
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22, 265-28 1 (1 996) 
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SUMMARY 
A pressure correction procedure for general unstructured meshes is presented. It is a cell-centred, collocated finite 
volume method and the pressure-velocity coupling is treated using SIMPLEC. The cells can have an arbitrary 
number of grid points (cell vertices). In the present study the number of faces on the cells varies between three and 
six. The discretized equations are solved using either a symmetric Gauss-Seidel solver or a conjugate gradient 
solver with a preconditioner. The method is applied to three two-dimensional test cases in which the flow is 
incompressible and laminar. The extension to three dimensions as well as to turbulent flow using transport models 
is straightforward. It can also be extended to handle compressible flow. 
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1. INTRODUCTION 

Computational fluid dynamics (CFD) is now used frequently in industry. When using structured 
methods, however, the grid generation for complex geometries remains a major task. The generation of 
grids for complex geometries usually requires considerably more time in terms of manpower than the 
actual flow field computations. In order to become a useful tool, CFD must be capable of handling 
complex flow in complex geometries. The lack of generality in treating complex geometries is one of 
the major reasons why CFD has not become a powerful tool in everyday engineering. 

The use of unstructured methods facilitates the grid generation enormously and there exist automatic 
methods for triangulation of arbitrary geometries.' For Navier-Stokes computations a structured mesh 
near the boundaries can be matched with an internal or external (automatically generated) triangulated 
region.2 

Local mesh refinement, either adaptive or fixed, is another advantage of unstructured methods. 
Quadnlaterals are easily split into smaller quadrilaterals or into triangles, while triangles are readily 
split into smaller triangles. If, as in the present study, cell-centred methods are adopted, 'hanging' grid 
points cause no problems, as a cell can have an arbitrary number of grid points (cell vertices). 

There exist a number of papers using unstructured finite volume flow solvers for compressible 
aerodynamics2-10 in which algebraic and transport turbulence models have also been used. However, 
unstructured methods employing pressure correction techniques are not very common. There are a 
limited number of papers in the literature. Lonsdale and Webster" used a staggered grid arrangement 
and presented three-dimensional, turbulent flow calculations. A number of papers were presented in 
the 1980s on CVFEMs (control-volume-based finite element (see also Reference 14). 
Thomadakis and Le~chziner'~ recently presented a semi-staggered approach and Watterson16 
developed a cell vertex procedure for compressible flow, solving the discretized equations in an 
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explicit time-marching manner with a Runge-Kutta method. The work most closely related to the 
present study is that of Jiang and P~zekwas.'~ 

The present pressure correction procedure is a cell-centred, collocated finite volume method for 
general unstructured meshes. The cells can have an arbitrary number of grid points and cell faces. In 
the test cases used in the present work, the number of cell faces in the cells ranges between three and 
six. Central differencing is used for the convective terms together with fourth-order numerical 
dissipation, while central differencing is employed for the difisive terms. In order to avoid decoupling 
between pressure and velocity, the Rhie and Chow interpolation is used when computing the mass flux 
at cell faces. The discretized equations are solved by either a symmetric point-by-point Gauss-Seidel 
relaxation method or a conjugate gradient solver with incomplete Cholesky factorization 
preconditioning. 

The finite volume method is presented in some detail in the next section. This is followed by a 
section that reports the results. The final section gives conclusions and some directions for M e r  
work. 

2. THE FINITE VOLUME PROCEDURE 

2.1. me discretization 

Let 0 denote a general variable (0 = U, Vorp'). The transport equations for 0 can then be written as 

where 
defined as 

denotes a source per unit volume. If e flux vector J,,, containing convection and diffusion is 

equation (1) can be written as 

In vector notation the equation reads 

V . J = P .  

Integrating this equation over a volume (with volume 7 'and bounding surface A) using the Gauss law 
gives 

whch for a control volume gives 
N C(J A), = S*, (3) 

i= I 

where N is the (arbitrary) number of faces of a cell and is the total source in the control volume. 
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2.2. Pointer system 

As we are dealing with unstructured meshes, we need a pointer system which carries information on 
grid topology. Almost all quantities (e.g. convection, diffusion, derivatives) are computed by looping 
over cell faces. We thus need a pointer for each face that gives information about which grid points 
(cell vertices) form the starting and ending points of the face and which two cells are the adjacent cells. 
This information is stored in listf, which has the form' 

Iistf(i, 1) = il 
listf(i, 2 )  = ist 
listf(i, 3) = iend 
Iistf(i, 4) = ir 

where i is the index of the face, ist and iend are the starting and ending grid points resp,ectively (sef 
Figure 1) and il and ir are the left and right cells respectively. Note that the vectors (il)(ir), (ist)(iend) 
and 2 form a right-hand-side co-ordinate system. 

