
CALC-LES: A Fortran Code for LES and Hybrid

LES-RANS

Lars Davidson

Div.. of Fluid Dynamics

Dept. of Mechanics and Maritime Sciences

Chalmers University of Technology

SE-412 96 Göteborg, Sweden

June 26, 2020

Contents

1 Introduction 6

2 Geometrical Details of the Grid 6
2.1 Grid . 6

2.1.1 Nomenclature for the Grid 6
2.1.2 Area Calculation of Control Volume Faces 6
2.1.3 Volume Calculation of Control Volume 9
2.1.4 Interpolation . 9

2.2 Gradient . 9

3 Diffusion 10
3.1 Convergence Criteria . 11
3.2 2D Diffusion . 11

4 Convection – Diffusion 13
4.1 Central Differencing Scheme (CDS) 13
4.2 First-Order Upwind Scheme . 14
4.3 Hybrid Scheme . 15
4.4 Second-Order Upwind Scheme 15
4.5 Bounded Second-Order Upwind Scheme 15

5 The Fractional-step method 17

6 Boundary Conditions 18
6.1 Inlet . 18
6.2 Exit velocity . 19
6.3 Remaining variables . 20
6.4 Interior boundary conditions . 20

7 The Smagorinsky Model 21

1

http://www.tfd.chalmers.se/~lada

2

8 The WALE model 21

9 The PANS Model 21

10 The k − ω Model 22

11 The IDDES Model 22

12 Inlet boundary conditions 24
12.1 Synthesized turbulence . 24
12.2 Random angles . 24
12.3 Highest wave number . 25
12.4 Smallest wave number . 25
12.5 Divide the wave number range 25
12.6 von Kármán spectrum . 26
12.7 Computing the fluctuations . 26
12.8 Introducing time correlation . 26

13 Procedure to generate anisotropic synthetic fluctuations 28

14 Post-processing 29

15 Flow Chart 29

16 Subroutines 29

17 Fully-developed channel flow 30
17.1 Setup . 30

17.1.1 Section 1 . 30
17.1.2 Section 2 . 31
17.1.3 Section 3 . 31
17.1.4 Section 4 . 31
17.1.5 Section 5 . 31
17.1.6 Section 6 . 31
17.1.7 Section 7 . 31
17.1.8 Section 8 . 32
17.1.9 Section 9 . 32
17.1.10Section 10 . 32
17.1.11Section 11 . 32
17.1.12Section 12 . 33
17.1.13Section 13 . 33
17.1.14Section 14 . 33
17.1.15Section 15-17 . 33

17.2 mod . 33
17.2.1 entry modini . 33
17.2.2 entry modpro . 34
17.2.3 entry modcon . 34
17.2.4 entry modu . 34
17.2.5 entry modv . 34
17.2.6 entry modw . 34
17.2.7 entry modpp . 34

3

17.2.8 entry modte . 34
17.2.9 entry moded . 34
17.2.10entry modphi . 34

17.3 Run the code . 34

18 Fully-developed channel flow without re-start 35
18.1 Setup . 35

18.1.1 Section 8 . 35
18.2 mod . 35

18.2.1 entry modini . 35

19 Fully-developed channel flow at Reτ = 5 200 using PANS 36
19.1 setup.f . 36

19.1.1 Section 8 . 36
19.2 mod.f . 36

19.2.1 entry modini . 36
19.2.2 entry modu . 36
19.2.3 entry moded . 36

20 Hill flow 37
20.1 Setup . 37

20.1.1 Section 8 . 37
20.1.2 Section 8 . 37
20.1.3 Section 9 . 37
20.1.4 Section 10 . 37
20.1.5 Section 11 . 37
20.1.6 Section 12 . 37
20.1.7 Section 16 . 37
20.1.8 Section 16 . 37

20.2 mod . 38
20.2.1 entry modini . 38
20.2.2 entry modu . 38
20.2.3 entry moded . 38

