORDINATES
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ABSTRACT

The flow a in non-rectangular room is calculated. A computer
program written in general curvilinear coordinates [1] (which means that
the coordinate lines can be of almost arbitrary form) is used. This type
of program can be applied to rooms with complex geometries. The calcu-
lated results are compared with experimental data, and the agreement is
good.

The 1local age, introduced by Sandberg and Sjéberg [2], is also
calculated. It is valuable to calculate this ventilation parameter, as
it provides wuseful information on how aitr and contaminants spread in a
room. The physical meaning of the local age [2,3], is the amount of time
that has elapsed since the air, passing point P, entered the room.

1. INTRODUCTION

Numerical simulation of air movements in ventilated rooms is
carried out quite frequently by many researchers nowadays. Rooms usually
nave a simple geometry (horizontal floor and ceiling, vertical walls)
where a grid can easily be specified so that the grid lines follow the
boundaries.
When the geometry of a room is more complex in the sense that the
boundaries are not orthogonal to each other (they are inclined, see Fig.
1, or curved), there are two possibilities:
i} te wuse a Cartesian grid and approximate the inclined boundaries
with a "staircase", see Fig. la;
ii) to wuse a computer code which solves equations formulated in
general non-orthogonal coordinates (BFC=Boundary-Fitted-Coordinates),
which means that the grid lines can be of (almost) arbitrary form,
see Fig. 1b

The latter way (ii) offers many advantages over the former (i):
1) boundaries can be precisely represented;
2) local grid refinement near the boundaries is possible;
3) numerical errors are reduced if (as often is the case) the grid
can be made to approximate stream lines: and
4) surface-friction effects can be represented well,

In the present work a computer code which solves the equations
formulated in general non-orthogonal coordinates [1] is used to calcu-
late the turbulent flow in an auditorium, Fig. 1b. The standard k-e
turbulence model is used. The calculated flow field is compared with ex-
periments carried out by Hanel and Kéthnig [4], and the agreement is
good.

The local age field, which was numerically simulated by Davidson
and Olsson [3,5] recently, is also calculated.
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Figure 1. Configuration for the reoom with  the grid  included
(schematically drawn). The height of the inlet, h = 0.00%H; Reynolds
number, U, h/v = 3700, a) Cartesian grid; the velocities are zero in the
shaded reg?on b) BFC grid used in the present study.

2. FORMULATION

2.1 Momentum Equations

The momentum equations and the continuity equation are solved
using the SIMPLEC algorithm [6]; readers not interested in the precise
form of the momentum equations in general coordinates can go directly to

Section 2.2.
The momentum equations for turbulent flow in general coordinates,
using covariant components can be written [1]
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where ng denotes the contravariant components of the metric tensor.
Here the subscripts (i,j.k) denote covariant components and supetrscripts
(i,3.k; denote contravariant compenents; this convention is used
throughout the paper. The comma notation 1is wused for denoting the
covariant derivative. In [1] it was shown that if a local coordinate
system is used so that the direction of the mneighbouring wvelocities,
= co-ordinate direction, nb = neighbour), are kept the same as
tﬁa% of the velocity (v or v, ) being solved (see Fig. 2), Eg. (1) can
be integrated and rewrz%%en so at
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where A denotes the bounding area of the control volume with the volume
V, and n is its normal vector.

The neighbour velocities with a prime (see Fig. 2) denote velocity
vectors projected on PE. The velocity viee’ for instance, is calculated
as
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where PE (wgle) is a covariant unit vector.

Figure 2. The grid (see Section 2.3). The dashed arrows show the mneigh-
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bour velocity wvectors projected on PE, i.e. Viee’ V1w’ Vien and Vias®

In most studies on deriving discretised equations for flow in com-
plex geometries, the terms due to curvature, divergence and non-
orthogonality of the grid have been included using Christoffel symbols
and metric tensors. Since the number of these terms is rather large,
this is very cumbersome and may also be inaccurate (there appear terms
containing up to the third derivative of the grid coordinates). This is
not the case with the present formulation.

2.2 The k-¢ Turbulence Model
The standard k-¢ turbulence model is implemented in the computer
program {7]. The equations for k and ¢ can be written
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where ¢ = k (turbulent kinetlec energy) or ¢ = ¢ {dissipation of k), 0¢
is the turbulent Prandtl number, and b, denotes the general source term)
which for the k and ¢-equations takes %be following forms:
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where P. is the production term (see [7] for more details).
Tﬁe turbulent viscosity is calculated as

2
o= pCpk Je

The constants in the turbulence model have been assigned their
standard values [8]: CPEO.OQ, clewz.aa, Czewl.92, Ukwl.o, 05m1.3



2.3 The Grid
A grid 1is shown in Fig. 2. The crosses define the corners of the

scalar control volumes, and the circles define the scalar nodes. The
position of a scalar node is defined as the average of its four cell
corners. The lines which comnect these nodes (dotted lines in Fig. 2)
define the direction of the covariant base vectors, g.. 1

The v,-control volume is staggered in the posa%lve %" -direction;
it is outlined with dashed lines in Fig. 2. Its east face, for example,
is defined as being midway between the east faces of scalar control

volumes P and E.

2.4 Boundary Conditions

The velocities at the inlet were prescribed according to
experiments; then the turbulent quantities were estimated. Conventional
wall-functions [8] were used foxr the velocities, k and ¢ at all of the
walls. Impermeable boundaries (zero flux) were prescribed at the walls
for the local age, .. Zero stream-wise gradient was imposed for all

variables at the outlet.

3. THE LOCAL AGE

The age of the air at a control volume within the room is the time
that has elapsed since the air, passing this control volume, entered the
room. In [3] the local age was calculated using the step-down method,
i.e. the room was initially filled with contaminant, ¢, (= initial
concentration), and the decay of the concentration was calculated. The
local age was obtained from the formula
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where v and ¢, denote the local age and the concentration at control
volume P, respectively, and t denotes time. A computationally much
cheaper way of <calculating the local age (which was also used in [3])
is, as shown by Sandberg [9], to solve the (steady) transport equation
{3y with ¢ = p and b¢= g. The boundary condition was = 0 at the in-
let.

4. RESULTS

The configuration with the grid is shown in Fig. 1b. The calcu-
lated results are compared with experimental data from Hanel and Kéthnig

[&4].

When the flow in ventilated rooms with small inlets is numerically
simulated, it is not uncommon to prescribe the wv,-velocity at a line
where x = constant, which means that fewer grid Iines are needed in the
inlet region. In the present calculation the v, -velocity was prescribed
at x/H = 0.1, using the formula for the veloci%y in a wall jet [10]

2
v. /U, = [cosh( £ - 0.14)] (5)
17 7in 61/2
where is the half-width of the wall jet, which was determined from
the exper{ments [4]; Egq. (5) was used for grid lines which were nearer
the ceiling than 51/2.
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In Fig. 3 the calculated veloclity vecters are shown, and in Fig. 4
calculated velocity profiles using two different grids are compared

with experimental data, and the agreement is good.
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Figure

lines: 33 x 33 node grid; dotted limes: 53 x 62 node grid; markers:
periments [4].
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Figure 5. Contours of the calculated age using the 33 x
numbers above the

33 node grid.
room denote the age scaled with the age at the

exit (= the nominal time constant of the room).



The calculated local age field is presented in Fig. 5. The local
age is, as expected, low near the ceiling (the air reaches this reglon
gquickly), and the age of the air increases gradually nearer the floor.
The air is at its oldest below the inlet; this was to be expected as the
air reaches this region last.
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