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Abstract-A new turbulence model which is a hybrid of the k-e model and an algebraic Reynolds stress 
model (ASM) is developed. This model takes from an ASM that part of the non-isotropic Reynolds stress 
which is due to buoyancy, and the remaining part from the k-e model. This concept is also applicable to 
flows with rotation where the Coriolis forces affect the turbulence by increasing its non-isotropy. The 
model is tested in a buoyancy-driven cavity flow. The contributions from the ASM corrections to the 
Reynolds stress and the turbulent heat flux are up to five and ten times. respectively, larger than those 

from the k-e model. 

1. INTRODUCTION 

TWO-EQUATION turbulence models, such as the k--E 

model, have been used for many years by researchers, 
and are still being used extensively. Today numxical 
simulation using the k--E model is also becoming an 
important tool for engineers in industry. The model, 
despite its simplicity, produces fairly accurate results 
for a wide range of applications, and it is com- 
putationally rather cheap (two extra partial differ- 
ential equations are solved). It is, furthermore. very 
robust and the turbulence model itself seldom leads 
to convergence problems. One important deficiency is 
the assumption of isotropy of the turbulence, insofar 
as all normal Reynolds stresses are assumed to be 
equal (at least in two-dimensional configurations). As 
a consequence, the model cannot account for buoy- 
ancy effects, for which, in stable stratified flows. the 
vertical fluctuating turbulent velocity is damped. and 
the horizontal ones are amplified [I]. 

Reynolds stress models, in which a partial drrer- 

entiul equation is solved for each Reynolds stress. do 
account for these buoyancy effects; this is also the 
case for the algebraic Reynolds stress models. in which 
an algebraic equation is solved for each Reynolds 
stress [2, 31. Both of these types of models (especially 
the former) are computationally much more expensive 
than the k--E model, and they are, numerically, also 
very unstable which can lead to serious convergence 
problems [4, 51. 

In the present work a new turbulence model which 
is a hybrid of the k-e model and the algebraic Reyn- 
olds stress model (ASM) has been developed. ASM 
corrections are added to the Reynolds stress tensor 

t Present address : CERFACS, 42 Avenue G. Coriolis. F- 
3 1057 Toulouse, France. 

(taken from the k--E model) in a linear uncoupled 
manner. This model takes buoyancy effects into 
account by-in stable, stratified flows-damping ver- 
tical fluctuations and amplifying the horizontal ones, 
and vice versa in unstable flows. 

The advantages of this hybrid model are that: 

(i) it accounts for non-isotropic effects on the tur- 
bulence due to buoyancy in the same way as Reynolds 
stress models (which the k--E model cannot handle) ; 
and 

(ii) it is expected to be numerically much more 
stable than the Reynolds stress models and. thus, to 
decrease the computational effort for a convergent 
solution (or even enable convergence). 

The test case is the buoyancy-driven flow in a tall 
two-dimensional cavity of 5 : 1 aspect ratio. The pre- 
dicted results are compared with experimental data 
from Cheesewright ef al. [6, 71, who made laser Dop- 
pler measurements in an air cavity with a Rayleigh 
number of 4 x IO’“. The CELS solver (Coupled Equa- 
tion Line Solver), which was developed and applied 
to buoyancy-driven flows by Galpin and Raithby [g] 
and extended by the author [9], is used. 

A correct treatment of the flow near the vertical 
walls is essential due to the large velocity gradients 
and the strong viscous effects prevailing there. This 
means that conventional wall functions. which are 
based on the use of local equilibrium logarithmic vel- 
ocity and temperature assumptions, are not appli- 
cable. A low Reynolds number turbulence model, 
which can handle the strong viscous effects in the 
viscous sublayers near the walls, is therefore used. 

This concept of modelling one part of the Reynolds 
stress-which is especially non-isotropic due to a par- 
ticular physical phenomenon-in the same way as in 
an algebraic Reynolds stress model, and modelling 
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NOMENCLATURE 

Cl. C?, Cl. cp, Cltr C2e, cti constants in the .Y+ non-dimensional distance from the wall, 
turbulence model .Yll*jkJ 

fI.~z,f,;no~enping functions in the turbulence .K, .Y 
s 2 ? 

G buoyancy source term in the turbulence I[ Cartesian coordinate in the i-direction 
models .t vertical Cartesian coordinate (see Fig. I). 