21 Hump flow with re-start 38
21.1 Setup . 38

21.1.1 Section 8 . 38
21.1.2 Section 16 . 38

21.2 mod . 38
21.2.1 entry modini . 38
21.2.2 entry modcon . 39
21.2.3 entry modu . 39
21.2.4 entry modte . 40
21.2.5 entry moded . 40

22 Hump flow without re-start 40
22.1 setup . 40

22.1.1 Section 8 . 40
22.1.2 Section 12 . 40

22.2 mod . 40

4

22.2.1 entry modini . 40
22.2.2 entry modu . 41

23 Hump flow, 2D RANS 41
23.1 setup . 41

23.1.1 Section 9 . 41
23.1.2 Section 12 . 41
23.1.3 Section 14 . 41
23.1.4 Section 18 . 41

24 Atmospheric boundary layer in a forest 41
24.1 setup . 42

24.1.1 Section 2a . 42
24.1.2 Section 8 . 42
24.1.3 Section 11 . 42
24.1.4 Section 12 . 42
24.1.5 Section 13 . 42

24.2 mod . 42
24.2.1 entry modini . 42
24.2.2 entry modpro . 42
24.2.3 entry modu . 42
24.2.4 entry modv . 43
24.2.5 entry modw . 43
24.2.6 entry modphi(nphi) . 43

25 Workshop 43
25.1 Fully-developed channel flow using PANS 43

25.1.1 setup . 43
25.2 Fully-developed half-width channel flow using PANS 44

25.2.1 setup.f . 45
25.2.2 mod.f . 45

25.3 Half-width channel flow, with inlet-outlet, using PANS 47
25.3.1 setup.f . 47
25.3.2 mod.f . 47

25.4 Half-width channel flow: a hybrid one-equation turbulence model 49
25.4.1 setup.f . 49
25.4.2 mod.f . 50
25.4.3 vist keq.f . 51
25.4.4 main.f . 52
25.4.5 makefile . 52

25.5 Half-width channel flow: a DES k − ε turbulence model 52
25.5.1 setup.f . 52
25.5.2 mod.f . 53
25.5.3 calcte des.f . 53
25.5.4 calced des.f . 54
25.5.5 main.f . 54
25.5.6 makefile . 55

25.6 Half-width channel flow: a IDDES k − ε turbulence model . . . 55
25.7 Heat transfer in half-width channel flow with inlet-outlet 55

25.7.1 setup.f . 55

5

25.7.2 main.f . 56
25.7.3 mod.f . 56

25.8 Dispersion of passive pollution source 57
25.8.1 main.f . 57
25.8.2 echo1.f . 58
25.8.3 setup.f . 58
25.8.4 mod.f . 58

25.9 Heat transfer with buoyancy . 60
25.9.1 mod.f . 60

26 COMMON blocks 61
26.1 COMMON . 61
26.2 PETER COMMON . 61
26.3 Variables in COMMON blocks in file COMMON 61

1. Introduction 6

1 Introduction

2 Geometrical Details of the Grid

2.1 Grid

[13]
Python and Matlab scripts for synthetic fluctuations The coordinates of the

corners (XC , YC , ZC) of each control volume should be specified by the user,
i.e. the grid must be generated by the user. The nodes of the control volume
(XP , YP , ZP) are placed at the center of their control volumes. The control
volume adjacent to the boundaries have two nodes, one in the center and one
at the boundary, see Fig. 2.1. In any coordinate direction, lets say ξ, there
are NI nodes, NI-1 control volume faces, and NI-2 control volumes. The nodes
are numbered (from low ξ to high ξ) from 1 to NI , the control volume faces
are numbered from 1 to NI-1, and the control volumes from 2 to NI-1. This
is the same for η and ζ directions. Note that (ξ, η, ζ) must form a right-hand
coordinate system.

CALC-LES employs curvilinear grids but the code can also be used with
Cartesian as well as cylindrical coordinate systems.

