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Abstract

An available code for solving the incompressible Navier-Stokes equations in a channel
is studied and modified. The non-uniform grid in normal direction is transformed to a
uniform grid by an analytical transformation. The continuous space is discretized with
Finite Difference method on a staggered grid. The code employs the implicit Crank-
Nicholson scheme for the linear term and explicit third order Runge-Kutta or Adams-
Bashfort for the non-linear term. The modified fractional step method is used for applying
the continuity equation into the velocity field in which the pressure gradient at the previous
time step is used in the first step of the fractional step method. The resulting Poisson
equation is solved by applying the Fourier series in two periodic directions while the
velocity equations use finite differences in all directions.

The flow in the code is defined for Reynolds numbers based on half channel width
and laminar Poiseuille centerline velocity and the initial laminar mass flow rate is kept
constant during the iterations by setting the mean pressure gradient at each time step
equal to the integrated wall shear stress. The code is modified to be run for Reynolds
numbers based on friction velocity and it is shown that the mean velocity profiles are the
same for two cases but the second order statistics are the same only at high Reynolds
numbers.
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Nomenclature

Upper-case Roman

A, B Runge-Kutta scheme coefficients
H non-linear term
L linear function
N non-linear function
Q mass flow rate
R known quantities
S mean pressure gradient
U streamwise mean velocity

Lower-case Roman

a, b, c scheme coefficients
f any function
k1, k2 scheme functions
p pressure
t time
u velocity
ub bulk velocity
up Poiseuille centerline velocity
uτ friction velocity
x spanwise direction
xi space component
y normal direction
z streamwise direction

Upper-case Greek

Φ scalar to find pressure
∆t time step size
∆x, ∆y, ∆z spanwise, normal and streamwise mesh spacings

Lower-case Greek

φ any scalar or scalar function
α, β, γ, σ, ρ scheme coefficients
τw wall shear stress
δ half channel width

Abbreviations
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CFL Courant, Friedrichs and Lewy number
DNS Direct Numerical Simulation
FD Finite Difference
FFT Fast Fourier Transform
Re Reynolds number
SF Scaling Factor

subscripts

b bulk
i direction, node number
k substep
p Poiseuille
w wall

superscripts

k intermediate
n time step
′ first substep
′′ second substep

symbols

∂ partial derivative
δ discrete derivative
 Ljj Laplacian
<> ensemble average
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Chapter 1

Introduction

Fluid flow changes from an orderly and predictable state, laminar flow, to a chaotic and
unpredictable one when a certain non-dimensional parameter, Reynolds number, exceeds
a critical value. The chaotic state, turbulence, is the more common one in engineering and
geophysical scales, and its practical significance, as well as the purely intellectual chal-
lenge of the problem, has attracted the attention of some of the best minds in the fields
of physics, engineering and mathematics. Progress toward a rigorous analytic theory has
been prevented by the fact that turbulence dynamics is stochastic (often having underly-
ing organized structures) and strongly nonlinear. There are, however, rigorous kinematic
results that stem from tensor analysis and the linear constraints of continuity, and these
allow a reduction of variables in the statistical description of the velocity field in certain
cases, especially for isotropic turbulence. Rigorous dynamical results are available only for
limiting cases where the governing equations can be linearized which is seldom possible
in practice.

1.1 DNS

The complex behavior of turbulence is the consequence of a fairly simple set of equa-
tions, the Navier-Stokes equations. However, as mentioned, analytical solutions to even
the simplest turbulent flows do not exist. All attempts at a statistical theory of turbulence
have ultimately been faced with the problem of closure, that is, the specification at some
order of a statistical quantity for which no governing equation exists. When using these
models some information about the flow field is lost due to the inherent averaging of this
approach. A complete description of a turbulent flow, where the flow variables (e.g. ve-
locity and pressure) are known as a function of space and time can therefore be obtained
by numerically solving the Navier-Stokes equations without any models. These numerical
solutions are termed Direct Numerical Simulation, or DNS in short.

The instantaneous range of scales in turbulent flows increases rapidly with the Reynolds
number. To solve partial differential equations numerically, Navier-Stokes in this case, the
continuous space should be discretized and the size of the resulting mesh should resemble
the smallest scales of the flow. As a result, most engineering problems have too wide a
range of scales to be directly computed using DNS, these flows are solved using turbulence
models.
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It should be stressed again that DNS is just a research tool, and not a brute-force solu-
tion to the Navier-Stokes equations for engineering problems. The power of this research
tool is impressive and over the last two decades so much effort has been put on improv-
ing the techniques. The main power of DNS lies in the ability to calculate instantaneous
fields of any term and any quantity, which is impossible in experiments and in modeled
turbulence research.

1.2 Channel flow

As stated above DNS can only be applied to simple cases and computer science is
far behind the scope of solving complex flows in complex geometries. One of these very
simple cases is that of a fully developed flow between two plane channels, which can be
considered as the second simple flow after isotropic decaying turbulence. The channel flow
has proved to be an extremely useful framework for the study of wall-bounded turbulence.
The first attempt to solve this flow using DNS was done by KIM et al. (1987) and since
then there have been many modifications in the numerical method.

1.3 Aim of the thesis

The current thesis is aiming at first doing DNS of channel flow with finite difference
method on a staggered grid by means of an existing code and then modify the code to be
able to run it for new cases. To do this, first the code was to be thoroughly understood
and the main part of the time devoted to the thesis was spent for this understanding.
Also the code and the modified version are run and the results are compared with two
available sets of data from other codes.

The code is included as a CD-ROM in Orlandi (2001). The book contains to some
extent the numerical method used in the code but despite some explanations about the
code, can not play a role as the manual for it. The book is divided into 13 different
chapters corresponding to 13 different cases of which one is DNS of channel flow. The
book and the code try to show that by the aid of recent developments in computers’
speeds and memories, DNS of simple flows can be run on home workstations, which used
to be possible only on huge facilities not available to everyone.

The code and the book have been set to a lot of modifications and many parts of them
can be eliminated. This report and additional comments added to the body of the code
try to serve as a manual for the code, not only to run it but also to give the necessary
information to modify it. Analyzing the solvers are excluded since black-box treatment of
the solver does not affect the process of modification.
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Chapter 2

Numerical Method

In this chapter the numerical method to solve the Navier-Stokes equations is described.
While most of the material presented in this chapter can be used to solve any differential
equations, some are adapted to be used only for the case studied. Navier-Stokes equations
for incompressible flows and in non-dimensional form read

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
j

(2.1)

∂ui

∂xi

= 0 (2.2)

Equation (2.1) is the momentum equation and equation (2.2) is the continuity equa-
tion. Navier-Stokes equations are unsteady and to solve them numerically, both space and
time discretizations are needed. The aim is to find the velocities and pressures at every
point and at all the times with the given boundary conditions. To do this, the momentum
equation is first solved and a technique is then used to force the solution to satisfy the
continuity equation.

2.1 Grid

To discretize the Navier-Stokes equations in space, the continuous space should be
divided into a set of discrete points and the physical quantities should be stored at these
points. When this passage to discrete space has been done,the continuous equations will
change to a set of ordinary differential equations for each point. The Navier-Stokes equa-
tions are elliptic in space and the whole domain should be solved simultaneously, either
the velocities are found for every point or non of them. The grid generation process is the
dividing of the physical domain of the flow into smaller domains called control volumes
or cells.

There are two major types of grids

• Collocated in which the scalars, pressure in this case, and the vector type quanti-
ties, velocity in this case, are both stored at the center of control volumes.

• Staggered in which the scalars are stored at the center of control volumes where
as the vectors are stored at the mesh faces.
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The pressure gradient appears in the momentum equation. In collocated grids this may
result in unphysical pressure gradient predictions in case of a high-oscillatory pressure
field such as the so called checker-board field. By using the staggered grids this problem
is overcome. This code is based on staggered grids and this grid is explained here.

Figure (2.1) shows the 2-D staggered grid schematic, for 3-D case it is straightforward.
In the picture the points where the different quantities are stored are shown, so the
mesh is different when solving different components of velocity. We need a numbering
convention to refer to the points. The mesh faces which actually divide the whole domain
are numbered with integers 1,2,. . . , the control volume centers are named with fractional
numbers 1

2
,3

2
,. . . , and the wall is called w. This convention is applied to all three directions.

Figure 2.1: Schematic of a staggered grid, quantities are stored in different locations.

In a large number of applications high gradients are located in certain regions. The
mesh at these locations should be finer to account for these rapid changes where as the
other parts of the domain do not need such a fine mesh; to reduce the computational
load, non-uniform meshes can be applied. The grid should be related to the physics of
the flow and should be set in advance due to the experimental observations and physical
arguments.