9 acceleration due to gravity 

9, acceleration due to gravity in the Greek symbols 
.x,-direction z contraction factor for the grid (see 

H height of cavity equation (9)) 
k turbulent kinetic energy B coefficient of thermal expansion 
L length of cavity &, Kroenecker’s delta 
n coordinate in the normal direction from E dissipation of turbulent kinetic energy 

the wail %/h permutation tensor 

P pressure 0 turbulent fluctuating temperature 
P turbulence generating source term in the I(, IL,, /lea dynamic viscosity (laminar, 

k and E equations turbulent and effective, respectively) 

cl local heat transfer rate at the vertical 1’ kinematic viscosity 
walls per unit area [kW m-‘1 P density 

Ri, Coriolis production of rr,u, (see equation 6, laminar Prandtl number 

(8)) Us. 0,. op turbulent Prandtl number fork, t 

4, local Reynolds number, ./kn \ and E. respectively 

R, local Reynolds number, k’/(\a) 5 time 
t temperature [‘Cl AT time step 
CJ, V mean velocity in the s- and J-directions, @ general mean variable 

respectively 4 turbulent fluctuations of general variable 
u, l’, u turbulent fluctuation velocity in the Q, components of rotation of coordinate 

s-, _r- and z-directions, respectively system (see equation (8)). 

c: mean velocity in the .x,-direction 

n, turbulent fluctuation velocity in the Subscripts 
.x,-direction C cold wall 

‘I* friction velocity H hot wall 
.Y horizontal Cartesian coordinate (see max maximum 

Fig. 1) ref reference value for the cavity. 

the remaining part using the standard Boussinesq 2 
^ 

assumption, is also applicable to other types of flow. F&(PL/,)+~(P"tuj) = -5 

I 
One example is Rows where the turbulence is affected 
by Coriolis forces due to rotation (see Section 4.1). 

In Section 2 the mean flow equations are given, and 
+$(,g-&$+pgi (Lb) 

the low Reynolds number k--E turbulence model is 
presented in Section 3. In Section 4 the second-order 5 - 
corrections of the k-c model are derived. Results are z (pt) + & @L/,0 = ; -,(“, PI, -) (Ic) ; z -P&O 

presented and discussed in Section 5, and conclusions 
are drawn in Section 6. where X, = X, .x2 = J (see Fig. I),g, = 0 andg2 = -g. 

The density is calculated from the gas law, and the 
viscosity is calculated from Sutherland’s formula 

2. THE MEAN FLOW EQUATIONS 1.458 x 10-6(t+273)‘.’ 
The continuity, the momentum and the tem- 11 = 

r+383.4 ’ 
(14 

perature equations can be written, using tensor 
notation, as Although only the steady solutions of equation (1) 

are of interest in this study, the equations are given in 
4 * 

g+&z) =0 (La) 
transient form, and the time step, Ar. is used as a 
free parameter by which the convergence rate may be 
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FIG. 1. Configuration. fc = 8O’C, fH = 34.2’C, H = 2.5 m, 
L = 0.5 m. Vertical walls are isothermal, and horizontal walls 

are adiabatic. 

optimized. These equations are solved using the CELS 
method, combined with Newton-Raphson linear- 
ization of the convective terms in the temperature 
equation [8]; this linearization results in a tem- 
perature-to-velocity coupling which is lost when stan- 
dard linearization methods are used. 

The CELS method is described in detail in the 
works by Raithby’s group [8, 10, Ill. This solver+vas 
extended by Davidson [9] where it was used in the 
same configuration as here (see Fig. 1). In ref. [9] the 
CELS solver was found to be very efficient and robust 
compared with SIMPLEC of Van Doormaal and 
Raithby [ IZ]. 

Whereas in standard iterative solvers (such as SIM- 
PLEC) the equations are solved sequentially, CELS 
solves the linenrked U, V, p and t equations e.ractlJ 
along a line estimating the off-line values with ‘old’ 
values. The domain is swept line-by-line in both direc- 
tions (= one sweep) until either the residuals have 
been reduced to a prescribed level or a maximum 
number of sweeps (typically five) has been carried 
out; the k and E equations are thereafter solved, 
and the whole cycle is repeated until convergence is 
reached. 

The QUICK scheme by Leonard [I31 was used 
when discretizing the convective terms. The exact 
form of the resulting coefficients in the discretized 
equations for a non-uniform grid are given in 
Davidson [14]. 

3. THE LOW REYNOLDS NUMBER k-c 

MODELS 

The buoyancy-driven flow in a rectangular cavity 
(see Fig. 1) is numerically simulated in the present 
work. As the flow near the walls is very important 
here, a low Reynolds number turbulence model, which 
can handle the strong viscous effects in the viscous 
sublayers near the walls, is used. The model by David- 
son [9] can be written as 

+p(P+G-4 (2a) 

where 

I, = x, x2 = ) 

-?U, 

P = -U’Uj~ 

/ 

.hc,k vt=p, o,:=l.O, 0,:=1.3, g,=o.9, 
E 

c, = 0.09, c,. = 1.44. C?,; = 1.92. 