2.1.1 Nomenclature for the Grid

A schematic control volume grid is shown in Fig. 2.2. Single capital letters
define nodes [E(ast), S(outh), etc.], and single small letters define faces of the
control volumes. When a location can not be referred to by a single character,
combination of letters are used. The order in which the characters appear is:
first east-west, then north-south, and finally high-low.

2.1.2 Area Calculation of Control Volume Faces

The area of the control volume faces are calculated as the sum of two triangles.
The x-coordinates of the corners of the east face are, for example, XC(I,J,K),
XC(I,J-1,K), XC(I,J,K-1) and XC(I,J-1,K-1); the Y and Z- coordinates are YC
and ZC with the same indices, see Fig. 2.3. The area of the two triangles, A1,
A2, is calculated as the cross product

1

boundary

1 2

2

3

3

4

4

5 6

5 6

7

boundary

x

Figure 2.1: 1D grid. NI = 7. The bullets denote cell centers which are labeled
1–7. Dashed lines denote control volume faces labeled 1–6. The number of
interior control volumes is 5.

2.1. Grid 7

W EP

e

ne

se
sw

nw

N

S

n

s

w

Figure 2.2: Control volume

(I,J,K-1)

(I,J-1,K)

b

a

c

A1

A2

I

J

K

Figure 2.3: Calculation of control volume faces

2.1. Grid 8

A1 =
1

2
|~a×~b|; A2 =

1

2
| −~b× ~c| (2.1)

Above is has been assumed that the fourth edge [from (I,J-1,K-1) to (I,J,K-1)] of

the east face (shaded area in Fig. 2.3) is approximately equal to ~b. The vectors

~a, ~b and ~c for faces in Fig. 2.3) are set in a manner that the normal vectors ~n1
and ~n2 are pointed outwards. For the east face, for example, they are defined
as

~a: from corner (I,J-1,K) to (I,J-1,K-1)
~b: from corner (I,J-1,K) to (I,J,K)
~c: from corner (I,J,K) to (I,J,K-1)

The Cartesian components of ~a are thus

ax = X(I, J − 1,K − 1)−X(I, J − 1,K)

ay = Y (I, J − 1,K − 1)− Y (I, J − 1,K)

az = Z(I, J − 1,K − 1)− Z(I, J − 1,K) (2.2)

The total area for the east face is obtained as

| ~A|e = | ~A1|e + | ~A2|e (2.3)

The normal vector of the vector area is obtained as the average of the normal
vectors of the two triangles

~n =
1

2

(

~a×~b−~b× ~c
)

(2.4)

The Cartesian areas are calculated as

~Aex = | ~A|e~n · ~ex
~Aey = | ~A|e~n · ~ey
~Aez = | ~A|e~n · ~ez (2.5)

where ~ex, ~ey and ~ez are the Cartesian unit base vector
The areas and the normal vectors of the north and high control volumes

faces are calculated in exactly the same way. For the north face the vectors ~a,
~b and ~c are defined as

~a: from corner (I-1,J,K) to (I,J,K)
~b: from corner (I-1,J,K) to (I-1,J,K-1)
~c: from corner (I-1,J,K-1) to (I,J,K-1)

For the high faces the vectors a, b and c are defined as

~a: from corner (I-1,J,K) to (I-1,J-1,K)
~b: from corner (I-1,J,K) to (I,J,K)
~c: from corner (I,J,K) to (I,J-1,K)

In CALC-LES the Cartesian areas for each face (east, north and high) are
calculated only once and stored in three dimensional arrays.

2.2. Gradient 9

2.1.3 Volume Calculation of Control Volume

The volume is calculated using Gauss’ law, see Burns and Wilkes [4]. Gauss’

law for a vector field ~B reads
∫

V

∇ · ~BdV =

∫

A

~B · d ~A (2.6)

setting ~B = ~x gives

δV =

∫

V

dV =
1

3

∫

A

~x · d ~A (2.7)

In CALC-LES the volume is calculated once only and stored in a three dimen-
sional array.