When solving the discretized equations, we also need a pointer from a cell to its neighbouring cells. 
The number of neighbours is arbitrary and for cell i we store it as 

listc(i, 1) = neighbour 1 
listc(i, 2) = neighbour 2 
listc(i, .) = neighbour . 
listc(i, n) = neighbour N. 

Three items must be stored in listc (listf always contains four items irrespective of the type of 
control volume) on a mesh containing only triangles, one more must be stored for quadrilaterals and so 
on. Note that listf is stored for eachface, whereas listc is stored for each cell. On a mesh containing 
only triangles (quadrilaterals), the number of cell faces is approximately 1.5 (2)  times the number of 
cells. 

The pointer system listc, which points to a cell's neighbours, is created from the pointer system for 
the faces, listf. For the cell in Figure 2, for example, the neighbouring cells for cell i are i l ,  i2 and i3. 
The numbering of il,  i2 and i3 in listc(i, j), wherej= i l ,  i2 or 23, is determined by the order in which 
the connecting faces if1 , i j 2  and i f 3  are visited when looping over all faces in the calculation domain. 
Thus, if $1 < $2 < i f 3 ,  then the pointer listc for cell i reads 

listc(i, 1) = i l  
listc(i, 2) = i2 
listc(i, 3) = i3. 

a ist 

Figure 1. Tivo control volumes (cells). Grid points (cell vertices) are denoted by 1 1 1  circles and cell centm by crosses. The area 
denoted by broken lines (a-b-c4 is used when computing the w e n t  at the face (open circle, indexf) 
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i 3  
X - 

Figure 2. A triangular control volume i with its three faces $1, if2 and i f 3  and three neighbours i l ,  i2 and i3. Grid points are 
denoted by full circles, cell centres by crosses and cell faces by open circles 

2.3. Convection 

The convective term, which is the first part of the flux vector J in equation (2), is the scalar product 
of the velocity vector and the area vector multiplied by the density and the variable @. It is computed 
by looping over faces. For the cell face in Figure 1 we obtain the normal velocity component as 

uf = (Unx + VnJf (4) 

((nx, ny) is the unit normal vector), where the face values are computed as 

u/ =h u;, + (1 -fi)Uir* v/ = f i  Vi/ + (1  -fi)Vir 

andfi is a weight function for linear interpolation. 

2.4. Numerical dissipation 

2.4.1. Rhie-chow pressure term. Collocated grid systems are often used in structured finite volume 
methods based on SIMPLE.' '-'' In order to prevent oscillations in the pressure field, a third derivative 
term in pressure, invented by Rhie and Chow:' is added to the convecting (normal) velocities. This 
term is added to the convections when calculating the continuity error in the pressure correction 
equation; it is not added to the convections in the U and Vequations. It is often implemented as the 
difference between two first derivative terms, one evaluated at the centre of the cell and the other at the 
cell face. This third derivative term can be regarded as a stabilizing dissipation term similar to the 
fourth-order dissipation term added to all equations in time-marching compressible  code^.*^-^' It has 
been found that in buoyancy-affected flows it is essential that this term is implemented as a true 
artificial dissipation term2' 

In the present work this pressure gradient (which is a vector) is evaluated at the cell centres il and ir 
and is projected on (taking the dot product with) the normal vector at the face ni, i.e. 

At the cell face the pressure gradient is evaluated and projected on ni as 

Pi, - PI1 [$I;; = m. 
The third derivative term is then obtained as 
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The mass flux at the cell faces can now be written as (see equations (4) and ( 5 ) )  

where A and / denote the surface area and cell volume respectively and ap is the discretized diagonal 
coefficient in the momentum equations (see equation (1 5) ) .  