2.2 Spatial Discretization

When the domain is divided, the equations should be discretized in this domain. This
will result in a set of ordinary differential equations for each grid point in space. There are
different methods to discretize the equations and the code employs the finite difference
method which is the most straightforward one. Finite difference method is simply the
substitution of the continuous differential operators with corresponding discrete operators.
As it is obvious from Navier-Stokes equations, operators of first and second orders are
needed. Substituting the operators with discrete ones δ and δ2 results in discrete Navier-
Stokes equations

4



Chapter 2. Numerical Method

δui

δt
+

δuiuj

δxj

= − δp

δxi

+
1

Re

δ2ui

δx2
j

(2.3)

δui

δxi

= 0 (2.4)

Now we should define these operators at every point based on the quantities at other
points. These operators are defined for uniform grids and later it will be shown how they
can be adapted to apply to non-uniform grids too. Considering a quantity, say u, the
operators are defined as

δu

δx

∣

∣

∣

∣

i,j+ 1

2
,k+ 1

2

=
1

x|i+ 1

2
,j+ 1

2
,k+

1

2

− x|i− 1

2
,j+ 1

2
,k+

1

2

(u|i+ 1

2
,j+ 1

2
,k+ 1

2

− u|i− 1

2
,j+ 1

2
,k+ 1

2

) (2.5)

The u component of velocity is not defined at (i + 1

2
, j + 1

2
, k + 1

2
) and (i− 1

2
, j + 1

2
, k + 1

2
)

and the velocities at these point are found by interpolation of velocities at two adjacent
points. Considering a uniform mesh this leads to the simple central difference method and
is second order accurate in space

δu

δx
|i,j+ 1

2
,k+

1

2

=
1

∆x
(u|i+1,j+ 1

2
,k+

1

2

− u|i−1,j+ 1

2
,k+

1

2

) (2.6)

∂u

∂x
=

δu

δx
+ O(∆x)2 (2.7)

Second order differential operator is defined to be two successive applications of the
first order operator leading to

δ2u

δx2
=

δ

δx
(
δu

δx
) (2.8)

and in case of a uniform grid to

δ2u

δx2
=

1

(∆x)2
(u|i−1,j+ 1

2
,k+ 1

2

− 2u|i,j+ 1

2
,k+ 1

2

+ u|i+1,j+ 1

2
,k+ 1

2

) (2.9)

which is also second order accurate in space. The other components and the other direc-
tions will be treated in the same way.

2.2.1 Non-uniform grid

In case of a non-uniform grid the accuracy of both operators will formally reduce to one
and the direct equations of (2.6) and (2.9) are not applicable. There are two different ways
of generating a non-uniform grid, in the first method the non-uniform grid is generated at
first and all the calculations are done by means of the operators given above. The second
way, which is used in the code, uses two different domains, a physical domain in which
the grid is non-uniform and a computational domain in which the grid is uniform. The
uniform grid is transformed to a non-uniform grid by means of an analytical function. If
x is the physical domain and ξ is the computational domain the function is
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x = f(ξ) (2.10)

so the grid is generated uniformly in the computational domain and then the final results
are transformed to the corresponding points in the physical domain. In the discretized
Navier-Stokes equations the derivatives are in physical domain so we should adapt the
operators to apply for the computational domain, the key is the simple chain rule of
differentiation.

∂u

∂x
=

∂ξ

∂x

∂u

∂ξ
(2.11)

The resulting discrete operator is first order accurate in physical domain despite it is
second order in computational domain. In case of the second order operator there are two
different options, the first is simply the application of two successive first order operators

∂2u

∂x2
=

∂

∂ξ
(
∂u

∂ξ

∂ξ

∂x
)
∂ξ

∂x
(2.12)

the second explicits the first order derivatives in (2.12), that is

∂2u

∂x2
=

∂

∂ξ

(

∂u
∂ξ

∂x
∂ξ

)∂ξ

∂x
=

∂ξ

∂x

( ∂
∂ξ

(∂u
∂ξ

)∂x
∂ξ

− ∂u
∂ξ

∂
∂ξ

(∂x
∂ξ

)

(∂x
∂ξ

)2

)

(2.13)

and this gives

∂2u

∂x2
=

∂2u
∂ξ2

∂x
∂ξ

− ∂u
∂ξ

∂2x
∂ξ2

(∂x
∂ξ

)3
(2.14)

Immediately it turns out that even in 1-D case the second approach is more cumbersome
requiring a greater number of operations and even a large memory occupancy to store the
transformation metric quantities.

As a first remark, it is important to point out that it is convenient to look for smooth
transformations, to avoid discontinuities that could affect the accuracy of the solution. Ac-
tually, the final results are sensitive to the stretching factor in physical domain. A smooth
analytical transformation fulfills this requirement but it leads to several options. When
the analytic form of f is known it is tempting to calculate the metrics of transformation
analytically and use them to evaluate the discrete derivatives by aforementioned expres-
sions. This is a dangerous choice especially in presence of enhanced grid clustering. The
evaluation of truncation errors by Taylor series expansions shows that error cancellations
occur when the metrics are evaluated numerically. There is a code included which shows
the higher accuracy of the second order derivative of a sample function by numerical eval-
uation of metrics than analytic evaluation, this code is in the file CODESCH2/SECD of
the diskette.

Even when numerical evaluation of the metrics is chosen it is possible to choose be-
tween (2.12) and (2.14). It is possible to manipulate the truncation expressions of the two
expressions but it is easier to write a code and prove by examples that (2.12) gives better
result. This is the expression used all the way in the code.

6



Chapter 2. Numerical Method

2.2.2 Boundaries

The expressions used for discrete derivatives can not be applied to the boundaries
directly and some modifications are needed. The boundary condition treatment presented
in this section addresses only those boundary condition types which are used in the code.
Two different kinds of boundary conditions are assigned in the code, periodic in streamwise
and spanwise directions and no-slip in the direction normal to the wall. In case of periodic
boundary condition, the quantity for which the periodic boundary condition is to be
applied is set equal at the first and last mesh faces. However, the no-slip condition is a
bit more difficult to assign. In this section it will be shown that how it is possible to find
an expression for the second derivative at the first node from the wall, (i, w + 1

2
, k), to

account for the no-slip boundary condition. It is worth to note that the first derivative
expression can be used without any elaboration for the boundary nodes and only some
extrapolations are needed.

To find an expression for second derivative of the first node near the wall we first write
the Taylor expansion series of the nodes on the wall and the node next to the first node

uw = uw+
1

2

− ∆y1

∂u

∂y
|w+

1

2

+
∆y2

1

2

∂2u

∂y2
|w+

1

2

+ O(∆y)3 (2.15)

uw+ 3

2

= uw+ 1

2

+ ∆y2

∂u

∂y
|w+ 1

2

+
∆y2

2

2

∂2u

∂y2
|w+ 1

2

+ O(∆y)3 (2.16)

where

∆y1 = y|i,w+ 1

2
,k − y|i,w,k, ∆y2 = y|i,w+ 3

2
,k − y|i,w+ 1

2
,k (2.17)

by eliminating ∂u
∂y
|w+

1

2

we get the final expression

∂2u

∂y2
|w+ 1

2

=
2uw+ 3

2

∆y1(∆y1 + ∆y2)
+

2uw

∆y2(∆y1 + ∆y2)
−

2uw+ 1

2

∆y1∆y2

+ O(∆y) (2.18)

The mesh is non-uniform in normal direction and y = f(ξ) is the transformation. We
adopt a notation, where a subscript denotes the derivative of the base variable with respect
to the subscript e.g. yξ = dy

dξ
or alternatively yξ = ∂y

∂ξ
. Expressing the above equation in

computational domain gives the final expression used in the code

∂2u

∂y2
|w+

1

2

=
1

(∆ξ)2

[

2uw+ 3

2

yξ|w+1

(

yξ |w
2

+ yξ|w+1

) +
4uw

yξ|w
(

yξ |w
2

+ yξ|w+1

) −
4uw+ 1

2

yξ|wyξ|w+1

]

(2.19)

Using this expression, the spatial discretization of the Navier-Stokes equations is complete.
It is noted that the velocity at the wall has appeared in this expression which shows
how the no-slip boundary condition, including those with moving walls, can be applied
to the discretized equations. This expression is used for both streamwise and spanwise
velocities and in case of normal velocity no problem appears since in a staggered grid the
normal velocities are calculated at the faces leading to enough information for the central
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difference formulas to be used. This expression is used to assign the no-slip boundary
condition in all the codes in the book. It is to be noted that even for Navier-Stokes
equations casted in streamline coordinates the same expression is needed to assign the
proper boundary conditions for the vorticity at the wall.

2.3 Time discretization

Unlike in space where Navier-Stokes equations are elliptic, they are parabolic in time.
Due to this parabolic behavior, marching in time is done to solve the unsteady Navier-
Stokes equations. This means that, to have the solution at a certain time, only the infor-
mation up to that time is needed, usually information at the previous time step is enough.
The spatial discretization of parabolic partial differential equations leads to a system of
ordinary differential equations for each grid point. There are four terms in Navier-stokes
equations

• ∂u
∂t

which is calculated with central differences and contains the unknown un+1
i

∂u

∂t
=

un+1
i − un

i

∆t
(2.20)

• ∂uiuj

∂xj
is called the advective term. This term is non-linear and needs special care

if we do not want to work with non-linear equations. From now on we call it the
non-linear term.