2.1.4 Interpolation

The nodes where all variables are stored are situated in the center of the control
volume. When a variable is needed at a control volume face, linear interpolation
is used. The value of the variable φ at the east face is

φe = fxφE + (1 − fx)φP (2.8)

where

fx =
| ~Pe|

| ~Pe|+ | ~eE|
(2.9)

where | ~Pe| is the distance from P (the node) to e (the east face). In CALC-
LES the interpolation factors (fx, fy, fz) are calculated once only and stored
in three-dimensional arrays.

2.2 Gradient

The derivatives of φ (∂φ/∂xi) at the cell center are in CALC-LES computed
as follows. We apply Green’s formula to the control volume, i.e.

∂Φ

∂x
=

1

V

∫

A

ΦnxdA,
∂Φ

∂y
=

1

V

∫

A

ΦnydA,
∂Φ

∂z
=

1

V

∫

A

ΦnzdA

where A is the surface enclosing the volume V . For the x component, for
example, we get

∂Φ

∂x
=

1

V
(ΦeAex − ΦwAwx +ΦnAnx − ΦsAsx +ΦhAhx − ΦlAlx) (2.10)

where index w, e, s, n, l, h denotes east (I+1/2), west (I−1/2), north (J+1/2),
south (J − 1/2), high (K + 1/2) and low (K − 1/2). The derivative ∂Φ/∂x is
computed in the function dphidx.

3. Diffusion 10

✉ ✉✉

W EP

ew

✲✛

∆x

✲✛

δxe
✲✛

δxw

Figure 3.1: 1D control volume. Node P located in the middle of the control
volume.

3 Diffusion

We start by looking at 1D diffusion, e.g. the 1D heat conduction equation

d

dx

(

k
dT

dx

)

+ S = 0.

To discretize (i.e. to go from a continuous differential equation to an algebraic
discrete equation) this equation is integrated over a control volume (C.V.), see
Fig. 3.1.

∫ e

w

[

d

dx

(

k
dT

dx

)

+ S

]

dx =

(

k
dT

dx

)

e

−
(

k
dT

dx

)

w

+ S̄∆x = 0 (3.1)

where (see Fig. 3.1):

P: an arbitrary node

E, W: its east and west neighbor node, respectively

e, w: the control volume’s east and west face, respectively

S̄: volume average of S

The temperature T and the coefficient of heat conductivity k are stored at
the nodes W , P and E. Now we need the derivatives dT/dx at the faces w and
e. These are estimated from a straight line connecting the two adjacent nodes,
i.e.

(

dT

dx

)

e

≃ TE − TP
δxe

,

(

dT

dx

)

w

≃ TP − TW
δxw

. (3.2)

The heat conductivity k is also needed at the faces. It is estimated by linear
interpolation between the adjacent nodes. For the east face, for example, we
obtain

ke = fxkE + (1− fx)kP , fx =
0.5∆x

δxe
. (3.3)

3.1. Convergence Criteria 11

For an equidistant mesh (constant ∆x⇒ ∆x = δxw = δxe) fx = 0.5.
Insertion of Eq. 3.2 into Eq. 3.1 gives

aPTP = aETE + aWTW + SU (3.4)

aE = ke

δxe
, aW = kw

δxw
, SU = S̄∆x, aP = aE + aW

3.1 Convergence Criteria

Compute the residual for Eq. 3.4

R =
∑

all cells

|aETE + aWTW + SU − aPTP |

Since we want Eq. 3.4 to be satisfied, the difference of the right-hand side and the
left-hand side is a good measure of how well the equation is satisfied. Note that
R has the units of the integrated differential equation. Thus, in the present
case R has the same dimension as heat transfer rate, i.e. Joule per second
[J/s] = [W]. If R = 1[W], it means that the residual for the computation is
1. This does not tell us anything, since it is problem dependent. We can have
a problem where the total heat transfer rate is 1000[W], and a another where
it is only 1[W]. In the former case R = 1 means that the solutions can be
considered converged, but in the latter case this is not true at all. We realize
that we must normalize the residual to be able to judge whether the equation
system has converged or not. The criterion for convergence is then

R

F
≤ ε

where 0.0001 < ε < 0.01, and F represents the total flux of T , i.e. total heat
transfer rate.