The damping functions and the boundary con- 
ditions used are [9] 

[ 

3.4 
f, =exp - (l+R,,50)2 . f, = l+(O.l4,Lf,)‘, 1 fz = [I-027exp(-R,‘)][i-exp(-R,)] 

together with k = &/Sn = 0 at walls. 
This low Reynolds number model, which in parts 

is similar to the model of Jones and Launder [ 151 (JL) 
and the model of Lam and Bermhorst [16] (LB), was 
developed in refs. [9, 141 where the object was to 
develop a model which may have the possibility of 
predicting free flow low Reynolds number effects (i.e. 
which are not due to near-wall effects). This can be of 
importance in ventilated rooms [17], where the flow 
can relaminarize due to weak production of tur- 
bulence or due to stable stratification. The model is 
furthermore consistent in the near-wall behaviour of 
the E equation and allows simulation of the decay of 
grid turbulence ; the LB model meets neither of these 
requirements. It should also be noted that the model 
solves the equation for the physical isotropic dissi- 
pation. The JL model, however. uses 

as the dissipation variable. Since, close to walls, the 
normal gradient of B is much larger than that of s [ 181, 
the low Reynolds model used in the present work does 
not require as fine a grid near walls as does the JL 
model. 
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4. SECOND-ORDER CORRECT’IONS OF THE 

k-8 MODEL 

Buoyancy effects in turbulent flows enhance the 
non-isotropy of the turbulence. In stable stratified 
flows (Ltt/?_r > 0; see Fig. l), as in the present case, 
the vertical component of the turbulent fluctuations, 
L’, is damped, and the horizontal ones are amplified. 
In unstable flows (?t/@ < 0) I’ is amplified and II and 
II‘ are damped [I]. The k-e model accounts for these 
effects to a certain degree: the buoyancy source terms 
in the A- and E equations. which are proportional to 
?t;?y (see equation (2)), damp or amplify X- and I: 
depending on the sign of it/i?. However, the model 
cannot produce the physical non-isotropic effects by 
anlplifying the turbulent fluctuation in one direction 
and damping the other ones, or vice versa. Reynolds 
stress turbulence models. either in differential (DSM) 
or algebraic (ASM) form. can account also for these 
non-isotropic effects. In this study, the interest is 
focused on the algebraic Reynolds stress model. which 
has the form [2] 

- k (1 -c?)(P,, - $,,P) 
u,u, = $s,,k + - 

JT c, +(P+G)is- 1 

Two drawbacks of the algebraic stress m%iel are that 
it is computationally much more expensive than the 
k-E model, and that it is much less stable which causes 
convergence prcblems (4, 51. As buoyancy-driven 
tlous themselves are numerically very unstable, and 
as it is usually very hard to obtain convergent solu- 
tions [8.9, 191, it is clearly not advisable to incorporate 
turbulence models which further enhance the con- 
vergence problems. 

In the present work a new model which is a hybrid 
of the k-e model and the algebraic Reynolds stress 
model is developed which accounts for the non-iso- 
tropic turbulence due to buoyancy. Here the iso- - 
thermal part of tl+, is taken from the k-c model (equa- 
tion (2)), while the non-isotropic part due to buoyancy 
is taken from ASM. i.e. the last term in equation (3). 
The total G can be written as 

G = (G)~_I_ + (zt;),,,, (4a) 

where 

- k (I -c,)(G,, - jS,,G) 
(uirfj)Asu = - 

E ct +(P+G)/E- 1 
(4c) 

G, = -_P(gi;;;B+g,ti,@) : G = :Gkk. (44 

The constants c, and cz are given the values 1.8 and 
0.6, respectively [ZO]. Using the eddy viscosity 
assumption for 2 in equation (2) and noting that 

91 =93 =o; gr,= -g 

the Reynolds stresses in equation (4c) can be written 
as 

where 

C = k (1 -c’z)l*,& 6, 
R c,+(P-t-G) E-I’ 

As can be seen from equation (5). a positive vertical 
temperature gradient (?r,l?,r > 0) decreases L” and 
increases 2 and F’ as is physically required. For this 
to be true C must remain positive. As it was found in 
the calculations that the denominator in the 
expression for C in some regions (see Fig. 9(a)) 
became negative (because G < 0 and ]G] was large). 
P+G in the denominator was replaced by P. i.e. 

(Sd) 

Test calculations were also carried out in which the 
denominator was replaced by c, assuming local equi- 
Iibrium. which was used by Gibson and Launder [-?I] 
with good results. This change of denominator did 
not affect the predicted results very much, suggesting 
that the replacement of P+G by P in equation (5d) 
is a good approximation. 

It may be noted that the ASM corrections of the 
normal Reynolds stresses do not affect the turbulent 
kinetic energy, since their sum is zero, i.e. (see equa- 
tion (5)) 

(W)W, -t (l.-),W + (~),s,, = 0. 

