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A dissipative scale-similarity subgrid model was recently proposed in which only the
dissipative part of the subgrid stresses was added to the momentum equations. This was
achieved by adding the gradient of a subgrid stress only when its sign agreed with that of
the corresponding viscous term. In the present work, this idea is used the other way
around as forcing in hybrid large eddy simulation–Reynolds-averaged Navier–Stokes:
only the part of a subgrid stress term that corresponds to back scatter is added to the
momentum equations. The forcing triggers resolved turbulence in the transition region
between the unsteady Reynolds-averaged Navier–Stokes and large eddy simulation
regions. The new approach is evaluated for fully developed channel flow at RetZ4000. It
is found that the forcing indeed does increase the resolved turbulence in the transition
region. The magnitude of the production (i.e. back scatter) due to forcing in the equation
for resolved kinetic energy is of the order of that due to the usual strain-rate production
term. The present approach of using back scatter from a scale-similarity model can also
probably be useful for triggering transition.
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1. Introduction

In hybrid large eddy simulation–Reynolds-averaged Navier–Stokes (LES–RANS),
forcing is often used in the transition region between the unsteady RANS
(URANS) region and the LES region. The resolved turbulence in the URANS
region is fairly small because of the large dissipation by the high turbulent
viscosity; forcing is used to stimulate the growth of resolved turbulence when a
fluid particle leaves the URANS region and enters the LES region. The use of
forcing in hybrid LES–RANS can be compared with the use of turbulent
fluctuating inlet boundary conditions in LES. The object in both cases is the same:
to create resolved turbulence.

Scale-similarity subgrid models are based on the idea that the largest
unresolved scales are similar to the smallest resolved scales, hence the name scale
similar. When the first scale-similarity model was proposed, it was found that it
is not sufficiently dissipative (Bardina et al. 1980). An eddy-viscosity model must
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be added to make the model sufficiently dissipative; these models are called
mixed models. A dissipative scale-similarity model was recently presented
(Davidson 2008) in which only the dissipative part of the subgrid stress term,
vtik/vxk, is added to the momentum equations.

This idea is also employed in the present work, but here the approach is used
the other way around: only the part of the subgrid stress term that corresponds
to back scatter is added to the momentum equations. Hence, the subgrid stress
term acts as a counter-gradient diffusion term in the momentum equations.
2. Scale-similarity model

(a ) Dissipative model

The filtered Navier–Stokes read (M denotes filtering)
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where D/Dt and tik denote the material derivative and the SGS stress
tensor, respectively. In the scale-similarity model, the SGS tensor is given by
(Speziale 1985)
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This model is not sufficiently dissipative. Let us take a closer look at the equation
for the resolved, turbulent kinetic energy, KZhu 0
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averaging in time)

DK

Dt
Chu 0

ku
0
ii
vh�uii
vxk

C
vhp0u 0

ii
vxi

C
1

2

vhu 0
ku

0
iu

0
ii

vxk

Z n
v2u 0

i

vxk vxk
u 0
i

� �
K

vtik

vxk
K

vtik

vxk

� �� �
u 0
i

� �

Z n
v2u 0

i

vxk vxk
u 0
i

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

3non

K
vtik

vxk
u 0
i

� �
Z n

v2K

vxk vxk
Kn

vu 0
i

vxk

vu 0
i

vxk

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

3

K
vtik

vxk
u 0
i

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

3SGS

: ð2:3Þ

The first term on the third line is the non-isotropic (i.e. the true) viscous
dissipation, 3non; this is predominately negative. The first term on the right-hand
side of the last line is the viscous diffusion term and the second term, 3, is the
viscous dissipation term, which is always positive. The last term, 3SGS, is a source
term arising from the SGS stress tensor, which can be positive or negative. When
it is positive, forward scattering takes place (i.e. it acts as a dissipation term);
when it is negative, back scattering occurs.