Regardless if we solve the continuity equation, the Navier-Stokes equation
or the energy equation, the procedure is the same: F should represent the total
flux of the dependent variable.

• Continuity equation. F is here the total incoming mass flux ṁ.

• Navier-Stokes equation. The unit is that of a force, i.e. Newton. A
suitable value of F is obtained from F = ṁU at the inlet.

• Energy equation. F should be the total incoming heat flux. In a convection-
diffusion problem we can take the convective flux at the inlet i.e. F =
ṁcpT . In a conduction problem we can integrate the boundary flux, tak-
ing the absolute value at each cell, since the sum will be zero in case
of internal source. If there are large heat sources in the computational
domain, F could be taken as the sum of all heat sources.

3.2 2D Diffusion

The two-dimensional heat conduction equation reads

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+ S = 0. (3.5)

3.2. 2D Diffusion 12

P E

W

S

N

∆x

∆y

δxe

δxw

δyn

δys

Figure 3.2: 2D control volume.

In the same way as we did for the 1D case, we integrate over our control volume,
but now it’s in 2D (see Fig. 3.2, i.e.

∫ e

w

∫ n

s

[

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+ S

]

dxdy = 0.

We start by the first term. The integration in x direction is carried out in
exactly the same way as in 1D, i.e.

∫ e

w

∫ n

s

[

∂
∂x

(

k ∂T
∂x

)]

dxdy =
∫ n

s

[(

k ∂T
∂x

)

e
−
(

k ∂T
∂x

)

w

]

dy

=
∫ n

s

(

ke
TE−TP

δxe
− kw

TP−TW

δxw

)

dy

Now integrate in the y direction. We do this by estimating the integral
∫ n

s

f(y)dy = fP∆y +O
(

(∆y)2
)

(i.e. f is taken at the mid-point P) which is second order accurate, since it is
exact if f is a linear function. For our equation we get

∫ n

s

(

ke
TE − TP
δxe

− kw
TP − TW
δxw

)

dy

=

(

ke
TE − TP
δxe

− kw
TP − TW
δxw

)

∆y

Doing the same for the diffusion term in the y direction in Eq. 3.5 gives
(

ke
TE − TP
δxe

− kw
TP − TW
δxw

)

∆y

+

(

kn
TN − TP
δyn

− ks
TP − TS
δys

)

∆x+ S̄∆x∆y = 0

4. Convection – Diffusion 13

✉ ✉✉

W EP

ew

✲✛

∆x

✲✛

δxe
✲✛

δxw

Figure 4.1: 1D control volume. Node P located in the middle of the control
volume.

Rewriting it as an algebraic equation for TP , we get

aPTP = aETE + aWTW + aNTN + aSTS + SU (3.6)

aE = ke∆y
δxe

, aW = kw∆y
δxw

, aN = kn∆x
δyn

, aS = ks∆x
δys

SU = S̄∆x∆y, aP = aE + aW + aN + aS − SP .

In this 2D equation we have introduced the general form of the source term;
this could also be done in the 1D equation (Eq. 3.4).

For more detail on diffusion, see
http://www.tfd.chalmers.se/˜lada/comp fluid dynamics/lecture notes.html

4 Convection – Diffusion

The 1D convection-diffusion equation reads

d

dx
(ρUT) =

d

dx

(

Γ
dT

dx

)

+ S, Γ =
k

cp

We discretize this equation in the same way as the diffusion equation. We start
by integrating over the control volume (see Fig. 4.1).