• − ∂p

∂xi
is the pressure gradient term. This term is treated based on the method used

to satisfy the continuity equation. In the next section when explaining the fractional
step method, it will be clarified how this term is treated.

• 1

Re
∂2ui

∂x2
j

is the viscous loss term. This is a linear term and as stated before the no-slip

condition is applied through this term, from now on we call it the linear term.

There are two different types of treating the terms in time discretization

• Implicit in which the terms are expressed by the data at past and present times.
Treating the non-linear terms implicitly leads to non-linear sets of ordinary differ-
ential equations which need iterative schemes to be solved.

• Explicit in which the terms are expressed by the data using only the previous times.
All the terms treated with these kind of schemes will lead to linear sets of ordinary
differential equations.

The simplest way is to treat both terms explicitly even if severe restrictions for the
time step occurs. For simplicity let’s consider the equation below which serves as a model
for more complicated cases

∂φ

∂t
+ u

∂φ

∂x
=

1

Re

∂2φ

∂x2
(2.21)
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Chapter 2. Numerical Method

All the arguments made here can be used for the Navier-Stokes equations. Treating both
terms explicitly leads to

φn+1
i − φn

i

∆t
+ u

φn
i − φn

i−1

∆x
=

φn
i+1 − 2φn

i + φn
i−1

∆x2
+ O(∆t) (2.22)

This scheme is referred to as explicit forward Euler and gives a straightforward proce-
dure to advance in time. A serious drawback of this scheme is its instability. A standard
stability analysis leads to satisfy the following inequalities

∆t

∆x
< 1 (2.23)

∆t

∆x2Re
<

1

2
(2.24)

The first inequality is referred to as the Courant, Friedrichs and Lewy, CFL, condition and
is due to the explicit treatment of the advective term of equation (2.21). In this simple
example the condition could be bypassed by computing implicitly the advective term (by
evaluating the second term of equation (2.22) at the time level n+1) and this would yield
an unconditionally stable scheme provided that the second inequality is neglected. In the
Navier-Stokes equations, however, the advective terms are non-linear and the implicit
treatment is impractical, since the unknowns appear also as multiplicative coefficients
of the derivative, leading to non-linear sets of differential equations. The linearision of
the non-linear term permits the implicit treatment, however, by neglecting iterations this
reduces the accuracy of the scheme.

The second inequality is the viscous stability condition, usually more restrictive than
the previous one. This is particularly true for low Reynolds number flows and in the
presence of fine spatial discretization (near the walls in channel flow). In addition it turns
out that while the CFL condition remains unchanged when two or three dimensional flows
are considered, the viscous stability condition becomes more restrictive since the right
hand side of the inequality reads 1

2n
with n equal to the number of spatial dimensions of

the problem. On the other hand, the viscous term in the Navier-Stokes equations is linear
and an implicit treatment does not require any particular effort, except that to invert
tridiagonal matrices.

In the following of this section, an implicit scheme for the linear term and two explicit
schemes for the non-linear term are described. In choosing between scheme it is preferable
to use schemes with lower memory requirements, since any dummy array is large when
the mesh is fine. Remembering that this is a code to be run on a desktop workstation this
requirement is better understood.

2.3.1 Implicit Crank-Nicholson scheme

Implicit Crank-Nicholson scheme is widely used to solve partial differential equations
due to its simplicity and stability. To describe this scheme let’s consider equation (2.21)
without the non-linear advective term

∂φ

∂t
=

1

Re

∂2φ

∂x2
(2.25)

9
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Crank-Nicholson scheme evaluates the linear term at the time level n + 1

2
, leading to

φn+1
i = φn

i +
∆t

2Re

[

δ2φn+1
i + δ2φn

i

]

(2.26)

for the 1D case. As before δ is the discrete differential operator. This scheme is second
order accurate in time and is unconditionally stable meaning that time steps of arbitrary
size are permitted. However, even if stability does not restrict the size of the time step, the
accuracy does. In fact the error O(∆t)2 implies that large time steps result in inaccurate
solutions.

Using the second order accurate central difference formulation in space for the discrete
operator and using the variable ∆φi = φn+1

i − φn
i we get

− ∆t

2Re∆x2
∆φi+1 +

(

1 +
∆t

Re∆x2

)

∆φi −
∆t

2Re∆x2
∆φi = Rn

i (2.27)

where ∆x is the spatial step and Rn
i contains all the known quantities. This equation

written for all the nodes and completed for the boundary conditions can be solved by
inverting a tri-diagonal matrix. The procedure will be much more complicated in 2-D and
3-D cases. At the end, it is worth to note that the Crank-Nicholson scheme is simply the
trapezoidal rule of integration.

2.3.2 Explicit Adams-Bashfort

Let’ consider equation (2.21) again, this time we neglect the diffusive (viscous, i.e the
linear) part of it

dφ

dt
= f(φ, t) (2.28)

which can represent a linear or non-linear ordinary differential equation. The simplest way
to solve this equation is to calculate it explicitly by evaluating the right hand side at the
previous time step, that is

φn+1
i − φn

i

∆t
= fn

i (2.29)

This is not a very effective way of solving the equation. A better way is to use more
information to evaluate the right hand side of the equation. Again using the trapezoidal
rule we get

φn+1
i − φn

i

∆t
= f

n+ 1

2

i + O(∆t)2 (2.30)

The only difference with implicit schemes such as Crank-Nicholson is that we calculate

f
n+ 1

2

i by means of the information at the times n and n−1. Using the linear interpolation
for this purpose leads to

f
n+

1

2

i =
1

2
(3fn

i − fn−1
i ) + O(∆t)2 (2.31)

10
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This scheme needs an extra array in comparison to Crank-Nicholson scheme to store
the fn−1

i term and this increases the memory requirements. On the other hand, it is very
easy to apply since it does not need any matrix inversion and the advancement in time
is very straightforward. This is an explicit scheme and conditionally stable for CFL < 1.
A drawback of this scheme is that it needs constant time steps during the integration to
keep the second order accuracy. If the time step changes during the integration both the
order of accuracy and the coefficients multiplying fn

i and fn−1
i change.

2.3.3 Explicit Runge-Kutta scheme

The order of accuracy of a method increases by including more terms in the Taylor ex-
pansion representation of the quantity at the next time step. There are different methods
for providing additional information to increase the order of accuracy. The Runge-Kutta
method introduces intermediate points between tn and tn+1 and evaluates f at these in-
termediate points. The additional function evaluations, of course, result in higher cost per
time step; but the accuracy is increased, and it turns out that better stability properties
are also obtained. In this section first the second order Runge-Kutta scheme is described
which leads to better understanding of the more complicated third order scheme used in
the code.

Second order Runge-Kutta

Consider equation (2.28) again, the solution at time step tn+1 is obtained from

φn+1 = φn + γ1k1 + γ2k2 (2.32)

where the functions k1 and k2 are defined sequentially

k1 = ∆tf(φn, tn) (2.33)

k2 = ∆tf(φn + βk1, t
n + α∆t) (2.34)

and α, β, γ1, γ2 are constants to be determined. These constants are determined to ensure
the highest order of accuracy. To establish the highest order of accuracy, let’s consider the
Taylor series expansion for φn+1

φn+1 = φn + ∆t
∂φn

∂t
+

(∆t)2

2

∂2φn

∂t2
+ O(∆t)3 (2.35)

but we know

∂φ

∂t
= f(φn, tn) (2.36)

Now we use the chain rule of differentiation to obtain an expression for the second deriva-
tive of φ with respect to t expressed in terms of f and its derivatives. It should be noted
that φ is a function of t and f is a function of both t and φ

11
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∂2φ

∂t2
=

∂

∂t

(∂φ

∂t

)

=
∂

∂t

(

f(φ, t)
)

=
∂f

∂t

∂t

∂t
+

∂f

∂φ

∂φ

∂t
(2.37)

and the final expression is

∂2φ

∂t2
= ft + ffφ (2.38)

as defined before ft and fφ are the partial derivatives of f with respect to t and φ. Thus,

φn+1 = φn + ∆tf(φn, tn) +
(∆t)2

2

(

fn
t + fnfn

φ

)

(2.39)

To establish the order of accuracy of Runge-Kutta method as given by equation (2.32),
we must compare its estimate for φn+1 to that of the Taylor series formula (2.35). For
this comparison to be useful we should convert the various terms in these expressions into
common forms. Two dimensional Taylor series expansion of k2 leads to

k2 = ∆t
[

f(φn, tn) + βk1f
n
φ + α∆tfn

t + O(∆t)2

]

(2.40)