2.4.2. Fourth-order numerical dissipation. The convective terms in the U and V equations are 
discretized using central differences. In order to damp odd-even oscillations, a fourth-order dissipation 
term is added. This is computed by first evaluating the gradient (the subscript comma denotes 
derivation with respect to XJ. The vector O,ininj is the gradient (at a face) normal to a face. The 
divergence of is obtained with the Gauss law 

In discrete form we replace the integral by a sum 
N 

f = @,ii6r = C O j n j 6 A  
k = l  

(7) 

summed over all faces (index k) and where N is the number of faces of a cell. The fourth derivative is 
computed by repeating the procedure, now letting the Laplacian operate onf: The dissipation term is 
added in conservative form. The diagonal coefficient in the momentum equations, aA is used as a 
scaling factor (which also gives the correct dimension on the dissipation term): 

n 

dissipation term = c4 apfjnjbA, (8) 
i= 1 

where 64 is a fixed constant. The term O,jnj 6A in equation (7)  is simply taken as (ajr - @#z; see 
Figure 1. Since we are dealing with two-dimensional flow, Az = 1. The term fjnjSA in equation (8) is 
computed in the same way. 

The fourth-order numerical dissipation was found to be necessary only in one of the present test 
cases (backward-facing step; see Section 3.2), where the value €4 = 0.02 was used. In the other two test 
cases in Section 3, pure central differencing was used with c4 = 0. 

2.5. DiHision 

Diffusion is the second part of the flux vector J in equation (2) and has the form 

9 = (J * A)&R = -T,A ' Va. 
For the face f in Figure 1 we have 

w& (nx, n,,) is the unit normal vector of the face, computed as the vector product between the vectors 
(U)(ir) and 2, i.e. 

=Yiend -Yist 

= J [ b i e n d  - Yisf) + (Xiend - X i s f )  1. 

= -Xiend - Xis t  
X d '  Y d 

2 2 
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We must now evaluate the derivatives m/aX and at the face. This is done by applying Green's 
formula to the volume a - k - d  (see Figure 1) surrounding the midpoint of the face, i.e. 

where A (= a-b-c-d) is the surface enclosing the volume I.' We obtain 

Note that the exact co-ordinates of the volume a-b-c-d are not used. The definition is that its face 
vector areas are defined as (nA),= (nA)f= ( d ) i r  and (nA),, = (nAIiend.  The areas (d);, and 6(nA), 

are centred at their respective nodes. The normal vectors of and ( d ) i e n d  are normal to (il)(ir). 
The sum of the two terms in equation (1 0) can be written as 

d 

+ Aiend[(nx)f(nx)iend + (ny)f(ny)ien,il(@iend - @ist)J (1 1) 

using (n: + n,"), = 1. The second line represents orthogonal diffusion and,the last lin5represents non- 
orthogonal diffusion, which vanishes on orthogonal grids, i.e. when (if)(ir) * (ist)(iend) = 0. The non- 
orthogonal terms are mostly negligible on smooth meshes based on quadrilaterals and often also on 
smooth meshes based on triangles. For stretched triangles, however, the non-orthogonal terms are not 
negligible." Equations ( 9 x 1  1) can now be written as 

+ Aiend[(nx)f(nx)iend + (ny)f(ny)iendl(@iend - @isr, 11 (12) 

where the second line will be treated implicitly and the last line will be mated explicitly using values at 
the previous iteration level n. For the sake of conciseness we rewrite the orthogonal part of the 
diffision as 

2.6. The discretized equation 

The numbering of the coefficients in listc is determined in the same way as the numbering of 
neighbouring cells when creating listc from listf (see Section 2.2). Thus, if il < i2 < i3 in Figure 2, 
then 

a(i, 1) = i l  is the connection coeficents from i to i l  
a(i, 2) = i2 is the connection coefficents from i to 12 
a(i, 3) = i3 is the connection coefficents from i to i3. 
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Combining equations (3), (6) and (13) for a cell with an arbitmy (N) number of neighbours gives 

where the non-orthogonal diffusion terms have been included in the source term. Note that the mass 
fluxes are computed with a cell j .  outward-pointing normal vector, which means that the sign of the 
mass flux I;I/ depends on in which cell it is used, cell il or ir (see Figure 1). The cell face values of Q, 
are estimated with central differencing. The resulting discretized equation is 

a,/N = - ; m f l  + D O ,  

a#-, + ag2 + . . . + a,/N - sp. u p  = 

The coefficients in equation (15) are calculated by looping over cell faces. We have a cell counter 
which is augmented by one every time a cell is adjacent to a visited cell face. It is this counter which 
determines the values of il ,  i2, . . ., iN ( 1  >_ i l ,  i2, . . ., iN? N). In the gnds used in the present work, 
the number of faces of the control volumes in the mesh varies between three and six. 