∫ e

w

d

dx
(ρUT)dx =

∫ e

w

[

d

dx

(

Γ
dT

dx

)

+ S

]

dx. (4.1)

We start by the convective term (the left-hand side)
∫ e

w

d

dx
(ρUT)dx = (ρUT)e − (ρUT)w .

We assume the velocity U to be known, or, rather, obtained from the solution
of the Navier-Stokes equation.

4.1 Central Differencing Scheme (CDS)

How to estimate Te and Tw? The most natural way is to use linear interpolation
(central differencing); for the east face this gives

(ρUT)e = (ρU)e Te

http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/lecture_notes.html

4.2. First-Order Upwind Scheme 14

where the convecting part, ρU , is taken by central differencing, and the convected
part, T , is estimated with different differencing schemes. We start by using cen-
tral differencing for T so that

(ρUT)e = (ρU)e Te, where Te = fxTE + (1− fx)TP

where fx is the interpolation function (see Eq. 3.3, p. 10), and for constant mesh
spacing fx = 0.5. Assuming constant equidistant mesh (i.e. δxw = δxe = ∆x)
so that fx = 0.5, inserting the discretized diffusion and the convection terms
into Eq. 4.1 we obtain

(ρU)e
TE + TP

2
− (ρU)w

TP + TW
2

=

=
Γe(TE − TP)

δxe
− Γw(TP − TW)

δxw
+ S̄∆x

which can be rearranged as

aPTP = aETE + aWTW + SU

aE = Γe

δxe
− 1

2 (ρU)e, aW = Γw

δxw
+ 1

2 (ρU)w

SU = S̄∆x, aP = Γe

δxe
+ 1

2 (ρU)e +
Γw

δxw
− 1

2 (ρU)w

We want to compute aP as the sum of its neighbor coefficients to ensure that
aP ≥ aE + aW which is the requirement to make sure that the iterative solver
converges. We can add

(ρU)w − (ρU)e = 0

(the continuity equation) to aP so that

aP = aE + aW .

Central differencing is second-order accurate (easily verified by Taylor ex-
pansion), i.e. the error is proportional to (∆x)2. This is very important. If
the number of cells in one direction is doubled, the error is reduced by a factor
of four. By doubling the number of cells, we can verify that the discretization
error is small, i.e. the difference between our algebraic, numerical solution and
the exact solution of the differential equation.

Central differencing gives negative coefficients when |Pe| > 2; this condi-
tion is unfortunately satisfied in most of the computational domain in practice.
The result is that it is difficult to obtain a convergent solution in steady flow.
However, in LES this does usually not pose any problems.

4.2 First-Order Upwind Scheme

For turbulent quantities upwind schemes must usually be used in order stabilize
the numerical procedure. Furthermore, the source terms in these equations are
usually very large which means that an accurate estimation of the convection
term is less critical.

In this scheme the face value is estimated as

Te =

{

TP if Ue ≥ 0
TE otherwise

4.3. Hybrid Scheme 15

✉ ✉✉

W EP

e

✲❡
x

✲✛

δx/2

✲✛

δx
✲✛

δx

Figure 4.2: Constant mesh spacing. U > 0.

• first-order accurate

• bounded

The large drawback with this scheme is that it is inaccurate.

4.3 Hybrid Scheme

This scheme is a blend of the central differencing scheme and the first-order
upwind scheme. We learned that the central scheme is accurate and stable
for |Pe| ≤ 2. In the Hybrid scheme, the central scheme is used for |Pe| ≤ 2;
otherwise the first-order upwind scheme is used. This scheme is only marginally
better than the first-order upwind scheme, as normally |Pe| > 2. It should be
considered as a first-order scheme.