Noting that k1 = ∆tf(φn, tn) and substituting in (2.32) yields

φn+1 = φn + (γ1 + γ2)∆tfn + γ2β(∆t)2fnfn
φ + γ2α(∆t)2fn

t + ... (2.41)

Comparison of equations (2.41) and (2.39) and matching the coefficients of similar terms
leads to

γ1 + γ2 = 1

γ2α =
1

2

γ2β =
1

2
These are three non-linear equations for four unknowns. Using α as a free parameter, we
have

γ1 = 1 − 1

2α
β = α γ2 =

1

2α

With three out of the four constants chosen, we have a one-parameter family of second-
order Runge-Kutta formulas:

k1 = ∆tf(φn, tn) (2.42)

k2 = ∆tf(φn + αk1, t
n + α∆t) (2.43)

φn+1 = φn + (1 − 1

2α
)k1 +

1

2α
k2 (2.44)

Thus, we have a second-order Runge-Kutta formula for each value of α chosen. The choice
of α = 1

2
is made frequently. In actual computations, one calculates k1 using (2.42); this

value is then used to compute k2 using (2.43) followed by the calculation of φn+1 using
(2.44).
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Third order Runge-Kutta

Third-order Runge-Kutta is exactly the same as the second-order version except that
in this case the advancement in time is done in three substeps instead of two, or equally two
intermediate points between tn and tn+1 are evaluated to improve the order of accuracy
of the scheme. The third-order version is presented here with the same notations as the
book to help better understanding of the scheme.

φ′ = φn + a∆tnfn (2.45)

φ′′ = φ′ + b∆tnf(φA, tn + A∆tn) (2.46)

φA = φn + A∆tnfn (2.47)

φn+1 = φ′′ + c∆tnf(φB, tn + (a + B)∆tn) (2.48)

φB = φ′ + B∆tnf(φA, tn + A∆tn) (2.49)

We follow the same procedure we did for the second-order version to evaluate the order
of accuracy of the scheme. This consists of substituting in the expression for φn+1 all the
terms given above and comparing the results with those of the Taylor expansion series.

φn+1 = φn + a∆tnfn + b∆tnf(φn + A∆tnfn, tn + A∆tn)+

c∆tnf(φn + a∆tnfn + B∆tnf(φn + A∆tnfn, tn + A∆tn), tn + (a + B)∆tn) (2.50)

Then we should express the third derivative of φ with respect to t with the other variables,
as we did for the second derivative when studying the second-order scheme.

∂3φ

∂t3
=

∂

∂t
(
∂2φ

∂t2
) =

∂

∂t
(ft+ffφ) =

∂ft

∂t

∂t

∂t
+

∂ft

∂φ

∂φ

∂t
+fφ

[∂f

∂t

∂t

∂t
+

∂f

∂φ

∂φ

∂t

]

+f
[∂fφ

∂t

∂t

∂t
+

∂fφ

∂φ

∂φ

∂t

]

(2.51)
which is

∂3φ

∂t3
= ftt + 2ffφt + fφft + ff 2

φ + f 2fφφ (2.52)

Taylor series expansion of φn+1 is

φn+1 = φn + ∆tn
∂φn

∂t
+

(∆tn)2

2

∂2φn

∂t2
+

(∆tn)3

6
+ O(∆tn)4 (2.53)

so

φn+1 = φn+∆tnf+
(∆tn)2

2(ft + ffφ

)+
(∆tn)3

6
[ftt+2ffφt+fφft+ff 2

φ+f 2fφφ]+O(∆tn)4 (2.54)
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Now we substitute in (2.50) the Taylor series expansion of f at different point appeared
there which yields

φn+1 = φn + a∆tnfn + b∆tn
[

fn + A∆tnfnfn
φ + A∆tnfn

t + A2(∆tn)2fnfn
φt

+
1

2
A2(∆tn)2(fn)2fn

φφ +
1

2
A2(∆tn)2f 2

tt

]

+ c∆tn
[

fn + fn
φ

(

a∆tnfn+

B∆tn(fn+A∆tnfnfn
φ +A∆tnfn

t

)

+(a+B)∆tnfn
t +

1

2
(a+B)2(∆tn)2fnfn

φt+
1

2
(a+B)2(∆tn)2fn

tt+

1

2
(a + B)2(∆tn)2(fn)2fn

φφ

]

(2.55)

When writing the Taylor series in the above expression, terms of orders higher than three
are eliminated. Arranging this expression and equating the coefficients for ∆tn,(∆tn)2 and
(∆tn)3 we find the following equations

a + b + c = 1

(a + B)c + Ab =
1

2

(a + B)2c + A2b =
1

3

ABc =
1

6

This is a system of four equations for five unknowns. A commonly used solution is found
by setting b = 0. This gives

a = 1

4
, A = 8

15
, B = 5

12
, c = 3

4

It is obvious that the third-order Runge-Kutta is advancing in three substeps a∆tn, b∆tn

and c∆tn and the total advancement is ∆tn.

2.3.4 Hybrid third-order Runge-Kutta/Crank-Nicholson

The coefficients found for the third-order Runge-Kutta in the previous section are not
directly usable for solving the Navier-Stokes equations since the linear term was neglected.
To find the equations for this case we consider a more general equation

∂φ

∂t
= N(φ) + Lφ (2.56)

where L is the linear operator and N is the non-linear function. Similar to the previous
section, these substeps are done

φ′ = φn + γ1∆tnNn + ρ1∆tnN−′

+ α1∆tn
Lφ′ + Lφn

2
(2.57)
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φ′′ = φ′ + γ2∆tnN ′ + ρ2∆tnNn + α2∆tn
Lφ′′ + Lφ′

2
(2.58)

φn+1 = φ′′ + γ3∆tnN ′′ + ρ3∆tnN ′ + α3∆tn
Lφ′′ + Lφn+1

2
(2.59)

The term N−′

is the counterpart of N ′′ at the time level n−1. Since no previous information
is provided at the time t = 0, it is desirable that ρ1 = 0. This gives an interesting property
to the scheme, every time step is self-starting and does not need any information from
past.

The linear term at each time substep is evaluated by implicit Crank-Nicholson scheme.
The coefficients αi are determined by imposing that nonlinear and linear terms advance
at the same time step fraction. This gives

αk = ρk + γk (2.60)

This can be understood better if it is reminded that the Runge-Kutta scheme is actually
advancing in three substeps to fulfill one time step. The size of these three steps are
obvious by looking at equations (2.57) to (2.59). From these equations it is seen that by
imposing ρ1 = 0, φ′ is evaluated at time tn + γ1∆tn. This is seen if we take a look at the
Taylor series expansion

φn+1 = φn + h
∂φn

∂t
+ O(h2) (2.61)

h being the time advancement. Comparing this to equation (2.57) shows that the first
substep is h = γ1∆tn, and to have the same time advancement for the linear term we
should set α1 = γ1 or α1 = γ1 + ρ1 since ρ1 = 0.

The second substep size is found when we substitute φ′ from (2.57) into (2.58). Ne-
glecting the linear term and higher order terms in Taylor series expansion of N ′ we get

φ′′ = φn + (γ1 + γ2 + ρ2)∆tnNn (2.62)

which shows an advancement of γ1 + γ2 + ρ2 from beginning or γ2 + ρ2 from the last
substep, leading to α2 = γ2 + ρ2.

Following the same procedure we get α3 = γ3 + ρ3. We could use the information from
the last subsection to find the time advancement substep sizes. By neglecting the linear
terms we get

φn+1 = φn + ∆tn[(γ1 + ρ2)Nn + (γ2 + ρ3)N ′ + γ3N
′′] (2.63)

and from previous subsection we have

φn+1 = φn + a∆tnf(φn, tn) + b∆tnf(φA, tn + A∆tn) + c∆tnf(φB, tn + (a + B)∆tn) (2.64)

comparison of these two equations gives

a = γ1 + ρ2
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b = γ2 + ρ3

c = ρ3

Taking into account the expressions for φA and φB we have

A = γ1

B = γ2

and finally we find the coefficients used in the code,

α1 =
8

15
, α2 =

2

15
, α3 =

1

3

γ1 =
8

15
, γ2 =

5

12
, γ3 =

3

4

ρ1 = 0, ρ2 = −17

60
, ρ3 = − 5

12
(2.65)

The third order accuracy is achieved only if the linear term is neglected and the hybrid
scheme is only second order accurate. This may be strange that we use third order Runge-
Kutta when the easier and faster second-order can be used without missing any accuracy.
However, the key is the stability, the third order Runge-Kutta is stable at higher CFL
numbers than those for second order making the use of it reasonable.

2.3.5 Adams-Bashfort vs third-order Runge-Kutta

When running a case with the code we should choose between Adams-Bashfort and
third-order Runge-Kutta schemes for the non-linear term, so it is essential to know the
advantages and disadvantages of these schemes.

• Adams-Bashfort is second order accurate where as Runge-Kutta is third-order, but
considering the linear term the accuracy of the whole equation is second order and
the third order accuracy of the scheme is useless.

