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Prediction of the Flow Around
an Airfail Using a Reynolds
Stress Transport Model

A second-moment Reynolds Stress Transpor: Model (RSTM) is used in the present
work for computing the flow around a two-dimensional airfoil. An incompressible
SIMPLEC code is used, employing a non-staggered grid arrangement. A third-order
QUICK scheme is used for the momentum equations, and a second-order, bounded
MUSCL scheme is used for the turbulent quaniities. As the RSTM is valid oniy for
Fully trbulent flow, an eddy viscosity, one-equation model is used near the wall.
The mwo models are matched along a preselected grid line in the fully turbuient
region. Detailed comparisons between calculations and experiments are presented
for an angle of antack of @ = 3.3 deg. The RSTM predictions agree well with the
experiments, and approaching stall is predicted for a = 17 deg, which agrees well
with experimental data. The results obtained with a two-layer k — € model show
poor agreement with experimental data; the velocity profiles on the suction side of

the airfoil show no tendency of separation, and no tendency of stall is predicted.

Introduction

Fiow around airfoils is an interesting turbulent flow config-
uration involving a number of fundamental physical flow phe-
nomena such as transition, curvature-induced production of
wrbulence, separation and wake flow, Transition is usually not
predicted but is prescribed from experimental data. Some work
has been presented in which transition is predicted using the
¢"-method based on the linearized stability theory {Cebeci,
1989). In real (industrial) configurations, it is of utmost im-
portance to be able to predict the locations of transition; in the
present study, however, the locations of transition are pre-
scribed from experimental data.

Curvature effects, related either to curvature of the wall or
streamline curvature, are known to have significant effects on
the turbulence {(Bradshaw, 1973}. Both types of curvature are
present in airfoil flows, the former on the suction side and the
fatter in and near the separation region. The entire Reynolds
tensor is active in the interaction process between shear stresses,
normal stresses and mean velocity strains, When predicting
flows where curvature effects are important, it is thus neces-
sary to use turbulence models that accurately predict ail Reyn-
olds stresses, not only the shear stresses.

Second-moment closures such as RSTM are superior to sim-
pler turbulence models such as the & — ¢ or the Baldwin-Lo-
max models. The main reasons for their superiority are their
ability to account for (i) streamline curvature, (i) strong non-
local effects and history effects for the individual stresses, and
(iii} irrotational strains, phenomena which all are present in
airfoil flow.
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{i) When the streamlines in boundary laver type of flow
have a convex {concave) curvature, the fturbulence is
stabilised (destabilized), which dampens {augments) the
turbulence (Bradshaw, 1973; Rodi and Scheuerer, 1983),
especially the shear stress and the Reynolds stress nor-
mal to the wall. Bradshaw demonstrates that even small
amounts of convex curvature can have a significant ef-
fect on the wurbulence. In the present configuration, both
wall curvature and streamline curvature are present.

tii) The adverse pressure gradient on the suction side of the
airfoil with a subsequent separation produces strong an-
isotropy in the Reynolds stresses, which is transported
downstream.

{iii) In boundary layer flow, the only term which contrib-
wes to the production term in the & eguation is
~pmvdl/ /3y (x denotes streamwise direction). Thomp-
son and Whitelaw (1985) found that, near the separa-
tion point as well as in the separation zope, the pro-
duction term —p(u® — vH3U /dx is of equal importance.
This is also the case for airfoil flow, where large ir-
rotational strains (60 /8x, 8V /3y) prevail, for example,
near the point of separation.

In a previous paper {Davidson and Rizzi, 1992}, an Alge-
braic Stress Model was applied on the same configuration as
in the present study. In the ASM, which is a truncated form
of the RSTM, the transport terms (convection and diffusion)
are approximated as being proportional to the transport of tur-
buient kinetic energy. This is maybe a sound approximation
for the normal stresses, but not for the shear stresses, The RSTM
is superior to ASM, mainly because the more accurate treat-
ment of convection and diffusion, where in the RSTM the in-
dividual stresses are transperted independently of each other.