The corrections in equation (5) merely ~efij~t~~bute 
the turbulent kinetic energy between the X-, _v- and - 
:-directions. The contribution (II,II,)~~\, to the total 
Reynolds stress in equation (4a) can be seen as a linear 
uncoupled ASM correction to the k-s model. - 

The Reynolds stress L~J!, in equations (4) and (5) 
is used in the momentum equations and in the 
expression for the veneration term. P. in equation (2). 
Equations (4) and (5) can also be used in the diffusion 
terms in the k. E and I equations by utilizing the 
generalized gradient diffusion hypothesis of Daly and 
Harlow [22]. which has the form 

- 
u4 = -e$,~ 

E ’ ‘Ss, 
(6) 

where d, = k. E or t. In the present work. equation (6) 
is used for the turbulent flux of heat. a. since this 
quantity is expected to be more important than the 
turbulent fluxes of X- and E. The individual heat fluxes 
for the temperature can, using equation (6). be written 
as 
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where the constant c,, is taken as [23] 

The total turbulent heat fluxes, which are included in 
the temperature equation. are calculated as in equa- 
tion (4a). i.e. the sum of the isothermal part (G),_,, 
using the Boussinesq assumption in equation (2). and 
the buoyant part taken from equation (7). 

The buoyancy destruction term (destruction rather 
than production since ct/L:_r < 0) G in equation (2) in 
the k and E equatens is_modelled using the Bousgnesq 
assumption, i.e. t’f? = (rO&. Inclusion of also (~~)~~~ 
in G, i.e. 3 = (@,,+(~@)~s~, in equation (2) was 
tested, but no convergent solution at all could be 
obtained, probably because (g),,sM contributes too 
nzzdz to the total generation (it is much larger than 
(a),, close to the walls, see Fig. 8). As remarked by 
Ince and Launder [23] the turbulent heat fluxes, ~7, 
thrtzzselm appear in the buoyancy generation term, 
G, whereas the diffusion terms include the gradients 
of the heat fluxes ; in the latter case the effect of 3 is, 
thus, smaller. 

It should be noted that the hybrid model aims to 
account only for &UOJWCJ induced non-isotropic 
effects; in cases when isothermal non-isotropic effects 
are important (e.g. streamline curvature) the hybrid 
model cannot account for these effects in any more 
degree than the standard k-e model. 

The hybrid model presented above probably cannot 
model the turbulence as accurately as an algebraic 
Reynolds stress model First, in the latter model the 
whoie Reynolds stress-not only the part which is due 
to buoyancy-is modelled with an ASM. Second, even 
the buoyancy part of the Reynolds stress, (G)AsM, is 
probably more accurately modelled with an ASM, 
since separate algebraic equations are used for the 
turbulent heat fluxes when G, in equation (4d) is 
calculated, whereas in the hybrid model, these are 
modelled using the Boussinesq assumption. It is, of 
course, possible to use the same equations for u,8 (in 
equation (4d)) in the hybrid model as in the algebraic 
Reynolds stress model, but this would mean that the 
model would lose much of its simplicity. The main 
advantages of the hybrid model are, in the author’s 
view (as mentioned in Section I), that it is com- 
paratively simple, numerically cheap and stable (see 
Section 5.3), and that it does take into account the 
non-isotropy of the turbulence due to buoyancy. 

4. I. Flows with rotation 
Buoyancy affected flows represent a type of flow in 

which most of the non-isotropy of the turbulence is 
due to a special physical phenomenon (buoyancy in 
this case). The contribution to the Reynolds stress due 

to this phenomenon is in the present work modelled 
using a more sophisticated turbulence model (ASM). 
whereas the remaining part of the Reynolds stress is 
modelled using the k-E model. There are other types 
of flow to which this concept is applicable. One exam- 
ple is a flow in which the turbulence is affected by 
Coriolis forces due to rotation. For this, isothermal, 
type of flow the form of the Reynolds stress is [24,25] 

z = fs_ k+ “_ (I -cZ)(pij-isi,p) 
r, -‘I 

E L’, +(P+G)/G- 1 

+” Ri, 
E c, +(P+G),k- 1 (8) 

where 

Here, the second term in equation (8) can be used as - 
(z&nsM in equation (4a), and the remaining part of 
the Reynolds stress can be taken from equation (4b). 
The Reynolds stresses in the expression of R,, can 
be taken either from the Boussinesq assumption in 
equation (4b). or as the sum of the two parts in equa- 
tion (4a) ; the latter is probably more accurate. but it - 
results in more complex expressions for (I~,I~,)~~~,. 

5. RESULTS 

In this section, the buoyancy-driven flow in the 
cavity in Fig. I is calculated using the two different 
low Reynolds number turbulent models presented in 
Sections 3 (k-t model) and 4 (hybrid model). The 
CELS solver is used as described in Section 2. and the 
QUICK scheme was used in the U, V and t equations, 
whereas the hybrid upwind/central scheme was used 
in the k and E equations. 