• Adams-Bashfort is stable for CFL < 1 while Runge-Kutta is stable for CFL <
√

3
leading to the possibility of having large time steps, hence decreasing the computa-
tions. This is the main advantage of using third-order Runge-Kutta. However, even
if stability permits CFL =

√
3, accuracy may not.

• although Runge-Kutta is stable for CFL <
√

3 and Adams-Bashfort for CFL < 1
but experience reveals that calculations with Adams-Bashfort should be run for
CFL < 0.6 while with the aid of the viscous term Runge-Kutta can be run for
CFL = 2 and even higher. This is an interesting property if the calculations are
to be run for constant time step, since Runge-Kutta can manage severe situations
where the magnitude of velocity is high but is followed by slow dynamics.
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• Runge-Kutta advances in three substeps and needs a lot more function evaluations.

• Adams-Bashfort is second order accurate only in constant time step mode, also the
coefficients of this scheme should be changed when the time step size changes. This
case is not used in the code and the Adams-Bashfort should be used only with
constant time step mode.

• each time step is self-starting in Runge-Kutta method but not in Adams-Bashfort,
this allows to perform the calculations always at the maximum time step without
decreasing the accuracy of the scheme or using any interpolations.

• Adams-Bashfort needs an extra array compared to Runge-Kutta to store the non-
linear term at the previous time step.

• Runge-Kutta can be used in both constant time step and constant CFL number
modes.

2.4 Fractional Step method

The Navier-Stokes equations are a set of four equations, three momentum and one
continuity, with four variables, three velocity components and the pressure. What we did
till now was to neglect the continuity and to solve the momentum equations assuming that
the pressure is known. But there are two problems, first the velocities may not satisfy the
continuity equation, and second the pressure at the next time step is not calculated yet.
There are iterative methods by which we can satisfy the continuity equation by solving
the pressure and correcting it iteratively to have the correct value at each time step
making the velocity field satisfy the continuity equation. This is an effective but slow
method. Here another method called fractional step methods is described which forces the
continuity equation to be satisfied. In this method first an intermediate velocity field is
found which does not satisfy continuity and then by aid of this velocity field an equation
for a virtual scalar quantity is found which is related to the pressure. From this scalar
both the solenoidal velocity field and the pressure are calculated.

There are various versions of this method slightly differing from each other. In the early
versions, KIM & MOAN (1985), the pressure was neglected in the first step of the method
and there was some difficulty to assign the correct boundary conditions to the intermediate
velocity field. The method described here and used in the code uses the pressure at the
previous time step explicitly in the first step and by this, the boundary conditions of the
intermediate velocity are the same as the real velocity field. The Navier-Stokes momentum
equations discretized by Crank-Nicholson for the linear term and Adams-Bashfort or third-
order Runge-Kutta schemes for the non-linear term reads

uk
i − un

i

∆t
= γkH

n
i + ρkH

n−1
i +

αk

2Re
Ljj(u

k
i + un

i ) − αkσ1

δpn

δxi

+ Si3 (2.66)

where H represents the non-linear term(s), Ljj is the Laplacian operator and uk
i is the

intermediate velocity field. ρk, γk and αk are the scheme coefficients found in the previous
section. The coefficient σ1 is found later and its role and importance will be discussed.
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In a fully developed channel flow, friction forces are compensated by a mean pressure
gradient. Actually, unlike the velocity, the pressure can not be periodic in the streamwise
direction and a mean pressure gradient is needed to drive the flow. In the equation above
the pressure gradient term is split into two parts. The first, Si3 is the mean pressure
gradient which acts in the streamwise direction, third direction in the code as presented
in this equation. The other one is the fluctuating pressure gradient which is periodic. The
calculation of the fluctuations of pressure is explained here but the calculation of the mean
pressure gradient referred to as the source term is explained in the next chapter. Both
terms are explicited in the equation above and are available from previous time step.

There are three equations and three unknowns which can be solved numerically by
inverting a tri-diagonal matrix with the same boundary conditions as the real velocity field.
From these equations an intermediate velocity field is found which does not satisfy the
continuity equation locally. However, the intermediate velocity field satisfies the continuity
equation globally because of the boundary conditions used, periodic in streamwise and
spanwise and no-slip or slip in normal direction.

The code is written for ∆ui = uk
i − ui

n quantity so equation (2.66) is recasted in this
form which gives

∆ui − βkLjj∆ui = (γkH
n
i + ρkH

n−1
i − αkσ1

δ

δxi

pn)∆t + 2βkLjju
n
i (2.67)

where βk = αk∆t

2Re
.

Now the continuity should be satisfied. To do this we define a scalar quantity Φ as
follows

un+1
i − uk

i

∆t
= −αkσ2

δΦ

δxi

(2.68)

The real velocity field is solenoidal
δun+1

i

δxi
= 0, so if we take the divergence of (2.68) we get

LjjΦ =
1

αkσ2∆t

δuk
i

δxi

(2.69)

The right hand side of the above equation is known and scalar Φ can be calculated. The
real velocity field which satisfies the continuity equation is then calculated from (2.68).
The equation solving for Φ is a Poisson equation and pseudospectral methods are used in
the code to solve it. If we determine the pressure at the next time step then the velocity
and pressure fields satisfy continuity and momentum equations and we can march a time
step. The pressure at the next time step is defined to be

pn+1 = pn + Φ − βkLjjΦ (2.70)

For Adams-Bashfort this process is done once to advance one step in time but in case
of Runge-Kutta all this is done three times corresponding to three substeps to advance
one time step in time. If we substitute back the intermediate velocity field from (2.68)
into (2.66) we get the real equation which has been solved after two successive steps of
the fractional step method. This is done for Adams-Bashfort here and for Runge-Kutta
it is straightforward. The resulted equation is
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un+1
i − un

i

∆t
= H

n+ 1

2

i +
1

2Re
Ljju

n+ 1

2

i − δ

δxi

[σ1p
n + σ2(Φ − βkLjjΦ)] (2.71)

The constants σ1 and σ2 can be chosen to have the pressure gradient at the desired time
and location. For example in the first versions σ1 = 0 and the pressure was fully implicit.
If there was any necessity to analyze the pressure field, it was calculated from

pn+1 = Φ − βkLjjΦ (2.72)

As explained before, in the version used here, the pressure at the next time step is evalu-
ated from (2.70), so the actual pressure gradient appearing in (2.66) is

− δ

δxi

[pn(σ1 − σ2) + σ2p
n+1] (2.73)

If σ1 = σ2 = 1 is chosen then the pressure gradient is evaluated at n + 1; on the other
hand for σ1 = 1 and σ2 = 1

2
the pressure gradient is evaluated at n + 1

2
. The accuracy

is different in the two cases; when the term is evaluated at n + 1 the accuracy is of first
order in time and when evaluated at n+ 1

2
it is second order accurate in time. A check has

been done and it has been found that the reduced accuracy gives a more stable scheme
which is more appropriate in time dependent simulations where stability is an important
issue. In this code the first choice is made.

2.4.1 Factorization

The successive two steps of fractional step method allow the solution of the Navier-
Stokes equations. For three dimensional flows we need to solve the equations with a fast
and, less important, low-storage method. The implicit treatment of the linear term helps
to reach a fast solution but the resulting matrix on the left hand side of (2.67) has a
large band and hence can not be directly inverted. The key to the problem is factorization
approximation. Factorization is approximating the left hand side matrix of (2.67) with
the product of three other matrices. This can be done within the accuracy of the schemes
as it is discussed in Moin (2001).
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Chapter 3

Code description

In this chapter the code presented in the book to solve the channel flow using DNS
is described. The schemes used are the ones explained in the previous chapter. There are
some issues related to the initial conditions and Reynolds number which are explained
here. Here it is explained how to run the code and how the results are saved. There are
additional comments added to the code which try to make the code understandable.

3.1 General description

The code is written in Fortran and consists of some 60 subroutines in about 4400
lines. This code solves the fully developed channel flow in a computational box at node
numbers given by the user. The code solves for a Reynolds number based on half channel
width and laminar centerline Poiseuille flow. The grid transformation technique is used to
go from a non-uniform grid in normal direction to a uniform grid. The Crank-Nicholson
scheme is used for the linear term and Adams-Bashfort and Runge-Kutta schemes can be
used alternatively for the non-linear term. The fractional step method leads to a Poisson
equation for a scalar which gives the pressure field. This pressure is used to correct the
velocity field so that continuity is satisfied. The Poisson equation is solved with pseu-
dospectral methods whereas factorization is used to solve the momentum equation. The
flow is periodic in streamwise and spanwise directions and no-slip or slip conditions can
be applied to the walls alternatively. There is the possibility to have moving walls and
regions of transpiration on the walls which are not covered in this report; only the way to
avoid their effect is addressed here. In the code the direction referred to as 1 is spanwise,
2 is normal and 3 is streamwise.