The paper is organized as follows: the mean flow equations
are presented first, together with some details on the compu-
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tational method. The turbulence model is deseribed in the sec-
tion that follows. A discussion is then presented of the way in
which the turbulence is affected by streamline curvature and
how the RSTM accounts for these effects. The subsequent sec-
tion presents the results, and in the final section conclusions

are drawn.

Mean Flow Equations

We have the incompressible form of the continuity equation

5;(5;) =0 {1}
and momentom equation
] i p 8 [ U, ]
p é’;} ) = - w 5‘;: (u *a;: - puiaj) (2)

Numerical Methed. The finite volume computer program
CALC-BFC (Boundary Fitted Coordinates) for three-dimen-
sional complex geometries (Davidson and Farhanieh, 1992;
Johansson et al., 1993) is used in this study. The program uses
Cartesian velocity components, and the pressure-velocity cou-
pling is handled with the SIMPLEC procedure. Staggered grids
for the velocities have been used (Patankar, 1980) in most fi-
nite volume programs. In the present work, however, a col-
located grid arrangement is used, which means that velocities
are stored together with the other variables (p, £, e, ) at the
center of the control volume. This concept was suggested by
Rhie and Chow {1984), and has also been used by, e.g., Burns
and Wilkes (1986), Peri¢ et al. (1988), and Majumdar et al.
{1992).

The convective terms in the mean flow equations are dis-
cretized using QUICK, a third-order scheme by Leonard ¢ 1979).
For turbulent quantities (22, V2, @, &, and €) MUSCL, a sec-
ond-order, bounded scheme of van Leer (1979), is used.

Boundary Conditions. All variables are set to zero at the
walls except for pressure, for which 3%p/n> = 0 is used. At
the farfield the velocity components are set from experimental
data, i.e.,

U=cosa, V=sina, 3
where o denotes angle of attack. The pressure is set from ap/
an* = 0. All turbulent quantities are either set to zero or are

extrapolated, depending on whether the case is inflow or out-
flow.

The Reynolds Stress Transport Model

The Reynolds Stress Transport Model has the form (Gibson
and Younis, 1986):

a au; all,

. (PUW:‘“,() TP T — pl e (bz'_; + Dy~ pey
6,:,, ax; ax,
e —

convection

preduc‘;ion Py
4)

The convection and production terms are exact and do not re-
quire any modelling assumptions, The pressure strain &, and
the dissipation €; are modeled in a standard manner (Gibson
and Younis, 1986).

The diffusion term D; can be modelled using the General-
ized Gradient Diffusion Hypothesis GGDH {Daly and Harlow,
1970}

3 k duu .
D, = (o 1) 5
o, L € dx,

However, as severe convergence problems were experienced
using the GGDH owing to the destabilising cross-derivatives,
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the diffusion term D;; is modelled using the eddy viscosity as-

sumption
3 { i Bﬁ'ﬁ})

Dy= —~ ==}, ®)
o, (m 3% /

Following a suggestion by Lien (1992), the turbulent Prandu
number o, has been modified. The diffusion in the normal di-
rection is usually much more important than in the streamwise
direction. The diffusion coefficient using the eddy viscosity
formulation in Eq. (6) is u,/c, and can be compared with the
one in the GGDH-expression in Eq. 5, so that

2 3
ook & %
o, €q, €
With ¢, = 0.22 and v'/k = 0.5, we get g, = 0.82. Thus the
viscosity in the diffusion term in Eq. (6) is computed as

, ¥
it ...5..,. i %

—

o, 0.82 €

For €, we obtain the Prandtl number ¢, = 1 with ¢, = 0.18.

The one-equation eddy viscosity model by Wolfshtein (1969),
modified by Chen and Patel (1988), is used near the walls. In
this model, the standard  equation is solved and the trbulent
length scale is taken from an algebraic expression; for more
details see Davidson (1993b).