Figure 1 presents SGS dissipation, 3SGS in equation (2.3), computed from
filtered direct numerical simulation (DNS) data. The forward scatter, 3CSGS, and
back scatter, 3KSGS, SGS dissipation are defined as the sum of all instants
when 3SGS is positive and negative, respectively. 3DSGS is computed with
Phil. Trans. R. Soc. A (2009)
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Figure 1. Dissipation terms from DNS data. Data of 963 mesh filtered onto a 483 mesh. RetZ500.
Solid line, K3CSGS; dashed line, K3KSGS; circles, K3DSGS; plus symbols, K3SGS.
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tDik (see equation (2.7)). As can be seen, the scale-similarity model is slightly
dissipative (i.e. 3SGSO0), but the magnitudes of the forward and back scatter
dissipation are both much larger than 3SGS.

One way to make the SGS stress tensor strictly dissipative is to set the back
scatter to zero, i.e. max(3SGS, 0). This could be achieved by setting vtik/vxkZ0
when its sign is different from that of u 0

i (see the last term in equation (2.3)). This
would work if we were solving for K. Usually, we do not, and the equations that
we do solve (the filtered Navier–Stokes equations) are not directly affected by the
dissipation term, 3SGS.

Instead, we have to modify the SGS stress tensor as it appears in the filtered
Navier–Stokes equations (equation (2.1)). However, since it is the resolved
turbulent fluctuations, i.e. K in equation (2.3), which we want to dissipate, we
must consider the filtered Navier–Stokes equations for the fluctuating velocity,
u 0
i. It is the diffusion term in this equation that appears in the first term on the

second line in equation (2.3). The viscous diffusion term is dissipative. To ensure
that 3SGSO0, we set Kvtik/vxk to zero when its sign is different from that of the
viscous diffusion term (cf. the first two terms on the third line in equation (2.3)).
This is achieved by defining a sign function

Mik Z sign K
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v2u 0
i

vxk vxk

� �
; no summation on i; k; ð2:4Þ

where MikZG1. The problem is that we do not know u 0
i ðZ�uiK h�uiiÞ until the

simulations have been carried out. Fortunately, the sign of the second derivative
of the resolved velocity fluctuation, u 0

i, is mostly the same as that of the resolved
velocity, �ui. Figure 2a presents a comparison of the two second derivatives using
DNS data. As can be seen, the r.m.s. of the second derivative of u0 is larger—or
much larger—than that of h�ui. Figure 2b shows the correlation of the signs of
the two second derivatives. It can be seen that the correlation is larger than
95 per cent for yCO40. Hence, equation (2.4) can be replaced by
Phil. Trans. R. Soc. A (2009)
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Figure 2. Second derivatives of velocity. DNS data from a 963 grid filtered onto a 483 grid.
RetZ500. (a) Solid line, j v2h�ui=vy2 j ; dashed line, r:m:s:ðv2u 0=vy2Þ. (b) Correlation coefficient of
v2u 0=vy2 and v2�u=vy2.
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Each component of the divergence of SGS stress tensor in equation (2.1) is then
simply multiplied by

~Mik ZmaxðMik ; 0Þ; ð2:6Þ
so that

vtDik
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; no summation on i; k: ð2:7Þ

In order to avoid the sign function changing sign between two iterations within a
time step, the second derivatives of �ui in equation (2.5) are evaluated using
velocities at the old time step. It should be noted that, since the limiter, ~Mik,
operates on each cell rather than on each face, the SGS diffusive fluxes, tDik, are not
conservative. However, this is unavoidable since we need to control the net force
per unit volume, vtDik=vxk, rather than the stresses at the face, tDik. It can further be
noted that, by using equation (2.5) rather than equation (2.4), the model is no
longer strictly dissipative in the KZhu 0

iu
0
ii=2 equation. It is now only 95 per cent

dissipative (see figure 3). However, themodel is indeed—assuming that the diffusion
term, nv2ð�ui �ui=2Þ=vxjvxj ; is negligible—strictly dissipative in the h�ui �uii=2 equation.

By using the limiter, ~Mik, we omit the back scatter caused by the SGS stresses.
Figure 1 includes 3DSGS, which is computed with tDik.