3.2 Getting started

The CD-ROM contains a compressed file: diskette.tar.gz, the decompression of this
file leads to a directory: diskette, containing 12 directories of which CODESCH9 and
NCARFFT are used to run the channel flow. Directory NCARFFT contains a bunch of
Fast Fourier Transform routines used in the code to solve the Poisson equation for the
scalar Φ. This is not covered in this report more since it is part of the solver. Directory
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CODESCH9 contains five subdirectories for running the channel flow and post processing
the results. The files of the code are in CHA subdirectory and are following files: chadsma.f,
chadshn.f, chadsnn.f, chadstn.f, chadstinv.f, chadsphnc.f, chadsou.f, chadsin.f, chadstr.f,
chadsru.f and parameter.f and parameter.f. The code can be run without any other file
in this directory. There are of course some make-files which can be used to run the code
of which the file chadsnc.mak can be used for the available FFT routines. The make-files
are not necessary and the commands to run the code are given here. In addition to the
files explained, files chapn.d and nfchcapn given in the subroutine prova are necessary
too. These are input files which are explained later.

To run the code first a modification is needed in the file chadsou.f, the following line
should be added to the subroutine outpf
real :: nsp1,nsp2,nsp3

This is because Fortran takes the variables starting with n as integers but the variables
nsp1, nsp2 and nsp3 are real numbers and they should be defined explicitly with the above
command. After this modification we can compile the code, with the following command

pgf90 -c chadsma.f chadshn.f chadsnn.f chadstn.f chadstinv.f chadsphnc.f

chadsou.f chadsin.f chadstr.f chadsru.f .../NCARFFT/ffts.f

This command compiles the above files and makes object files with same names. Then we
make an executable file with command

pgf90 -o chadsnc chadsma.o chadshn.o chadsnn.o chadstn.o chadstinv.o

chadsphnc.o chadsou.o chadsin.o chadstr.o chadsru.o .../NCARFFT/ffts.o

Now there is an executable file chadsnc which solves for the flow. This files needs two
input files mentioned before to be run correctly. These two files and the file parameter.f
are explained below.

3.2.1 Input files

parameter.f

This is probably the most unimportant file, it only declares five constants m1,m2,m3,ndv
and ndd. The variable ndd is never used in the code, the variable ndv is the dimensions of
the flow which is three in this case. The other variables are the size of arrays in three di-
rections. These should be at least twice as large as the real mesh faces in the spanwise and
streamwise directions to avoid any problems in case of mesh refining. The mesh refining
process will be explained later.

nfchcapn

This file contains file names in which some of the results are written. As will be
explained the best way to save the results is to save it in your own way.

chapn.d

This is the important input file which declares the case which we want to run. There
are some variables which are given value in this file, an example of this file is given below
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33 151 65 3 n1 n2 n3 nsst

1 0 0 1 nwrit nread iav iprfi

4.0 .5 2.80 alx3 alx1 str2

4200. 1.5E-01 Re vper

.08 24001 2000 1 10 dt ntst nprint npin npstf

11 nstop

1 1.7 .2 10. 380. icfl cflc tpin tprin tfin

5 37 4 0 0 jri jrf djr irejr iruuca

220. timeav

0 0 0 0 islv1s,islv1n,islv3s,islv3n

1. 0. tosc uosc

.00 10. 0. flowq2 tau2 t0sl t0sl

.5 0. 0.6 0.4 y1gsd y1ssd y3gsd y3ssd

0. 1. y1disd y3disd

1 ifield

Some of these variable are not important in calculations. The important variables are

• n1 is the number of mesh faces in spanwise direction, direction one.

• n2 is the number of mesh faces in normal direction, direction two.

• n3 is the number of mesh faces in streamwise direction, direction three.

• nsst declares the scheme used for the non-linear term, nsst = 1 implies Adams-
Bashfort and nsst = 3 implies Runge-Kutta.

• nwrit declares if the results should be written in files.

• nread declares if the the calculations should start from scratch or a continuation
field is read and continued.

• iav declares if averaging the instantaneous fields should be done during calculations.

• iprfi declares if any instantaneous fields should be saved on file.

• a1x3 is the size of computational box in streamwise direction divided by π.

• a1x1 is the size of computational box in spanwise direction divided by π.

• str2 is the constant coefficient in grid transformation function which will be ex-
plained in this chapter.

• Re is the Reynolds number of the flow.

• vper is the perturbation velocity given as part of the initial conditions when the
calculations are to start from scratch.

• dt is the time step size when the constant time step mode is chosen.
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• icfl declares if the calculations should be done in constant time step mode or constant
CFL number mode.

• cflc is the CFL number for constant CFL number calculations.

• tpin declares the time between two successive fields being averaged.

• tprin declares the time between two successive fields being saved on file.

• tfin declares when to stop calculations.

• timeav declares when to start averaging the instantaneous fields.

• islv1s declares the velocity slip condition in spanwise direction on the lower wall,
one stands for free-slip and zero for no-slip.

• islv1n declares the velocity slip condition in spanwise direction on the upper wall.

• islv3s declares the velocity slip condition in streamwise direction on the lower wall.

• islv1n declares the velocity slip condition in streamwise direction on the upper wall.

• ifield declares if the velocities at the wall should be saved on file too.

Four variables (lines 5 and 6) ntst, nprint, npin and nstop are the counterparts of
timeav, tprin, tpin and tfin for the cases run in constant time step size mode. The variable
npstf is only used once in the code to define another variable which is never used again,
so this variable has no effect in the code and is most probably a remainder of some
modifications in the code. Variables jri, jrf, djr, irejr and iruuca (line 8) are the variables
declaring if correlations should be computed inside the code and in which points to be
calculated. They are not of importance as we want to calculate and save what we want
and in our own format.
Variables tosc, uosc, flowq2, tau2, t0sl, t0sl, y1gsd, y1ssd, y3gsd, y3ssd, y1disd and y3disd
(lines 11 14) are relate to declaration of the wall movements and transpiration slots which
are not the issue of the report. To eliminate the effect of them in computing the channel
flow it is enough to set flowq2 to zero.

The size of the computational box in normal direction is 2δ = 2. In the beginning of the
code there are three variables defined as n1m = n1− 1, n2m = n2− 1 and n3m = n3− 1
which are the number of cells in each direction.

3.2.2 Output files

There are many files in the code where data for post processing are saved, but the
best way is to write the necessary data in our own format and in our own files. The best
way is to save a number of statistically independent instantaneous fields and to calculate
all statistical quantities from these data. This is done in the code and the instantaneous
fields are saved with the names fieldN.dat where N is a number equal to n.tpin at the time
n.tpin. This saving process starts at timeav and ends at tfin. Any of these fields can be
used as a continuation field. At times before timeav the fields at times n.tpin are written
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in a file named cha.wri. The original code has some problems in reading the restart field
in. This is modified and whenever a restart field is to be fed as the initial field it should be
renamed to cha.wri(in the original code it is supposed to read the file cha.rea). The best
way to calculate averages or other quantities is to add them after the subroutine tschem
in file chadstn.f, which is the subroutine to advance one step in time.

3.3 Grid transformation

As explained in the previous chapter a grid transformation is used in the code. The
analytical form of the function is

y =
a.tanh(ξ − 0.5)

tanh(a
2
)

(3.1)

where a is a coefficient which gives the ability to make the mesh finer near the wall, the
higher the a, the finer the mesh near the wall. Figure (3.1) shows this function for two
values of a which are later used to run two test cases.
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y

Figure 3.1: grid transformation function for a=5.5 and a=4.2

The physical space which is from -1 to 1 is mapped onto a computational domain from
zero to 1 by this function. The computational box is divided into cells in subroutine meshes
in the file chadsnn.f. In subroutine indic in file chadsnn.f some variables are defined which
make it easy to apply the boundary conditions. Some comments are added in the code
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which make this more clear. In subroutine coordi in file chadsnn.f the physical coordinate
is calculated from the grid made in subroutine meshes by using the above analytical
function. In subroutine metric in file chadsnn.f two arrays are defined: caj(1-n2m) which
is ∂y

∂ξ
at the cell centers(j + 1

2
), and cac(1-n2) which is ∂y

∂ξ
at the faces. These metrics make

it possible to calculate the second derivatives and to discretize the equations in space.

3.4 The flow to solve

It was mentioned before that the code is to solve the fully developed channel flow with
two homogeneous and one inhomogeneous directions. Also, it was mentioned that the
flow is specified by a Reynolds number based on half channel width and laminar Poiseuille
centerline velocity, Rep. In this section it is explained what this choice of Reynolds number
implies. The arguments in this section are the basis for the modification explained in the
next chapter.