The % and e-Equations In an RSTM, there are two equiv-
alent sets of equations which can be solved, either &2, 12, w?,
uv, and € or 1%, V2, k, v, and €. The latter set has been chosen
in the present study. The primary reason for this choice is that
the k equation must in any case be solved in the one-equation
region.

The standard  and e equations in the RSTM have the form:

9 £ opk
E;(p(,{,-k)=D + P — pe )
7

d €
— (pUje) = D* + = (¢, P* = cpepe) (10)
ax; k

As for the Reynolds stresses, the diffusion terms D*,'D* are
calculated using the eddy viscosity assumption with o, = 0,82
and o, = 1, see Bgs. (6)—(8). :

Two Variants of RSTM. Two different Reynolds stress
models are compared. One is the standard model of Gibson
and Launder (1978) thereafter denoted GL.), which has been
used extensively in the literature. The other model is that pro-
posed by Gibson and Younis (1986) (hereafter denoted GY).
The two models differ only in the choice of constants. When
modelling the pressure strain term &, + P, ,, there are three
chief physical processes used to determine the constants: (a)
return-to-isotropy when all mean strains are zero, () rapid-
distortion theory, and (c) experimental stress levels in sirmple
shear flows. In the GL model, () and {c) have been favoured
at the expense of (a). Lumley (1978) argues that (b) is not
relevant since it is assumed in rapid-distortion theory that the
mean strain (the rapid part of the pressure-strain term, D)
acts on the entire turbulence spectra. In reality, it acts only on
the Jow-wave number part of the spectra, i.e., the large scales,
whose energy is spread to the smaller scales through the cas-
cade effect. In the GY model, the criteria dictated by rapid
distortion is relaxed, and the refumn-to-isotropy criterion is taken
fully into account. The constants for the two models are:

Model GY (¢, ¢y, ¢, ¢'3, ¢4, e = (3.0, 0.3, 0,75, 0,15,
1.4,1.8)
Model GL {¢,. ¢, ¢, ¢}, ou, o) = (1.8, 0.6, 0.5, 0.3,
1.44, 1.9
The two models are compared in Fig. 1. Model GY is oth-
erwise used throughout this study.
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Fig. 1 i, profiles predicted with RSTM (Model GY) using ditferent
meshes. The L, profile computed with Model GL is also included (mesh
176 x 96)

Streamline Curvature

When the streamlines in boundary layer flow have a convex
curvature, the turbulence is stabilised. This dampens the tur-
bulence (Bradshaw, 1973; Rodi and Scheuerer, 1983), espe-
cially the shear stress and the Reynolds stress normal to the
wall. Concave curvature destabilises the rbulence. The ratio
of boundary layer thickness 8 to curvature radius R is a com-
mon parameter for quantifying the curvature effects on the tur-
bulence. The work reviewed by Bradshaw demonstrates that
even such small amounts of convex curvature as /R = (.01
can have a significant effect on the turbulence. Thompson and
Whitelaw (1985) carried out an experimental investigation on
a configuration simulating the flow near a trailing edge of an
airfoil, where they measured §/R = 0.03. They reported a 30
percent decrease of pv* (Reynolds stress in the normal direc-
tion to the wall) owing to curvature. The reduction of pv* and
—puv was also substantial, In addition, they reported signifi-
cant damping of the turbulence in the shear layer in the outer
part of the separation region.

An illustrative model case is curved boundary layer flow.
A polar coordinate system r — 6 with @ locally aligned with
the streamline is introduced. As U, = Ugr) (with gl,/ar >
0 and U, = 0), the radial inviscid momentumn equation degen-
erates to

r ar

(1)

Here the variables are instantaneous or laminar. The centrif-
ugal force exerts a force in the normal direction {outward) on
a fluid following the streamline, which is balanced by the pres-
sure gradient. If the fluid is displaced by some disturbance
(e.g.. wrbulent fluctuation) outwards to level A, it encounters
a pressure gradient larger than that to which it was accustomed
at r = rg, as (Uy)y > (Ug)y, which from Eg. (11) gives (8p/
8r)a > (dp/or). Hence the fluid is forced back to r = ry.
Similarly, if the fluid is displaced inwards to level B, the pres-
sure gradient is smaller here than at r = 7y and cannot keep
the fluid at level B. Instead the centrifugal force drives it back
to its original level.