The calculated results are compared with the exper- 
iments by Cheesew~ght ef al. 161. tvho made laser 
Doppler measurements in an air cavity with Rayleigh 
number 4 x 10’” [7]. The flow in the present test case 
is recirculating which is important for evaluating the 
performance of the hybrid model. In a parabolic flow 
(boundary layer type of flow) the normal Reynolds 
stress does not appear (the I/ equation-r normal to 
the wall-is not solved, and p/Z.\: is negligible), and, 
hence the ASM corrections of the diffusive normal 
Reynolds stresses do not appear in the equations. 

Detailed predicted results for this configuration 
using the k-e model can be found in Davidson [9]; 
this case has also been numerically simulated by Ince 
and Launder [23]. The experiments suffer from two 
problems: there is a considerable heat loss through 
the side walls, and there is a small heat loss through 
the (well insulated) top wall. Near the top wall the flow 
is exposed to a positive vertical temperature gradient, 
which acts to reduce the turbulent kinetic energy (see 
equation (2)) ; this should cause relaminarization 
(which does occur near the bottom wall). Due to the 
small heat loss through the top wall, the temperature 
gradient is reduced, and the expected relaminarization 
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does not occur. This results in asymmetry of the flow 
in the experiments, and for this reason the comparison 
between calculations and experiments is concentrated 
to the mid-plane. where end effects should not be so 
large. 

The heat loss through the side walls reduces the 
core temperature, which further increases the asym- 
metry of the flow in the experiments. i.e. the ‘diagonal 
symmetry’ is lost (the flow in the upper right part 
of the cavity should be similar-or identical when 
temperature effects on density and laminar viscosity 
are not taken into account-to that in the lower left 
part of the cavity). 

A grid with 56 x 56 interior nodes is used, and it is 
generated using the equation 

tanh (--~)+0.5 (9) 
I 

with r = 3.5, where _r,, denotes the coordinate of line 
number m; the same formula was used for the)Gnes. 

It is important that the grid is sufficiently fine in 
the boundary layers at the vertical walls. where large 
gradients prevail. The grid generated using equation 
(9) gives two grid lines with constant s loc_atzd inside 
S+ = I at y/H = 0.5. Knowing that the second 
interior .u-line is located inside .Y+ = I. equation (9) 
gives, e.g. .r:, 2 20. As the boundary layer grows 
along the vertical walls (y/H > 0.5 at the hot wall, 
and J/H < 0.5 at the cold wall), the number of grid 
lines located in the boundary layer will increase. It 
should also be pointed out that the present low Reyn- 
olds number model does not require as fine a grid near 
walls as. for example, does that of Jones and Launder 
[ 151 (see Section 3). 

5. I. Mean velocities mtl temperatures 

In Fig. 2 the velocity field is presented in the form 
of the velocity vector field. The flow consists of a large 
clockwise vortex, and it can be seen that there are two 
small clockwise vortices near the mid-plane 
yjH = 0.5. The calculated V-profiles are compared 
with experimental data in Fig. 3 (the C-profile at 
_I'H = 0.7 for the hybrid model is included in order 
to facilitate interpretation of Figs. 6-9). It can be seen 
that the agreement between prediction and exper- 
iments is good in the left half of the cavity; there 
are some discrepancies in the core region. but both 
predicted profiles are probably within the bounds of 
experimental uncertainty. The discrepancy between 
the predicted profiles and the experimental profile, 
near the cold (right) wall, is due to the aforementioned 
incomplete relaminarization at the top wall in the 
experiments. It can also be seen that the predictions 
using the two different turbulence models are close to 
one another; the largest differences (up to IO%) 
appear in the peak values of the velocity close to the 

I/- _ _ 

It. _ . 

I/, _ . 

Il.__. 

ft, , \ 

t\._ _ 

FIG. 2. Predicted velocity vector lield. Hybrid model. Note 
change of scale in the r-direction (see Fig. I). 

walls. The fact that the largest ditrerences appear near 
the vertical walls is due to that the ASM corrections 
of the shear stress (w)&~\, are largest here (see Fig. 6). 
The maximum velocity close to the hot wall is in better 
agreement with experiments for the k-c model than 
for the hybrid model, but this is probably because the 
damping functions in the low Reynolds number model 
have been tuned using the k--E model. 

Along the vertical walls Cheesewright et al. [6] pre- 
sented the local Nusselt number as a function of the 
local Rayleigh number. A temperature difference, At. 
appears in the definitions of these two numbers, and 
in ref. [6] this temperature difference was taken as the 
difference between the hot wall and the local core 
temperature. Since the local core temperature is too 
low in the experiments, it was not considered relevant 
to compare predicted Nusselt number with the exper- 
imental one but it was considered preferable to com- 
pare the local heat transfer rates (in ref. [I41 both 
comparisons can be found). 