(b ) Back scatter model

LES is an appropriate method for flows that include turbulent fluctuations
with large spatial scales. For this type of flow, a fairly coarse mesh can be used to
resolve the large fluctuations. RANS in this type of flow is often a poor
alternative, since the large fluctuations are difficult to accurately model with a
RANS turbulence model. The problems for LES start when walls are introduced.
The reason is that length scales of the largest fluctuations near walls are not
large; hence, a fine mesh must be used to resolve these fluctuations.
Phil. Trans. R. Soc. A (2009)
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Figure 3. RetZ500. Solid line, dynamic model; dashed line, dissipative scale-similarity model;
dash-dotted line, no model; circles, DNS.
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Hybrid LES–RANS was invented to get around this problem. In this method,
RANS is used near walls and LES is used in regions away from the walls.
However, difficulties appear in the transition region between RANS and LES.
When the flow goes from a RANS region to a LES region, the resolved turbulence
is too small. To stimulate growth of resolved turbulence, forcing is often used
(Piomelli et al. 2003; Batten et al. 2004; Davidson & Billson 2006). The forcing in
the transition region is related to turbulent fluctuating inlet boundary conditions
in LES: the object in both cases is to create resolved turbulence.

A dissipative scale-similarity model was presented above. Via the sign
function, only the dissipative part of the subgrid stress term, Kvtik/vxk, was
included in the momentum equations. The subgrid stress term can also be used as
a forcing term. In this case, only the back scatter part is included. This is easily
accomplished by replacing equations (2.5)–(2.7) by
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where superscript ‘B’ indicates back scatter. In this way, the subgrid tensor term
is included whenever the sign of Kvtik/vxk is opposite to that of the viscous
diffusion. This means that the subgrid stress term, KvtBik=vxk, in the momentum
equations acts as a counter-gradient diffusion term.

In order to increase the strength of the forcing, the stresses in equation (2.2)
are computed at the test level, i.e. at a grid half as fine as the computational grid.
The stresses are filtered using the formula ( �J denotes here �ui or uiuk and [ is the
cell index)

~�J
[
Z 0:25ð �J[K1

C2 �J
[
C �J

[C1Þ: ð2:9Þ
This filtering is applied consecutively in the three coordinate directions.
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Table 1. Turbulent viscosities and turbulent length scales in the URANS and LES regions. (n and k

denote the distance to the nearest wall and von Kármán constant (Z0.41), respectively.
DZ(dV )1/3.)

URANS region LES region

[ kc
K3=4
m n½1KexpðK0:2k1=2n=vÞ� [ZD

vT kc
K1=4
m k1=2n½1KexpðK0:014k1=2n=vÞ� 0:07k1=2[

C3 1.0 1.05
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3. Hybrid LES–RANS

The momentum equations with an added SGS/RANS viscosity read
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where the last term is the forcing term, which is zero outside the forcing region.
A one-equation model is employed in both the URANS region and the LES
region and reads
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CPkTKC3

k
3=2
T

[
PkT ZKtij�sij ; tij ZK2nT�sij ;

where nTZck1=2[ . The location at which the switch is made from URANS to
LES is called the interface and is located at yml from each wall. In the inner
region (y%yml), kT corresponds to RANS turbulent kinetic energy, k ; in the
outer region (yOyml), it corresponds to subgrid-scale kinetic turbulent energy,
kSGS. The coefficients are different in the two regions (see table 1). No special
treatment is applied in the equations at the matching plane except that the form
of the turbulent viscosity and the turbulent length scale is different in the two
regions. kTZ0 at the walls.
4. The numerical method

An incompressible, finite-volume code is used (Davidson & Peng 2003). For
space discretization, central differencing is used for all terms except for the
convection term in the kT equation, for which the hybrid central/upwind scheme
is employed. The Crank–Nicolson scheme is used for time discretization of all
equations. The numerical procedure is based on an implicit, fractional step
technique with a multigrid pressure Poisson solver (Emvin 1997) and a non-
staggered grid arrangement.
5. Results

In Davidson (2008), the dissipative scale-similarity model was applied to
decaying grid turbulence, where it was found to be as dissipative as the
Phil. Trans. R. Soc. A (2009)
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Figure 4. RetZ500. (a) Terms in the momentum equation: solid line, K20vhtD12i=vy; plus symbols,
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Smagorinsky model. Below, the dissipative scale-similarity model is first applied
to channel flow at RetZ500. In the second part of this section, the back scatter
from the scale-similarity model is used for forcing in hybrid LES–RANS.
(a ) Channel flow at RetZ500. Dissipative mode

The Reynolds number is 500 based on half the channel height and the friction
velocity. The mesh has 64!80!64 cells. The extent of the computational
domain is 3.2 and 1.6 in the streamwise and spanwise directions, respectively.
A stretching of 12 per cent is used in the wall-normal direction.