It is clear from the model problem above that convex cur-
vature, when al/,/dr > 0, has a stabilizing effect on (trbu-
lent) fluctuations, at least in the radial direction. It is discussed
below how the Reynolds stress model responds to streamline
curvature. .

Assume that there is a flat-plate boundary layer flow.
The ratio of the normal stresses pu® and pv* is typically 5. At
one x swation, the flow is deflected upwards. How will this
affect the turbulence? Let us study the effect of concave
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Table 1 Effect of streamline curvature on turbulence

allsfér > 0 aly/3r < 0
Convex curvature stabilizing destabilizing
Concave curvature destabilizing stabilizing

streamline curvature. The production terms £, in Eq. (4) ow-
ing to rotational strains can be written as

3 —-—*a /
RSTM, " —eq.: P, = m?_puv-g— (12)
¥
_ @V e dU
RSTM, &% ~eq.: Py = =pu = = py’ - (13}
ax ay
- _av
RSTM, v ~eq.: Py = — 2puv-é“ (14)
X
L (v avy
E—e:Prepl—+ — (15)
&y  ax

As long as the streamlines are parallel to the wall, all pro-
duction is a result of ¢L//dy. However as soon as the stream-
lines are deflected, there are more terms resulting from aVv/
ax. Even if aV/dx is much smaller than dU/dy it will still
contribute non-negligibly to P, as pu® is much larger than
p‘{ﬁ. Thus the magnitude of P,, will increase (P, is negative)
as aV/3x > 0. An increase in the magnitude of Py, will in-
crease_—uv, which in tum will increase P, and P, This means
that pu? and pv* will be larger and the magnitude of P, will
be further increased, and so on. It is seen that there is a pos-
itive feedback, which continuously increases the Reynolds
stresses. It can be said that the turbulence is destabilised owing
to concave curvature of the streamlines.

However, the & — € model is not very sensitive to streamline
curvature (neither convex nor concave), as the two rotational
strains are multiplied by the same coefficient (the turbulent
viscosity).

If the flow (concave curvature) is a wall jet flow where ol /
dy < 0, the situation will be reversed: the turbulence will be
stabilised. If the streamline (and the 'wall) is deflected down-
wards, the situation will be as follows: the turbulence is sta-
bilizing when 8U//dy > 0, and destabilizing for 3U/dy < 0.

The stabilising or destabilising effect of streamline curvature
is thus dependent on the type of curvature (convex or con-
cave), and whether there is an increase or decrease in mo-
mentum in the tangential direction with radial distance from
its origin (i.e., the sign of 3U,/ar). For convenience, these
cases are summarized in Table 1.

Results

The results caleulated are compared with experimental data
taken from Capbern and Bonnet (1989) and Gleyzes (1989).
The experimental airfoil is the A-profile, which also was used
in the CFD validation EUROVAL project (1993). The Reyn-
olds number and the Mach number are 2.1 X 10% and 0.13,
respectively. In the calculations, the flow is assumed to be
incompressible. Measurements have been carried out in two
wind tunnels, F1 and F2, the F1 wind tunnel being larger than
F2. Global characteristics such as friction coefficients and suar-
face pressures were measured in the Fi wind tunnel, whereas
the flow field was studied in more detail in the F2 wind tunnel
where mean velocity profiles and Reynolds stresses were mea-
sured using a three-component LDV system. The blockage ef-
fect in the F2 tunnel was more important than in the F1 wnnel,
leading to three-dimensional effects for o = 13 deg.