4.4 Second-Order Upwind Scheme

We use two nodes upstream and assume that the derivative between W and P
is equal to that between P and e, i.e. (see Fig. 4.2)

TP − TW
δx

=
Te − TP

1
2δx

⇒ Te ≃
3

2
TP − 1

2
TW (4.2)

• second-order accurate

• unbounded (negative coefficients), i.e. Te < TW , Te < TP or Te < TE (see
Fig. 4.3), or vice versa.

4.5 Bounded Second-Order Upwind Scheme

Often, bounded second-order upwind schemes are used. One example is the Van
Leer scheme [34]. This scheme reads as follows (Ue > 0 assumed):

Te =

{

TP + TE−TP

TE−TW
(TP − TW) if |TE − 2TP + TW | ≤ |TE − TW |

TP otherwise
(4.3)

see Fig. 4.4, If the variation of T is smooth then

TE − TP
TE − TW

≃ 1

2
,

4.5. Bounded Second-Order Upwind Scheme 16

e

T

PW E

Figure 4.3: Constant mesh spacing. U > 0.

ew

T

PW E
(

∂T
∂x

)

w

(

∂T
∂x

)

e

(

∂T
∂x

)

P

Figure 4.4: Van Leer scheme.

and we find that van Leer scheme gives Te = 1.5TP − 0.5TW , i.e. it returns to
the second-order upwind scheme (see p. 15).

Now let’s illustrate what happens if T has a minimum at node P (dashed
line in the Fig. 4.4). We want to show that in this case 1st order upwind is
used in the van Leer scheme. When T has a minimum at node P the expression
TE−2TP+TW [= (∆x)2(d2T/dx2)CD

P] is larger than TE−TW (= ∆x(dT/dx)CD
P .

This is seen by rewriting the first expression as TE − 2TP + TW = TE − TW +
2(TW − TP) and noting that for the dashed line in Fig. 4.4 TW − TP >. When
so, the condition on the first line of Eq. 4.3 is not satisfied, and thus the second
line of of Eq. 4.3 is used, i.e. the first-order upwind scheme is used.

The van Leer scheme

• is second-order accurate, except at local minima and maxima where is
only first-order accurate. It can be regarded as a second-order scheme.

• is bounded

MUSCL [35], which is an improved Van Leer scheme is also available in
CALC-LES.

5. The Fractional-step method 17

5 The Fractional-step method

A numerical method based on an implicit, finite volume method with collocated
grid arrangement, central differencing in space, and Crank-Nicolson (α = 0.5)
in time is briefly described below. An implicit, two-step time-advancement
methods is used [5]. The Navier-Stokes equation for the ūi velocity reads

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τij
∂xj

(5.1)

The discretized momentum equations read

v̄
n+1/2
i = v̄ni +∆tH

(

v̄n, v̄
n+1/2
i

)

−α∆t∂p̄
n+1/2

∂xi
− (1− α)∆t

∂p̄n

∂xi
(5.2)

where H includes convective, viscous and SGS terms. In SIMPLE notation this
equation reads

aP v̄
n+1/2
i =

∑

nb

anbv̄
n+1/2 + SU − α

∂p̄n+1/2

∂xi
∆V

where SU includes the explicit pressure gradient. The face velocities v̄
n+1/2
f,i =

0.5(v̄
n+1/2
i,J + v̄

n+1/2
i,J−1) (note that J denotes node number and i is a tensor index)

do not satisfy continuity. Create an intermediate velocity field by subtracting
the implicit pressure gradient from Eq. 5.2, i.e.

v̄∗i = v̄ni +∆tH
(

v̄n, v̄
n+1/2
i

)

− (1− α)∆t∂p̄
n

∂xi

⇒ v̄∗i = v̄
n+1/2
i + α∆t∂p̄

n+1/2

∂xi
(5.3)

Take the divergence of Eq. 5.3b and require that ∂v̄
n+1/2
f,i /∂xi = 0 so that

∂2p̄n+1

∂xi∂xi
=

1

∆tα

∂v̄∗f,i
∂xi

(5.4)

The Poisson equation for p̄n+1 is solved with an efficient multigrid method [21].
In the 3D MG we use a plane-by-plane 2D MG. The face velocities are corrected
as

v̄n+1
f,i = v̄∗f,i − α∆t

∂p̄n+1

∂xi
(5.5)

A few iterations (typically two) solving the momentum equations and the Pois-
son pressure equation are required each time step to obtain convergence. More
details can be found [18].