3.4.1 Laminar Poiseuille flow

Laminar Poiseuille flow is a steady one-dimensional flow between two planes. The
resulting flow is a laminar parabolic velocity profile. The governing equation reads

−∂p

∂x
+ µ

∂2u

∂y2
= 0 (3.2)

where µ is the viscosity. In non-dimensional form the governing equation reads

−∂p

∂x
+

1

Re

∂2u

∂y2
= 0 (3.3)

This is one equation for two unknowns. If we consider a constant pressure drop along the
flow direction then we get

−∆p

∆x
+

1

Re

∂2u

∂y2
= 0 (3.4)

Solving this ordinary differential equation with no-slip boundary conditions, u(y = −δ) =
0 and u(y = δ) = 0 leads to

u(y) =
1

2Re

∆p

∆x
(y2 − δ2) (3.5)

If Re in this equation is considered to be Rep, Reynolds number based on laminar Poiseuille
centerline velocity, then δ = 1 and u(0) = 1 leads to

∆p

∆x
= − 2

Re
(3.6)
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3.4.2 Initial fields

As noted before, the calculations can start either from scratch or as continuation of
an available field. When the calculations start from scratch we need to specify an initial
field. The initial field here is the aforementioned laminar flow. To trigger turbulence, a
random disturbance is added to this flow. This random disturbance is zero-mean and the
reason behind this will be explained soon. The initial velocity field is given in subroutine
inqpr in file chadsin.f, which is called within subroutine initia in the file chadsin.f. The
initial velocity field is

u3,initial = (1 − y2) (3.7)

while the other components of velocity are given zero mean values. The disturbances
added in three directions are of the order of vper given in the input file chapn.d. To avoid
large fluctuations near the wall that could require small time steps for CFL restrictions,
the random disturbances in the region near the boundary is multiplied by 0.2. The initial
velocity field formed in this way is not solenoidal and does not satisfy the continuity
equation, but this is not important since the fractional step method has the property to
make it solenoidal at the first time step. The initial pressure fluctuations are set to zero
in initia subroutine and a value of 2

Re
is given to the mean pressure gradient, the source

term which is called dp3ns in the code, to make the initial pressure field consistent with
that of velocity. It will soon be obvious that this is a very important point.

The other way is to start the calculations from an available field. This is done in
subroutine inirea in file chadsou.f. The file should have the name cha.wri and should have
been written in the same format as it is read, the original format of the code is kept in
the modified code. This velocity and pressure fields should be scaled first. The velocity
field should be scaled in such a way that the mass flow rate of the scaled field is equal
to the mass flow rate of the laminar Poiseuille profile given in (3.7). The pressure should
be scaled with square of the scaling factor for velocity. This is a very important point
and missing it leads to calculation of a flow with a Reynolds number other than the one
specified in chapn.d file.

When the calculations start from scratch it is better to start with a coarse mesh and
after some time when the flow is rather fully developed make the mesh finer. The continu-
ation property makes this easy. In file chadsou.f there are interpolation and extrapolation
subroutines that make it possible to build velocity and pressure fields from available fields
at meshes which are two times finer or coarser than the mesh used for the available field
from a previous run. These subroutines are called in the subroutine inirea if they are
needed. This is done automatically since the number of mesh points in the available field
is written at the beginning of it and comparison to the mesh points given in chapn.d shows
in which directions the field should be interpolated or extrapolated. These subroutines are
only for streamwise and spanwise directions since it is better not to run for meshes which
are coarse in the normal direction. In other words, it is better to keep the mesh fine in
normal direction from the beginning. If this kind of continuation fields are used there is
no need to scale it because they have the same mass flow rate as laminar flow of (3.7).
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3.5 Mean pressure gradient

Discretization of all the terms in Navier-Stokes equations has been described in sections
2.2 and 2.3 except for the source term. When explaining the fractional step method we
took it as to be known and here it is explained how to find it. In the code, the source
term is set equal to viscous forces at each time step

s33 = − 1

V ol.

∫

x

∫

y

∫

z

1

Re

∂2u3

∂x2
j

(3.8)

This quantity is used explicitly in the first step of the fractional step method. This choice
of mean pressure gradient leads to a very interesting property, since by this choice the
mass flow rate is kept constant which means that the time rate of change of mass flow
rate is zero. This can be proved if we take a look at the mass flow rate relation

Q =
n1m
∑

i=1

n2m
∑

j=1

u3,j∆yj∆xi (3.9)

where Q represents the mass flow rate and direction of x is the spanwise direction.
Now let’s integrate the Navier-Stokes momentum equation in streamwise direction, which
leads to the following relation for each time step

∫ ∫ ∫

∂u3

∂t
∆x∆y∆z +

∫ ∫ ∫

∂u3uj

∂xj

∆x∆y∆z =

−
∫ ∫ ∫

∂p

∂x3

∆x∆y∆z +

∫ ∫ ∫

∂2u3

∂x2
j

∆x∆y∆z +

∫ ∫ ∫

s33∆x∆y∆z (3.10)

The non-linear term is zero due to the boundary conditions. The fluctuating pressure term
is zero due to periodicity in the third direction. The final equation is

∂

∂t

∫ ∫ ∫

u3∆x∆y∆z =

∫ ∫ ∫

∂2u3

∂x2
j

∆x∆y∆z + s33

∫ ∫ ∫

∆x∆y∆z (3.11)

If at each time step we set

∫ ∫ ∫

∂2u3

∂x2
j

∆x∆y∆z + s33

∫ ∫ ∫

∆x∆y∆z = 0 (3.12)

Then we get

∂Q

∂t
= 0 (3.13)

This means that the mass flow rate is constant and does not change. This is the reason
behind scaling the available fields first to use as initial conditions. The calculation of the
pressure gradient is done in subroutine invtr3 in file chadstn.f.
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Modifications and Results

The code described in the previous chapter is modified to solve flows with specified
Reynolds numbers based on friction velocity. These modifications and their effect are de-
scribed in this chapter. Two test cases are run with the code and the results are compared
with two sets of data obtained from other codes.

4.1 Modification

The fully developed channel flow can be run for two different situations. The first
preserves the mass flow rate as it is done in the code described, referred to as Original
code from now on, and the second preserves the pressure force. When preserving the mass
flow rate it is usual to specify the channel flow with its Reynolds number based on half
channel width and bulk velocity defined as

ub =
1

2δ

∫ +δ

−δ

udy (4.1)

Reb =
ubδ

ν
(4.2)

On the other hand, when preserving the pressure force, the flow is specified by the Reynolds
number based on half channel width and friction velocity defined as

uτ =

√

τw

ρ
(4.3)

Reτ =
uτδ

ν
(4.4)

The flows corresponding to these two cases are different. The first flow is a constant mass
flow rate flow with fluctuating mean pressure gradient as source term while the second
flow is a constant force flow with fluctuating mass flow rate.

The original code, as described before, solves the first flow. This code is modified
to solve for the second flow. To do this the mean pressure gradient term is replaced by
constant number dp3ns = 1 and a few more simple modifications are made to be consistent
with this change. These simple modifications are described inside the code as comments.
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By preserving the source term the Reynolds number appearing in the input file should be
set as Reτ .

4.1.1 Reynolds numbers

There are three different Reynolds numbers appearing in this report, and here the
relations between them are explained. To find a relation between Reb and Rep we calculate
the mass flow rate of Poiseuille flow first. Writing the Poiseuille flow in terms of its
centerline velocity leads to

up(y) = up(0)(1 − (
y

δ
)2) = up(1 − (

y

δ
)2) (4.5)

Qp =

∫

x

∫

y

up(y)dydx =

∫ lx

0

∫ +δ

−δ

up(1 − (
y

δ
)2) =

4

3
upδlx (4.6)

where x is in the spanwise direction. Comparison of bulk and Poiseuille centerline velocities
gives

up =
3

2
ub (4.7)

and this leads to

Rep =
3

2
Reb (4.8)

This implies that if we want to run the code with any Reb we should run the original code
with corresponding Rep given by the above relation.

There are no direct relations between Reτ and the others, but it is worth to mention
that to feed the modified code with available fields no scaling is necessary except those
helping the profile to reach the expected final values sooner.

4.1.2 Mean velocity profiles

In the previous section it was mentioned that the modified code solves a rather different
flow than the original one. Here it will be shown that in spite of this difference the mean
velocity profiles should be the same. Consider the equation for the mean velocity, which
is obtained by averaging instantaneous velocity field in homogeneous directions and time

< U3 > (j) =

∫

t

∫

x

∫

z

u3(i, j, k, t)dzdxdt (4.9)

The equation for this quantity is found by integrating the Navier-Stokes in streamwise
direction (z direction due to the code notation), spanwise direction and time

∫

t

∫

x

∫

z

∂u3

∂t
dzdxdt+

∫

t

∫

x

∫

z

∂u3uj

∂xj

dzdxdt = −
∫

t

∫

x

∫

z

∂p

∂xi

dzdxdt+

∫

t

∫

x

∫

z

1

Re

∂2u3

∂x2
j

dzdxdt

+

∫

t

∫

x

∫

z

s33dzdxdt (4.10)
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The first term is the time rate of the mean streamwise velocity and is zero due to fully
developed flow condition. The second term is zero in x and z directions due to periodicity in
these directions. The fluctuating pressure is zero due to periodicity in streamwise direction.
Also, the linear term is zero in x and z directions due to periodicity. The remaining terms
are

∫

t

∫

x

∫

z

∂u3u2

∂x2

dzdxdt =

∫

t

∫

x

∫

z

1

Re

∂2u3

∂x2
2

dzdxdt +

∫

t

∫

x

∫

z

s33dzdxdt (4.11)

If equation (4.11) is scaled with

SF =

∫

t

∫

x

∫

z
s33dzdxdt

V ol.
(4.12)

Then the resulting equation is

∫

t

∫

x

∫

z
∂u3u2

∂x2
dzdxdt

SF
=

∫

t

∫

x

∫

z
1

Re
∂2u3

∂x2
2

dzdxdt

SF
+ V ol. (4.13)

Comparing this equation with that written for constant force flow we find that the
equations are exactly the same. This means that, as far as the mean velocity is concerned,
the flows are exactly the same.