The Mesh. A C-mesh with 353 x 63, generated by Cha-
nez and Palicot (19901, was used. The near-wall nodes are
located at ¥~ = I, and 7 w0 10 nodes-—in the normal direc-
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tion-—are situated in the region 0 < y* = 20. Two medifi-
catiens of this mesh have been tested. In the first modification
the number of nodes in the tangential direction to the airfoil
was divided by two (178 X 65). In these two meshes a con-
stant stretching factor in the normal direction was used. In the
second modification of the 3533 X 635 mesh, the stretching fac-
tor was decreased from 1.12 to 1.07 between n/c = 0.0029
and n/c = 0.12, adding 32 extra nodes in the boundary layer
50 that 2 178 X 96 node mesh was obtained.

The thickness of the experimental (real) airfoil is finite at
the trailing edge, whereas it is preferable in the calculations
that it is zero. Following the procedure chosen in EUROVAL,
the lower surface near the trailing edge is displaced slightly
upwards so that it joins the upper surface at x/c = 1.0, thus
giving the same airfoil length as in the experiments.

Transition. Transition was initially imposed by setting k,
€, 1%, ¥, IV to zero before the transition point. After the tran-
sition point the turbulence gquantities grow naturally without
any sort of triggering. The reason why no triggering is needed
is because of the one-equation model, which does not damp
the turbulent as much as other low-Re models. In an earlier
work (Davidson, 1990), where the low-Re model of Chien
{1982} was used, is was found necessary to inwoduce some
turbulence after the transition point.

Setting the wrbulent quantities to zero before the transition
point, created some problems on the 353 X 65, which resulted
in separation on the suction side of the airfoil where the tran-
sition was imposed, probably because it caused too abrupt an
increase in the viscosity. Thus the transition is imposed more
smoothly, which is probably also more physically correct, If
the transition is to be imposed at x,,, the turbulent viscosity is
made w0 vary linearly in the x direction between its calculated
values at x,, — Ax and x,,; for @ = 13.3 deg, on the upper side,
xp /e = 012, Ax/e = 0.05 were used, and on the lower side
x/c = 0.3, Axfc = 0 were used.

Mean Flow Quantities. The velocity profiles at x/¢c = 0.96
are presented in Fig. | using the three different meshes. It can
be seen that the doubling of the number of mesh points in the
tangential direction to the airfoil does not have any great effect
on the calculated results. Included in Fig. 1 is also the velocity
profile predicted with the Model GL., a profile which is more
smeared out compared with Model GY, which means that the
former model predicts a more diffusive (turbulent) flow field
with larger Reynolds stresses, It is instructive to study the trun-
cated ASM (Rodi, 1980) form of the stress tensor

2
{1 — e} (Pa““avpk) + @B+ Py
———“23}'(-#]( °
ity =3 o T T~ 1+ P

L#N)

(16)

On the curved part of the airfoil (close to the wall) up to ap-
proximately mid-chord, as well as close to the wall in the sep-
aration region, the dissipation is larger than P%, ie., Pi/e <
I (see Fig. 10). The denominator in Eq. (16} is reduced as its
last term decreases, which augments @u;. As the coefficient
¢, has the value 1.8 in Model GL compared with 3.0 in Model
GY, the relative importance of P/e is larger for Model GL,;
the resulting increase in Wk, with Model GL gives a more
smeared out velocity profile and counteracts the streamline
curvature-induced reduction resulting from convex curvature.
All results presented below have been obtained using the 178
® 96 mesh and Model GY.

In Fig. 2 the RSTM-predicted lift-coefficients C, are com-
pared with two-layer & — ¢ predictions and experimental data,
it can be seen that the RSTM agrees well with experiments
predicting decreasing C; at o« = 17 deg, which agrees well
with experimental data. However, the £ ~ ¢ model shows no
tendency to predict stall. It should be noted that there is a
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considerable difference between the experimental results in the
two wind tunnels F1 and F2. The results obtained in the larger
wind tunnel Fl, are considered to be more reliable than those
obtained in F2. This should be kept in mind when making
detailed comparisons between experimentai profiles taken in
F2 and calculated results.