The treatment of the source terms is described in detail in Reference 27. 

2.7. The pressure correction equation 

The pressure correction equation is derived from the continuity equation as in standard pressure 
correction procedures.28 The discrete form of the continuity equation for a cell with an arbitrary 
number of faces (neighbours) can be written as 

mi, + m i 2  + . . . + = 0. 

The mass flux at a face mf is taken from equation (6) (see comment below equation (14)). The mass 
fluxes are split into an old value (previous iteration) m; and a correction mj, i.e. 

Using the truncated momentum equations, we obtain a relation between pressure and velocity so that 
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where Of is the diffusion coefficient in equation (1 3). The pressure correction equation can now be cast 
in the standard form of equation (1 5 )  with the coefficients 

a f l = ( $ )  Jfl , 

s u - - -m* 1 / 1  - m *  If2 m* l f l .  (17) 

After having solved the pressure correction equation, the pressure, mass flux and node velocities are 
corrected as 

Care must be taken when evaluating the derivatives of p‘ at boundaries. The p‘ field must satisfy 
ap’pn at all boundanes. 

2.8. The solution procedure 

procedures.28 
The solution procedure is summarized below. It is similar to standard pressure correction 

1. 

2. 
3. 

4. 

5. 
6. 
7. 
8. 

9. 
10. 

The coefficients in the momentum equations are computed from equation (1 5 )  (looping over 
faces). 
The numerical dissipation is computed (if c4 # 0) from equation (8) (looping over faces). 
The coefficient ap  in the U equation is computed fiom equation (15) and underrelaxation is 
introduced. This is done by looping over cells. 
The discretized U equation is solved using a symmetric Gauss-Seidel solver (looping over 
cells). 
Steps 2 4  are repeated for the Vequation. 
The coefficients for the p’ equation are computed from equation (17) (looping over faces). 
The discretized p’ equation is solved (looping over cells). 
The pressure and velocities are corrected using equation (1 8) (looping over cells). The mass flux 
is corrected using equation (18) (looping over faces). 
The continuity error is computed (looping over faces). 
Steps 1-9 are repeated until convergence is achieved. 

3. RESULTS 

The finite volume solver presented in the previous section is used here to calculate laminar flow in 
three two-dimensional configurations: backward-facing step, diverging channel and skewed driven 
cavity. 



PRESSURE CORRECTION FOR UNSTRUCTURED MESHES 2 73 

3.1. Boundary conditions 

Zero normal gradient is prescribed at all boundaries for the pressure and pressure correction. No slip 
is used at the walls for the velocities. Zero streamwise gradient, a/& = 0, is prescribed at the outlet. 

3.2. Backward-facing step 

Gartling29 and Blosch er ~ 7 1 . ~ '  have presented calculations for this configuration. The Reynolds 
number is 800 and the height of the step is half the channel width. The length of the calculation domain 
is 16 channel heights (the same as in Reference 29 and 30). At the inlet, U is set as a parabolic profile 
and V is set to zero. 

The refined grid is shown in Figure 3. A structured 40 x 20 grid (quadnlaterals) is refined in the two 
recirculation regions. The rehement is done by splitting each quadnlateral into four new 
quadnlaterals. Note that this grid contains two cells which have six faces. These two cells are located 
at the comers of the coarse part of the mesh (x 2: 1.8, y 21 0.45 and x 2 5, y 2 0.55) and have refined 
cells as neighbours on two sides. This is a good illustration of the flexibility of the present method. 

In Figure 4 the predicted U profiles are compared with the calculations in References 29 and 30 (the 
U profiles predicted in Reference 29 and 30 are identical). As can be seen, the U profile predicted with 
a 160 x 40 mesh (the same as in Reference 30) is identical with the benchmark calculation. The 
refined mesh produces a U profile much closer to the benchmark calculation than does the original 
40 x 20 mesh. 