FIG. 3. Predicted and experimental V-velocny profiles at 
J'H = 0.5 and 0.7. Hybrid and k--E model. Experiments at 

J’ H = 0.5 by Cheesewright et ul. [h]. 
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FIG. 4. Predicted and experimental local heat transfer rates 
at the left (hot) vertical wall. Hybrid and k-8 model. Exper- 

iments by Cheesewright et al. [6]. 

In Fig. 4 the predicted local heat transfer rate is 
compared with the experimental data along the hot 
(left) vertical wall. No comparisons are sholvn for the 
cold wall since the experimental data here are affected 
by the incomplete relaminarization at the top wall. It 
can be seen that the two turbulence models give almost 
the same heat transfer rate, with differences of less 
than I% in the lower part (J/H < 0.6) of theqo_t wall. 

The predictions exhibit a sharp increase of y at 
J/H 2 0.25, which shows that transition is predicted 
here. This is in rather good agreement with the exper- 
iments [6], where a transition region was found at 
approximately y/H 2. 0.7. 

5.2. Turbulent qunntities 
In Fig. 5 the predicted turbulent kinetic energy is 

compared with experimental data, and both tur- 
bulence models perform well. The hybrid turbulence 
model gives slightly higher maximum k-values, which 
are in better agreement with experiments. than the k- 
E model. The turbulent shear stress, 111; is shown in 

k 

0.00 0.20 0.40 0.80 0.80 1.00 
x/L 

FIG. 5. Predicted and experimental turbulent energy, k. at 
v/H = 0.5. Hybrid and k--E model. Experiments by Cheese- 

wright et al. [6]. 

(4 0.0030 

0.0015 

0.0000 

0.00 0.10 0.20 0.30 0.40 0.50 

x/L 

FIG. 6. Predictions obtained with the hybrid model. Predicted 
turbulent shear stress, (uc~),,~~ (---, equation (SC)) and 
(uu),., (-, equation (4b)). (a) y/H = 0.5. (b) y/H = 0.7. 

Fig. 6 JIJ two different vertical levels. The isothermal 
part, (IIP)~__ and the buoyant part, (~),~sJI, are pre- 
sented separately. It can be seen that the buoyant 
part is dominant close to the wall. Since the velocity 
gradient dV/Zs is positive here (&)ii, is negative (see 
equation (4b)), and since the temperature gradient 
at/ax is negative, (I;;;,,sM is positive (see equation 
(5~)). The Reynolds stresses go to zero close to the 
wall because v, goes to zero. 

The buoyant part of the Reynolds stress. (~),~sM, 
exhibits a dip at x/L 1 0.34, due to C in equation (5d) 
attaining its maximum values here. This is because the 

ratio k/e increases as .Y increases and P/E decreases 
from x/L cz 0. I to 0.34, where P/E starts to increase. 

The normal Reynolds stress. Lo, is presented in’fig. 
7. Note that (see equation (5)) 

(3) AS&, = -:GXs,,. 

In the mid-plane (y/H = 0.5) the buoyant part plays 
a negligible role compared with the isothermal part. 
At J/H = 0.7 (?).asw is of the same size as (&, for 
0.3 < x/L c 0.9. The isothermal part of the normal 
Reynolds stress consists of two terms (see equation 
(4b)), namely - 2v,Z V/?y and Sk and it may be noted 



2606 L. DAVIINX 

(4 X+ 
0 50 100 

0.010 I I I I I I I I I, I I. I I I I I,. , , 
t - Ptc 

----- 
PLIY 

----. Oiss. 

Coin O,OD5_ L11:: 
Conv. 
Diff. 

v 
Loss -0.005 - 

0.0025 

7 

X+ 

(b) 0 50 100 
0.010 8 r r u s I. se,, r I,, . , , , , , . , , 

- Prod. 
----- Dir,. 

Conv. 

Doi” 0.005 
bl, ----- Liiff; 1 

0.0000 

0.00 0.20 0.40 0.60 0.60 1.00 

x/L 
Lo” -0.005 

1 

,i’ 

FIG. 7. Predictions obtained with the hybrid model. Predicted 
turbulent normal stress, (z),,,, (---, equation (5b)) and 
(&, (-, equation (4b)). (a) y/H = 0.5. (b) y/H = 0.7. 

that the tirst term is negligible compared with the 

second (cf. Figs. 5 and 7). 