The wall pressure and the skin friction are presented in Fig.
3. 1t can be seen that, with the k ~ ¢ model, the (negative)
pressure peak at the suctios side is overpredicted as compared
with experiments, and that the RSTM predictions agree well
with experiments. The skin friction predicted with k& - € is
higher than that predicted with RSTM. This is probably partly
due 10 how the models react w the imposed transition, but it
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Fig. 4 U, profiles on the suction side of the airfoil. Solid lines: RSTM;
dashed lines: k — ¢
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Fig. 5 U, profiles in the wake after the airfoil. Solid lines: RSTM; dashed
lines: k — €

is also fogical since the velocity profiles (see below) predicted
with the RSTM show more tendency to separate than do the
k — € profiles. But it was also found in a previous work on
testing different low-Re variants of & — € models (Davidson,
1993a}, that predicted skin-frictions are not a very reliable in-
dicator of the global flow characteristics, not even the velocity
profiles.

The velocity profiles on the suction side of the airfoil are
presented in Fig. 4. Note that an orthogonal s — » coordinate
system is used, with origin on the surface. The s coordinate
is tangential to the airfoil. The U -velocities on the airfoil are
well predicied when using the RSTM. A small separation is
predicted, occurring at x/c = 0.90. This type of separation
can be termed incipient detachment (Simpson, 1989), As sep-
aration is approached, it is seen that the predicted U, profiles
follow the experimental ones, that the profiles become pro-
gressively less full and that an inflexion peint appears in the
profiles. The separation region in the experiments is consid-
erably larger than that in the RSTM-predictions. This may per-
haps be attributed to experirnental uncertainty int the F2 wind
tunnel, because the lift-coefficient in Fig. 2 and the swrface
pressure data in Fig. 3 indicate that the separation zone in the
more reliable measurements in the FI wind wnnel is smaller.
The velocity profiles predicted with the £ — € model do not
agree very well with experiments: no tendency toward sepa-
ration is observed, which implies that the & ~ & predicts ex-
cessively large shear stresses, giving too high a turbulent dif-
fusion and thus smearing out the U/, profiles.

The wake velocity profiles U, /U, are compared with ex-
periments in Fig. 5. Note that an o — B coordinate system is
used in the wake with origin at the trailing edge; the a axis is
parallel to the free-stream velocity, and 8 is orthogonal to 4.
From Fig. 5 it can be seen that the RSTM shows better per-
formance than the k£ — ¢ model.

Turbulent Quantities. The stresses an the airfoil and the
wake are presented in Figs. 6-7. Using R$'TM, the shear stresses
are in fairly good agreement with experimental data, whereas
the shear stresses are overpredicted. especially near the trailing

§4/Vol. 117, MARCH 1895
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edge. In the wake, the predicted shear stresses are much smaller
than in the experiments, which is probably related to the larger
experimental separation zone.

The shear stresses predicted with the k ~ € model are smaller
than those predicted with the RSTM. The reason why the shear
stresses are higher with RSTM than with & — ¢ is that the
turbulent quantities were computed with different velocity fields.
The velocity gradients in the k ~ ¢ predictions are smaller than
in the RSTM predictions, leading to Jower production of tur-
bulence in the former case.

When presenting turbulent quantities such as Reynolds
stresses, it may be overlooked that it is not the stresses that
enter the momentum equations but their gradients, where the
Reynolds stresses constitute net (vectorial) forces/area, i.e.,
net stress vectors. The force resulting from shear stresses, F,
can be written

F, = ( it ‘m) (17)
s TP e s 3y s
and from the normal stresses:
 aud v
Fﬁ:p(w ol ~m), (18)
ax ay

which should be compared to the force resulting from pressure

Fp = (w i’g‘ — ipj) {19
. ox ay.
In Fig. 8, the force-fields near the trailing edge are presented
as vector plots. It can be seen from the pressure force F, that
the flow goes against an adverse pressure gradient, both on the
suction side of the airfoil and in the wake. It is interesting to
see how the forces {net stress vectors) resulting from the Revn-
olds stresses are fairly important in the wake region, especially
along the centre line, where the very thin boundary laver from
the pressure side mixes with the separated boundary layer from
the suction side. Large gradients are formed that give strong
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Fig. 8 Vector plots of turbulent stresses and pressure vectors near
the trailing edge. The same scaling of vectors s used In ali plots, The
dashed line has the same direction as the far-field flow (& = 13.3). (a)
pl~duv/dx, —ouv/oy), b} (—ap/ax, ~ap/ay)