Figure 3 presents the velocity profiles obtained with the dissipative scale-
similarity model, the dynamic model and with no model. No converged results
could be obtained with the standard scale-similarity model. As can be seen, no
model gives perfect agreement with DNS and the log law. Hence, this flow is
not a good test case for evaluating the accuracy of SGS models. Here, it
is used to analyse the dissipative scale-similarity model. The dynamic
model gives slightly better agreement with DNS than the dissipative scale-
similarity model.

Figure 4a presents the momentum diffusion terms close to the wall. It can be
seen that the SGS diffusion term evaluated using the standard scale-similarity
model is of opposite sign to that of the viscous diffusion. When introducing the
sign function in equations (2.5)–(2.7), it can be seen that the SGS diffusion term
takes the same sign as the viscous diffusion term for yCO10. The fact that the
two terms have opposite signs for yC!10 simply means that the viscous diffusion
is very large at instants when the SGS diffusion term is set to zero. The
diffusion due to the resolved shear stress is included in the figure. It is, as can be
seen, much larger (more than five times) than the SGS term.

Figure 4b compares the SGS dissipation from the scale-similarity model with
that from the dissipative scale-similarity model (recall that the simulations were
carried out with the latter model). As can be seen, the SGS dissipation is indeed
much larger with the dissipative model than with the standard model. For
comparison, the SGS dissipation where the SGS viscosity is computed with the
Phil. Trans. R. Soc. A (2009)
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Smagorinsky–Lilly (CsZ0.1) model is also included. For yC!20, the SGS
dissipation from the Smagorinsky is larger than that from the dissipative scale-
similarity model, but the situation is reversed further away from the wall.
(b ) Channel flow at RetZ4000. Back scatter mode

The Reynolds number is 4000 based on half the channel height and the friction
velocity. Pure LES is not suitable at such a high Reynolds number. Instead,
hybrid LES–RANS is used, in which the inner region is modelled by a one-
equation RANS model (k) and the outer region is modelled by a one-equation
LES model (kSGS). The location of the interface, yml, has been chosen along a
fixed grid line, either at yCmlZ125 (17 cells in the inner region at each wall) or at
yCmlZ270 (22 cells in the inner region). The last value corresponds to the location
of the matching line in DES, i.e. where 0.65DZky (DZmax{Dx, Dy, Dx}). A 64!
80!64 (x, y, z) mesh was used. The size of the domain is 6.4!2!3.2; 15 per cent
stretching is used in the y direction. The forcing term, v~tBik=vxk, is added in the
region for which yml!y!2yml (six cells). Outside this region, the forcing term is
set to zero.

Figure 5 presents the velocity profiles and the streamwise resolved normal
stresses. As can be seen, the forcing increases the resolved streamwise
fluctuations. The resolved shear stress is also increased, which increases the
wall-normal diffusion, giving a fuller velocity profile (a reduced centreline to
friction velocity, huCi/ut). The forcing has a much greater effect on the resolved
streamwise fluctuations when the matching line is located at yCmlZ125 than when
it is at yCmlZ270. The explanation is found in figure 6a, which shows the diffusion
due to the forcing term and that due to the resolved shear stress. The forcing
diffusion is much larger for yCmlZ125 than for yCmlZ270, presumably because the
velocity gradient is larger at the former location. In both cases (yCmlZ125 and
270), it can be seen that—except at the two innermost cells—the diffusion due to
forcing is (almost) as large as that due to the resolved shear stress.