In Fig. 8 the turbulent heat flux a is presented; 

J; H = 0.7 is chosen because the second-order cor- 

rections are larger here (see Fig. 6) than in the mid- 
plane. Close to the wall, the turbulent heat flux due 

0.0500, I 

0.00 0.10 0.20 0.30 0.40 0.50 

X/L 

FIG. 8. Predictions obta@d with the hybrid model. Predicted 
turbulent heat flux, (rB),,sM (---, equation (7b)) and 

(I@),_, (--, equation (2)). y/H = 0.7. 
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o.ooo w- 
1 ,,------______-____.. 
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FIG. 9. Predicted turbulent kinetic budget at y/H = 0.7. 
Production, Pf G; Production, PAsv = - (G),,su ZUJ8.y ; 
convection, -a/&j Vk) ; diffusion, - c?/&Y[(v + r,/~Jdk/ax] ; 

dissipation, --E. (a) Hybrid model. (b) k-E model. 

to the ASM corrections is much larger than (c&. 

That (z),,,, is large, close to the wall. was to be 

expected. since both (z)lsc, and c’t1S.r here are large 
(see equation (7b) and Fig. 6). The turbulent heat flux 
(a),., is small because it is calculated using the vertical 
temperature gradient. St/?y (see equation (2)). which 
is significantly smaller than 2tlS.r. When the predicted 
turbulent heat flux due to the second-order cor- 
rections dominates over the isothermal one. why are 
the heat transfer rates predicted with the two tur- 
bulence models (see Fig. 4) so close to one another? 
The answer is that L.O contributes to the vertical trans- 
port of heat. The turbulent diffusion which is respon- 
sible for the horizontal transport is small, since both 
terms in equation (7a) are small [(&SX, and Zt,‘?) 
are small]. 

In order to further illustrate the effects of the ASM 
correction, the calculated turbulent kinetic energy 
budgets are shown for the hybrid model (Fig. 9(a)) 
and the k--E model (Fig. 9(b)). It can be seen that, 
in the hybrid model. the generation term, P+G, is 
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significantly affected close to the wall. For .K+ < 40 

the generation term due to the ASM corrections is 
negative and reduces the total generation so that it is 
even negative for 10 c I+ < 40. Consequently. the 
diffusion term in this region increases in order to 
balance the negative generation term and the dis- 
sipation term. The dissipation, E, is smaller here than 
in Fig. 9(b), since the generation term is ‘helping’ E to 
dissipate turbulent kinetic energy. Close to the wall at 
I+ z 8, the generation term predicted with the k-e 
model has a peak which forces E to increase in order 
to balance it, which, closer to the wall, results in larger 
dissipation and diffusion in Fig. 9(b) than in Fig. 9(a). 

The main contribution to the generation term f’*s&! 
is the shear stress term (z),,, dV/&. The shear 
stress is positive for x/L < 0.16 (see Fig. 6(b)). and the 
change of sign of the generation term PAsM (at 
x,/L x 0.035) is due to the change of sign of 5Pjax 
(see Fig. 3). 

5.3. Computational times 

The hybrid turbulence mode1 requires only mar- 
ginally more computational effort than the li_E model. 
When using the low Reynolds k-z model and the 
hybrid model the initial fields were taken from a cal- 
culation carried out using wail functions; this latter 
run required 1235 (false) time steps, and 4.8 h CPU 
time. Using these fields as initial fields the lo*Reyn- 
olds k-c model required 2.4 h CPU and 585 time 
steps; the present model required 2.6 h CPU and 621 
time steps. The present model thus requires 3% more 
in total CPU time than the k-c model 

6. CONCLUSIONS 

In some types of flow the non-isotropy of the tur- 
bulence is increased due to special physical phen- 
omena, such as buoyancy and Coriotis forces. In the 
present work a turbuience model has been developed 
which is a hybrid of an algebraic Reynolds stress 
model and a k-6 model. In this model the part of the 
Reynolds stress which stems from buoyancy effects 
is modeiled using an expression from an algebraic 
Reynolds stress model, while the remaining part is 
modelled using the k-c model. The contribution of 
the algebraic Reynolds stress model to the Reynolds 
stress can be seen as a linear uncoupIed correction to 
the k-E 

main of the hybrid model that 
is comparatively numerically cheap stable, 
and it does into account non-isotropy of 

turbulence due buoyancy. It be noted 
the hybrid aims to only for 

ancy induced effects ; in when iso- 
non-isotropic effects important (e.g. 

curvature) the model cannot 
for these in any degree than 

standard k-e 
The hybrid and the k-c model (in low Reyn- 

olds number form) have been tested in the buoyancy 

driven flow in a tall two-dimensional cavity of 5: 1 
aspect ratio. The CELS solver was used. 

The following conclusions can be drawn : 

(i) The hybrid turbulence can account 
the non-isotropy due buoyancy by-in 

stratified flows-decreasing vertical turbulent 
fluctuation and the horizontal 

and vice in unstable 
(ii) The model requires 3% more 

CPU time the model. 
(iii) contribution of ASM corrections 

the shear was, close the vertical up to 
times larger of opposite than the 

stress predicted the k--.s 
(iv) The turbulent heat due to ASM 

corrections up to times larger that pre- 
by the k-E model. The horizontal flux, which 

is crucial for the prediction of the heat transfer rate 
at the vertical walls, was hardly affected by the ASM 
corrections. 