downward forces owing to both shear and normal stresses (the
normal stresses are not shown here due to space constraints;
see Davidson, 1993c), which are even larger than the forces
resulting from the pressure gradient.

As Cartesian velocity components have been used in the cal-
culations, no explicit curvature terms appear in the Reynolds
stress equations (see Eq. (4)). Of course, the Reynolds stresses
formulated in Cartesian coordinates are also affected by cur-
vature, but are affected implicitly. To investigate the curvature
effects, let us—in the post-processing—study the equations in
polar coordinates r ~ §, with the flow in the circumferentia]
6 direction {i.e., I/ = Uydr), U, = 0). The # axis is thus cho-
sen so that the flow is locally aligned with this axis. Curvature
terms now appear because the r = const. coordinate lines are
curved. The Reynolds stress equation can, in symbolic form,
he written

Co~ Dy =P+ @& —g;+ P, + Cj (20}
where superscript ¢ on P, and €, denotes curvature terms orig-
inating from production and convection, respectively, see Ta-
ble |. The iarger these terms, the more important the curvature
effects.

The flux Richardson number

B U/ r
T U/r + 8Ufor
Is a convenient parameter for studying curvature effects. Its
physical meaning is (minus) the ratic of the production of «?
owing to curvature to the total production of 12 {see Table 2.

The ratio 8/R and the flux Richardson number are shown in
Fig. 9 at three different x stations: at x/¢ = (0.2 where the wall

(21)
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Table 2 Source terms in the Reynolds stress equations (see
Eq. (20)) due to production and convection in a polar co-
ordinate system
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Fig. 3 Parameters describing streamline curvature effects on the tur-
bulence. {a) Boundary layer thickness over streamline curvature radius
8/H.. (b} Flux Richardson number B,

curvature is most important, near the separation point (x/c =
0.775) and in the separation zome (x/c = 0.96). As can be
seen, the streamline curvature is positive at x/¢ = (.2, which
in the outer part of the boundary layer gives an increasing flux
Richardson number. The flow here is parallel to the curved
wall, which gives constant §/R, = 0.0, i.e. boundary thick-
ness over wall curvature. The boundary layer is very thin (8/¢
= 0.003}, which explains the strong increase in the flux Rich-
ardson number at n/c = 0.004, close to the outer edge of the
boundary layer. As separation is approached, the streamlines
become concave, which destabilises the urbulence. It is seen
in Fig. 9 that /R and R, become negative. The flux Richard-
son number reaches values of =0.1 in the outer region of the
boundary layer. These values should be compared with re-
ported values on the critical flux Richardson number (the R~
value at which the turbulence collapse, suppressed by dissi-
pation and buoyancy/curvature effects) in buoyant flows,
ranging between .15 (Elison, 1957) and 0.5 (Townsend,
1958). The curvature effects are largest in the outer boundary
layer, where the curvature term I/,/R becomes comparable with
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Fig. 10 Calculated productions terms in the k equation. Solid lines:

~ i, aU,/én; dashed lines: g -2,/ Bs; dashed-dotted lines: e {a}
x/c = 0.4, (b) x/c = 0.96

the velocity gradient 8U,/ar. The direct influence of the cur-
vature effects are thus largest in the outer part of the boundary
layer, but they will also have indirect influence via convective
and diffusive transport. The Reynolds stresses, augmented or
dampened by curvature, increase or decrease the production
terms in the equations and, through convection and diffusion,
also affect the sarroundings. :

The streamlines bounding the separation region in separated
flows are usually convex. It may be noted that, in the present
case, the turbulence in the shear layer bounding the separation
zone on the suction side is mostly destabilised as a result of
the concave carvature of the streamlines. This is because the
flow is forced upwards when it reaches the wake, giving con-
cave streamline curvature in the region of the trailing edge.