The pressure contours are shown in Figure 5. It can be seen that there are some oscillations in the 
pressure near the interface of the refinement at x = 5 .  This is not very surprising considering the abrupt 
change in cell size across the interface, making the interpolation to faces inexact (see equation (4)). 
Apart from at the interfaces of the refinements, the pressure field is smooth. 

3.3. Diverging channel 

The Reynolds number is 10. The inlet velocities are set as 
This configuration was used in a workshop in 1982 and the results were presented in Reference 3 1 .  

I/ = 301 - y), v = 0. 

First a fairly come grid based on triangles was used (see Figure 6(a)). Twenty-one cells were used 
along the lower (wall) boundary and 10 along the other three boundaries. The interior was filled with 
triangles, giving a grid with 3 19 cells. As can be seen in Figure 7, this gives a fairly good prediction of 
the vorticity at the wall, w,, although an increase in w, near the outlet is observed. The grid is refined 
near the outlet by doubling the number of cells on the outlet boundary (see Figure 6(b)), giving a mesh 
with 621 cells. It is seen in Figure 7 that the wall vorticity is better predicted near the outlet using this 
refined mesh. 

Figure 3. Backward-facing step. Upper and lower boundaries are walls. Inlet at the left boundary at 0 sy 5 0.5. Outlet at the right 
boundary at x =  16. A structured 40 x 20 mesh refined in two regions: 0 5 x 5 5 , 0 . 5 ( y (  1 and 25xS8,05yi0.5 
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Figure 4. Backward-facing step. Calculated U profiles at x = 7 
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Figure 5. Backward-facing step. Calculated pressure contours 
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Figure 6. Diverging channel. Upper boundary is a symmetry line. Lower boundary is a wall. The inlet is at the left boundary and 
the right boundary is the outlet. (a) Coarse grid and (b) refined grid 
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The pressure contours are presented in Figure 8. It is seen that there are some oscillations in the 
pressure in the upper-left comer when using the refined mesh (Figure 80>)). The triangles in this region 
are fairly distorted. The pressure field for the coarse grid is much smoother (Figure 8(a)) and so also is 
the mesh (Figure 6(a)). The dissipation term stemming from Rhiexhow interpolations does not seem 
to have any adverse effect. This term was reduced by a factor of 10 without noticeably affecting the 
pressure field. The convergence rate, however, deteriorated significantly. The reason why the pressure 
field is sensitive to distorted cells is probably related to inexact interpolation from nodes to faces 
according to equation (4). A true bilinear interpolation would probably be better, but this is not easily 
accomplished on a cell-centred mesh. This is one advantage of cell vertex methods, where bilinear 
interpolation is easily implemented using base functions. 

3.4. S h e d  driven cavity 

The configuration is shown in Figure 9. The flow in this configuration has been computed by 
Demirdiik et d3* and Oosterlee et It is a configuration which gives very skewed cells if only 
quadrilaterals are used. The grid used in the present study is a mixed grid with both triangles and 
quadrilaterals; see Figure 10. The quadrilaterals in the grids in Figure 10 are fairly rectangular. The 
coarse and h e  meshes in Figure 10 contain 153 1 and 2707 cells respectively. 

The U profile along the centreline CL1 (see Figure 9) and the V profile along y = 0-5 (CL2) are 
compared with benchmark computations in Figures 1 1 and 12 respectively for two different Reynolds 
numbers Re = U,J/v. As can be seen, the present predictions are in good agreement with the 
benchmark computations. For the higher Reynolds number the V pmfile with the fine mesh is slightly 
better predicted. Pressure contours are shown in Figure 13. They are smooth and regular except in the 
left part of the domain, where some oscillations appear. It should be noted that the pressure variations 
in this region are very small. 
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Figure 8. Diverging channel. Contours of constant pressure. (a) Coarse mesh and (b) refined mesh 
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CL I 

Figure 9. Skewed driven cavity. Configuration. Upper boundary is moving with velocity (I, 1 = 30" 

3.5. Convergence data 

In this subsection the convergence data for the three cases are presenied. For the pressure correction 
either a symmetric Gauss--Seidel solver is used or a conjugate gradient solver with incomplete 
Cholesky factorization preconditioning. For the momentum equations a symmetric Gauss-Seidel 
solver is used. A preconditioned biconjugate gradient solver was also tested for the momentum 
equations but was not found to improve the convergence data compared with the Gauss-Seidel solver. 
The conjugate gradient solvers in the SLAP library have been used (available at netlib). 