(v) The ASM correction of the normal Reynolds 
stresses did not play a large role near the vertical walls, 
but the ASM corrections did significantly influence 
the normal stresses further away from the vertical 
walls. 

This concept-adding corrections to the h--e model 
to account for a particular physical phenomenon 
which increases the non-isotropy of the turbulence- 
should also be applicable for flows in which the tur- 
bulence is affected by Coriolis forces due to rotation. 
A suggestion for the expression of the Reynolds stress 
for this type of flow has been given in the present 
work. 

In the present study the ASM correction in the new 
hybrid model has been shown to give corrections of 
turbulent quantities such as Reynolds stresses and 
turbulent heat fluxes qualitatively correct. but lack 
of experimental data prevents any quantitative 
estimation. Further validation of the model is thus 
needed. 
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CORRECTIONS DE SECOND ORDRE DU MODELE k-6 POUR TENIR COMPTE DES 
EFFETS NON ISOTROPES DE LA PESANTEUR 

R&m&--On developpe un nouveau modele de turbulence hybride entre le modele k--E et un modtle 
algebrique de tension de Reynolds (ASM). Ce modele tire de I’ASM la prise en compte des tensions de 
Reynolds non isotropesdues d la pesanteur et du modble k--E ses avantages propres. Ce concept est applicable 
aussi aux koulements avec rotation od les forces de Coriolis affectent la turbulence en augmentant le 
defaut d’isotropie. Ce modele est test& avec un bcoulement avec flottement dans une cavitC. Les contributions 
des corrections dues B I’ASM sur les contraintes de Reynolds et les flux thermiques turbulents sont 

respectivement jusqu’8 cinq et dix fois plus grands que ce que donnerait le modele k--E. 

KORREKTUREN ZWEITER ORDNUNG IM k-.s-MODELL ZUR BERtiCKSICHTIGUSG 
AUFTRIEBSBEDINGTER ANISOTROPIE 

Zusammenfassung-Es wird ein neues Turbulenzmodell entwickelt, das sich aus dem k-E-Model1 und einem 
algebraischen Model1 fir die Reynolds’schen Schubspannungen (ASM) zusammensetzt. Dieses Modell 
iibemimmt aus dem ASM den auftriebsbedingten Teil der nicht-isotropischen Reynolds’schen Schub- 
spannungen-den Rest aus dem k-c-Modell. Dieses Konzept kann ebenso auf Rotationsstr6mungen 
angewandt werden, bei denen die Coriolis-KrHfte durch zunehmende Anisotropie den Turbulenzgrad 
lxeinflussen. Das Model1 wird anhand einer Auftriebsstr6mung in einem Hohlraum getestet. Die Beitrage 
der ASM-Korrekturglieder zu den Reynolds’schen Schubspannungen und zum turbulenten WIrmestrom 

sind bis zu Smal und lOma grii&r als diejenigen vom k+Modell. 

nOI-IPABKH BTOPOI-0 l-IOPIim MOmH k-e mfl NETA HEH3OTPOlIHbIX 
WEKTOB, BbI3BAHHbIX IIOn%EMHbIMH CHJIAMH 

A-pa- HO- ~0ne.m. -ryp6yne~~~ocm, CO%TBH)UIILI ~oae.ab k-e H anrebpawec- 
~y-m MO- pclhroJencoacroro aanpatetlirn (MM). B noit MOACJIB -0 iicuonbaynxcn Heii3or- 
pormoe pc#~o~sczoc aaupnxcHse ~3 anre6pawc~~o~ MOXCJIU, odycnonnentloe UO~MH~~MB 
w u na MOJ(~JXE k-u &umoe xroarme T~KXC apmeHaMo I TeqeHm c aarpy-rxoR, me eo3neficr- 
e.me ropso~~~cosw CEJI ua -ryp6ynemaarra 38uIIoqaercn II ye.enmeHm ee ~exso~polurocnr. Monue 
IlPoBCpCHa Ha ULBBrPrmOllllOM TCqCUEE, Bbl3mHOM lIOX%eMlfblMH CHMMH. ~Xi&llOCb. ‘IT0 BUtaX OT 
HOIlpaBOK K @HOJlbJ.WOilCKEM H~IlXeEMM A TIXlJlOBOMy nOTOry, Cs~l’lHblti C %JtrdpaE=XOa 

MOJleJ&K), COOTBtrcTBc inio B IIXIX E ~~eczrrb pa3 6omxue, 9eM etrnan, CBX3aHHbafi c k-e MOJleJIbH). 