The production contribution to the k-equation from the shear
stress ~ar,dl/,/dn and the normal stresses —(u? — Il fas
are presented in Fig. 10. The production resulting from the
normal stresses is not very large at x/c = 0.4 (at most, €n
percent of that resulting from the shear stress). Near the sep-
aration point (the conditions near the separation point are not
shown here due to space constraints; see Davidson, 1993¢) and
in the separation region, the two terms are of equal impor-
tance. The dissipation is also presented in Fig. 10, and it is
seen that production and dissipation balance each other at x/¢
= 0.4, hut that this is not the case near the separation point
of in the separation region.

Conclusions

The flow around a low-speed airfoil has been computed.
The code used is based on SIMPLEC, which employs collo-
cated grid arrangement and solves for the Cartesian velocities.
A third-order differencing scheme (QUICK) for the mean flow
equations has been used together with a second-order, bounded
scheme (MUSCL) for the turbulent quantities. Two turbulence
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models are compared: a Reynolds Stress Transport Model
(RSTM) and a k — € model. As neither model is valid in the
viscous-dominated near-wal region, they are matched with a
one-equation eddy-viscosity model.

The most important global feature of a low-speed atrfoil is
to determine at which angle of attack stall occurs. In the pres-
ent work, it has been shown that an adequate turbulence model
should be used, capable of accounting for important physical
phenomena such as transport of individual stresses, streamline
curvature effects and irrotational strains. In order to account
for these effects, the turbulence model must properly respond
1o irrotational strains and the interaction process between strains
and all Reynolds stresses. The only model that fulfills these
requirements is a Reynolds Stress Transport Model (or perhaps
its algebraic variant, ASM).

The following conclusions can be drawn.

+ The RSTM predicts the flow in good agreement with ex-
perimental data, and a small separation zone is predicted
at @ = 13.3 deg which could be described as incipient
detachment. The computed lift coefficient C,, has @ max-
imum at an angle of attack of 17 deg, indicating approach-
ing stall, which is in good agreement with experimental
data.

» The k — e model predictions are in poor agreemernt with
experiments, the computed flow showing no tendency to-
ward separation at @ = 13.3 deg. No stall is predicted and
the 1ift coefficient continues to increase at & = 17 deg.

. Curvature effects resulting from wall curvature and

streamline curvature are important. Computed curvature

radii show that the boundary layer thickness over curva-
ture radius is approximately 0.01 (8/R. = 0.01) at the
suction side close to the pressure minimum. In the region
in which the flow approaches the separation region, itis
forced further away from the wail. This results in stream-
lines with a concave curvature; valves of 8/R. close to

-0.05 are found.

‘When comparing Reynolds stresses one may overlook it

is not the Reynolds stresses that appear in the momentum

equations but their gradients. The (net) stress vectors re-
sulting from shear stresses p(—div/ax, —duv/dy) and nor-
mal stresses p(—du*/ox, —av*/ay) are compared with the
forces (per unit volume) resulting from the pressure gra-
dient (—ap/ax, —dp/dy) in the region of the trailing edge.

It is found that the forces that results from both normal

stresses and shear stresses are comparable to the forces

resulting from the pressure gradient.

« Two variants of RSTM have been tested: the model of
Gibson and Launder (1978) (GL), which is the “standard”
one, and the model of Gibson and Younis {1986) (GY).
The difference between the models lies in the choice of
constants. It was found that the Model GL is more dif-
fusive than Model G, the reason being that the ratio Pe
is smaller than one, which has a greater effect in the for-
mer mode! in which the ¢,-coefficient has a smaller value
(¢, = 1.8) than in Model GY (¢, = 3.0). In the present
work, Model GY has been used throughout the study, as
this model gave better agreement with experiments than
Mode} GL.
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