Figure 6b presents some terms in the K equation in the forcing region.
Production termKhu 0

iv~tik=vxki, including the standard scale-similarity stresses,
is small and—on average—dissipative (this term has been computed only for
Phil. Trans. R. Soc. A (2009)
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post-processing reasons; it is not used in the simulations). However, production
term Khu 0

iv~t
B
ik=vxki is, as expected, positive and hence it contributes to the

generation of resolved turbulence. For comparison, the production term due to
the resolved shear stress, hu0v0i, is included.

The sign function, ~M
B
ik, in equation (2.8) governs when the forcing term

is non-zero. How often does it happen that ~M
B
ikZ1 and how often does it switch

between 0 and 1? Figure 7a shows component ~M
B
12, which affects the wall-normal

SGS diffusion in the streamwise momentum equation. As can be seen, it is larger
than 0.5 for both cases except for the innermost node, where it attains a value of
0.2. The reason for this small value is that the viscous diffusion of hu 02i becomes
large at the interface between the URANS and the LES regions because of
the large gradients occurring there. Hence, the non-isotropic dissipation, 3non,
and the isotropic one, 3, differ a great deal, cf. equation (2.3) (at this location,
nhu 0

1v
2u 0

1=vx
2
2i is actually negative). Since we are forcing the SGS term,

uiv~tik=vxk, to have the same sign as 3non, the SGS term and 3 may take opposite
signs if the viscous diffusion is large.

The fact that ~M
B
12 is zero almost half the time raises the question: how often

does MB
12 change sign? Does it flip-flop and change sign every second time step?

Figure 7b shows that—fortunately—this is not the case. The sign function stays
positive, on average, for 10 consecutive time steps, which corresponds to
50 viscous time units.

Above, the extent of the forcing region was set to six cells. Figure 8 presents
the results when the forcing region is reduced to four cells and extended to eight
cells, respectively. As can be seen, the velocity profile (figure 8a) for yCmlZ125
is in excellent agreement with the log-law profile when the forcing region is
extended, and it becomes somewhat closer to the velocity profile without any
forcing when the extent of the forcing region is reduced (cf. with figure 5a).
The resolved streamwise fluctuations, u r.m.s., increase both when the extent
of the forcing region is increased (eight cells) and when it is decreased (four cells);
see figures 5b and 8b. In the former case, u r.m.s. increases simply because the
integrated effect of the forcing is increased. In the latter case, the increase in
Phil. Trans. R. Soc. A (2009)
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the peak of u r.m.s. can probably be explained by a sharper velocity gradient
outside the interface (cf. solid lines in figures 8a and 5a). For yCmlZ270, a
reduction in the extent of the forcing region to four cells improves the predicted
velocity profile (see figures 8a and 5a). However, when the extent of the forcing
region is extended to eight cells the method fails completely, as can be seen in
figure 8a. This failure can probably be blamed on the positive feedback enhanced
by the streamwise periodic boundary conditions. In ongoing work on channel
flow with inlet and outlet, forcing can be used in the entire channel without any
such problems.
6. Concluding comments

The paper presents a new approach to extract either the forward scatter
(dissipation) or the back scatter given by the scale-similarity model. When the
SGS term in the momentum equation has the same sign as the viscous diffusion
Phil. Trans. R. Soc. A (2009)
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term, it is forward scatter and, when the two terms have opposite signs, it is back
scatter. In forward scatter mode, the model is used as a usual dissipative SGS
model. In back scatter mode, the model is used as forcing in hybrid LES–RANS,
stimulating the generation of resolved turbulence.

The idea of locally either dampening the resolved fluctuations (forward
scatter) or stimulating the growth of resolved turbulence (back scatter) can be
useful in URANS and DES. In these methods, the momentum equations are
triggered through instabilities to go unsteady in regions where the grid is fine
enough. It can then be useful to add back scatter from the scale-similarity model
to promote this transition. On the other hand, if the grid is coarse, it may be a
good idea to ensure that the momentum equation operates in fully steady mode.
In this case, some extra dissipation from the dissipative scale-similarity
model may be needed to damp any unwanted resolved fluctuations.

Financial support by Swedish National Infrastructure for Computing (SNIC) for computer time at
C3SE (Chalmers Center for Computational Science and Engineering) is gratefully acknowledged.
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