Twenty sweeps on the pressure correction equation are made at each iteration when using the Gauss- 
Seidel solver, during which the residual is reduced typically from 1 to 0.8. The residual is defined as 
(see equations (15) and (17)) 

R@ = C lap@, - q,@f, - ~ i / 2 @ i / z  - ... - ai/N@,N - $1, (19) 
all cells 

with O=p'.  
When using the conjugate gradient solver, the residual is reduced from 1 to 0.2, which takes 

between five and 20 sweeps. Driving down the residual to 0.1 did not have any large influence on the 
convergence data. The conjugate gradient solver is thus considerably more efficient than the Gauss- 
Seidel solver in solving the pressure correction equation. Unfortunately, this difference is not large 

Figure 10. Skewed driven cavity. Two grids. Coarse (top) and refined (bottom) 
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Figure 1 1 .  Skewed driven cavity. U velocity profiles along centreline CLI (see Figure 9). Re= 100 (top) and 1000 (bottom) 
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Figure 13. Skewed driven cavity. Contours of constant pressure. Re= 1000 

enough for the convergence of the global equation system; see Figure 14 and Table I. The residual in 
Figure 14 is defined as 

R = max(R'), with 0 = U, V ,  p', 

where R@ is taken from equation (1 9). 

should be remembered that these cases are small model cases. 
The only case where it is worthwhile to use a better solver is the backward-facing step. However, it 

4. CONCLUSIONS AND FUTURE WORK 

A pressure correction procedure for two-dimensional, incompressible laminar flow has been presented. 
It is a cell-centred !kite volume method and can be applied to general unstructured meshes in which 
the cells can have an arbitrary number of grid points and cell faces. The present method was applied to 
three test cases and it was demonstrated that the method gives results in agreement with benchmark 
calculations. 

It is a simple matter to include transport turbulence models in the present method." More work is 
needed in extending the method to three dimensions, but it is straightforward. Pressure correction 
methods are increasingly being used for compressible f l 0 ~ , 2 ~ , ~ ~ ~ ~  which means that the method can be 
extended to include compressible flows. 

If the method is to be applied to high-Reynolds-number flow, it would be desirable to use a better 
discretization scheme than central differencing plus fourth-order numerical dissipation. Schemes used 
in structured methods such as MUSCL3' (second-ordery bounded) QUICK3* (third-order, unbounded) 
and CHARM39 (third-order, bounded) are not applicable without modification, owing to the problem 
of finding a node two cells upstream. Consider Figure 15, where we want to estimate the face value at 
face f when setting up the discretized equation for node i. Assume that the flow is directed from right to 
left. Using QUICK or MUSCL, for example, we need two nodes upstream of face$ We have node i2 
and we could of course use nodes il, i2 and i3 (possibly more nodes) to interpolate to point p. This 
would require a very complex pointer system, however. A better way is probably to use reconstruction 
 scheme^,^.^^.^' namely to compute the gradient in node i2 and then use Taylor expansion to obtain the 
value at point p ,  i.e. 
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Figure 14. Convergence data comparing Gauss-Seidel solver and conjugate gradient with incomplete Cholesky factorization 
preconditioning for pressure correction equation. Backward-facing step (top), diverging channel (middle) and skewed driven 

cavity (bottom) 

Table I. Convergence data. Symmetric Gauss-Seidel is used for the momentum equations. For the pressure 
correction equation either symmetric Gauss-Seidel (G-S) or conjugate gradient with incomplete Cholesky 

factorization preconditioning (CG) is used 

Configuration 

Backward-facing step 
Backward-facing step 
Diverging channel 
Diverging channel 
Driven cavity 
Driven cavitv 

Solver CPU (s) Iterations 

G- S 768 3597 
CG 446 1769 
G-S 32 447 
CG 30 418 
G-S 112 597 
CG 118 606 
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Figure 15. Reconstruction schemes employing two nodes upstream of a face when using higher-order discretization schemes 

where h is the distance between i2 and p and [ = ( i ) ( i$ .  Usually the last term containing the second 
derivative is omitted. 

A further issue that needs attention is convergence acceleration. Multigrid methods, which have 
proved to be very efficient in structured would probably reduce the CPU time considerably. 
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