4.2 Results

4.2.1 Test case 1: Reτ = 500

The first case is the fully developed channel flow for a Reynolds number of 500 based
on friction velocity. This case is run with the modified code and in a computational box
of 0.5π in spanwise, 2 in normal and 4π in streamwise directions. The mesh is 64×80×64
and the grid transformation coefficient is a = 5.5. This grid gives a maximum stretching
factor of 14.6% and gives the first cell center at y+ = 0.301. The Runge-Kutta scheme is
used for the non-linear term and the calculations are done with constant CFL number.
The CFL = 1 is chosen for the sake of accuracy though it could have been chosen up to
1.7 considering stability. There are statistically independent fields saved on disk and the
statistical quantities are calculated from these data.

After running for this case the bulk velocity is computed for the resulting flow and Reb

and consequently Rep are calculated. The original code is run for this resulting Rep on
the same mesh and CFL conditions. The resulting flow from original code corresponds to
Reτ = 498 which is within the numerical accuracy of the target value 500. The results show
that the mean velocities are the same for the original and modified cases as was predicted.
The results are shown in figures (4.1) to (4.6) and are compared to a set of data referred
to as DNS2006 in the figures. These data are from Davidson (2006) corresponding to
Reτ = 500 on exactly the same mesh as the test case. The code giving the DNS2006 data
is a finite volume code while grid transformation is not implemented and the non-uniform
mesh is generated at first.
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Figure 4.1: streamwise mean velocity, Reτ = 500

As it is seen from the results, the near wall behavior is rather the same for all codes
but toward the middle of the channel they begin to deviate. The mean velocity is about
6% less for the code described here compared to that of DNS2006. The flow resulted from
this code is less turbulent than the DNS2006 data. The normal stresses and turbulence
kinetic energies are rather equal for the original and modified codes.

4.2.2 Test case 2: Reτ = 180

The second case is run on the same computational box and same cell numbers but
for Reynolds 180 based on friction velocity. The coefficient of transformation function
is a = 4.2 in this case, which results in a maximum stretching factor of 10.6% and the
first node is at y+ = 0.298. The results are shown in figures (4.7) to (4.12). In addition
to DNS2006 data, there are data referred to as DNS1999, these are data from MOSER
et al. (1999). The results show the same behavior for mean velocity but the second order
statistics for modified and original codes are more deviated in this case. As for the previous
case the mean velocities coincide with other data near the wall but deviate toward mid-
channel. The flow resulted from this code is less turbulent than the other codes.
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Figure 4.2: normal Reynolds stress in streamwise direction, Reτ = 500
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Figure 4.3: normal Reynolds stress in normal direction, Reτ = 500
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Figure 4.4: normal Reynolds stress in spanwise direction, Reτ = 500
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Figure 4.5: Reynolds shear stress, Reτ = 500
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Figure 4.6: turbulent kinetic energy, Reτ = 500
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Figure 4.7: streamwise mean velocity, Reτ = 180
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Figure 4.8: normal Reynolds stress in streamwise direction, Reτ = 180
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Figure 4.9: normal Reynolds stress in normal direction, Reτ = 180
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Figure 4.10: normal Reynolds stress in spanwise direction, Reτ = 180
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Figure 4.11: Reynolds shear stress, Reτ = 180
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Figure 4.12: turbulent kinetic energy, Reτ = 180
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Chapter 5

Conclusions

• while using the Adams-Bashfort scheme, the calculations should be run at constant
time step size mode.

• while using Runge-Kutta scheme, the calculations can be run in both constant time
step size and constant CFL number modes.

• the original code solves fully developed channel flow with constant mass flow rate.

• the modified code solves fully developed channel flow with constant pressure drop.

• mean velocity predictions of the original and modified codes are the same for corre-
sponding Reynolds numbers.

• second order statistics become the same for original and modified codes only at high
Reynolds numbers.

• the flow resulted from this code coincides with that of DNS1999 and DNS2006 near
the wall but deviates toward the mid-channel.

• the flow resulted from this code is less turbulent than that of DNS2006 and DNS1999.
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Chapter 6

Future work

The code is capable of solving the channel flow with moving walls and walls with
regions of transpiration. This can be analyzed more inside the code and cases relating to
drag control can be run with the same code and with minimum modifications. Also, it
is possible to have modifications in the code to run for totally new cases, examples can
be vertical channel flow, horizontal channel with walls at different temperatures, or even
vertical channel with buoyancy effects.
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Appendix A

Procedures

In this appendix are presented some very short comments on the procedures used in
the code.

• chadshn.f

– hdnl1,hdnl2,hdnl3 in these subroutines the nonlinear terms for x, y and z

momentum equations are calculated, because of the staggered grid used the
other components of velocity should be interpolated to find their value at the
desired point.

• chadsin.f

– initia the initial pressure field is given here.

– inqpr the initial velocity field is given here.

– slotin the regions of transpiration on the wall are calculated here.

• chadsma.f the main body of the code is here along with the main procedure. The
input files are read and necessary files are created here.

– solve this is the main procedure in which the other ones are called.

• chadsnn.f

– cfl CFL number is calculated here. This number is used to calculate the time
step size in constant CFL mode.

– coordi the coordinate transformation function is used here to calculate the
mesh in physical space. Also are selected some points to store certain quantities
at, this is done for post processing purposes.

– divg divergence of velocity is calculated in this subroutine.

– divgck this subroutine perform the calculation of divergence of velocity and
checks whether the mass is conserved locally.

– indic some variables are defined here which make it simple to assign the bound-
ary conditions.
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– meshes the computational mesh is computed here.

– metric the metrics of grid transformation are calculated here.

• chadsou.f

– openfi some files are opened here to be used later, either to read from or write
on them.

– timeseq some quantities are written on file here to be used later to start the
calculations from. These are written on the points given in subroutine coordi.

– contwr the file which will be used as a restarting file is written here, this is
the main subroutine for this purpose.

– enerca some quantities like total energy and enstrophy are calculated here.

– inirea here is read the continuation field if the calculations are not to start
from scratch.

– inx1x3 this subroutine and subroutines starting with in and ex are the inter-
polation and extrapolation procedures when making the mesh finer or coarser.

– q2div here the normal velocity component is calculated from continuity equa-
tion when a file is read which has only streamwise and spanwise velocity com-
ponent.

– oldqua reading in the old time mean quantities is done here when using con-
tinuation fields and averaging during computations.

– outh saves some information on files.

– oldqua saves some information on files.

– taver calculates the time average of velocity and stresses during computations.

– tavwri writes quantities to evaluate averages in time

– tavrea read quantities to evaluate averages in time when continuing a previous
field.

– vmaxv computes the maximum velocity in the field for convergence check.

– wstre calculates the wall shear.

• chadsphnc.f here are subroutines to solve the Poisson equation.

• chadru.f

– rearuu this subroutine reads the velocity correlations evaluated in a previous
run to restart the time averaging process.

– ruucal this subroutine performs the calculation of velocity correlations.

– ruphkp this subroutine performs the calculation of the correlations by using
the FFT routines. The direct calculations in the physical space are much more
time consuming.
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• chadstin.f

– updvp this subroutine calculates the solenoidal velocity field by fractional step
method.

– coeinv coefficients of the tri-diagonal matrix are calculated here to be used in
the solver.

– tschem a time advancement is done here by calling proper subroutines, in-
cluding all steps.

– invtr1 this subroutine performs the inversion of the momentum equation in
spanwise direction.

– invtr2 this subroutine performs the inversion of the momentum equation in
normal direction.

– invtr3 this subroutine performs the inversion of the momentum equation in
streamwise direction, also the mean pressure gradient is calculated and assigned
here.

– prcalc calculates the pressure field.

– boucdq the velocity at the wall is calculated here when working with moving
walls.

• chadstinv.f here are the counterparts of the subroutines in chadstn.f for slip walls.

• chadstr.f here are a bunch of tri-diagonal solvers.
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