1. Solve the discretized filtered Navier-Stokes equation, Eq. 5.3a, for v̄1, v̄2
and v̄3.

2. Create an intermediate velocity field v̄∗i from Eq. 5.3b.

6. Boundary Conditions 18

RANS LES
Domain 2D or 3D always 3D
Time domain steady or unsteady always unsteady
Space discretization 2nd order upwind central differencing
Time discretization 1st order 2nd order (e.g. C-N)
Turbulence model more than two-equations zero- or one-equation

Table 5.1: Differences between a finite volume RANS and LES code.

3. Use linear interpolation to obtain the intermediate velocity field, v̄f,i, at
the face

4. The Poisson equation (Eq. 5.4) is solved with an efficient multigrid method [21].

5. Compute the face velocities (which satisfy continuity) from the pressure
and the intermediate face velocity from Eq. 5.5

6. Step 1 to 4 is performed till convergence (normally two or three iterations)
is reached.

7. The turbulent viscosity is computed.

8. Next time step.

Since the Poisson solver in [21] is a nested MG solver, it is difficult to par-
allelize with MPI (Message Passing Interface) on large Linux clusters.

The discretized equation for p̄ is assembled in subroutine calcpe. It calls
the MG solver peter multi. The MG solver includes a number of subroutines:

• key

• key2

• mg 2d

• peter init.f (called once from main)

• peter 2d cyclic

• peter 2d relax peter cyclic

• peter relax

It is a stand alone solver; it does not use the usual COMMON block but all in-
formation is passed from main and calcpe via arguments in the call statement.
The MG subroutines use their own COMMON blocks in PETER COMMON.

6 Boundary Conditions

6.1 Inlet

The velocity component normal to the inlet (e.g. U if inlet is a west boundary)
is usually, as well other scalar variables such as temperature and concentration.
Turbulent quantities, such as k and ε are normally not known, but they must

6.2. Exit velocity 19

t
t1: start t2: end

v̄1

Figure 5.1: Time averaging in LES.

hin

hout

Uin

Uout

Figure 6.1: Outlet boundary condition. Small outlet

be estimated. Usually k is set to (γU)2, where 0.01 . γ . 0.1. The dissipation
is set from

εin = c
k
3/2
in

L
,

where c = 0.54, and L = 0.1h, where h denotes height of inlet. Note that the
expressions for k and ε only are guide lines.

6.2 Exit velocity

For small outlets the exit velocity can be determined from global continuity.
As the inlet is small a constant velocity over the whole outlet can be used. The
exit velocity is set as (see Fig. 6.1)

Uinhin = Uouthout ⇒ Uout = Uinhin/hout

For large outlets the exit velocity must be allowed to vary over the outlet.
The proper boundary condition in this case is ∂U/∂x = 0. Hence it is important
that the flow near the exit is fully developed, so that this boundary condition
corresponds to the flow conditions. The best way to ensure this is to locate the
exit boundary sufficiently far downstream. If we have a recirculation region in
the domain (see Fig. 6.2), the exit should be located sufficiently far downstream
of this region so that ∂U/∂x ≃ 0.

The exit boundary condition is implemented as follows (see Fig. 6.2)

1. Set Ue = Uw for all nodes (i.e. for j = 2 to 6, see Fig. 6.2);

6.3. Remaining variables 20

hin

hout

Uin

Uw Ue

Figure 6.2: Outlet boundary condition. Large outlet.

2. In order to speed up convergence, enforce global continuity.

– Inlet mass flow: ṁin = ρ
∑

inlet Uin∆y

– Outlet mass flow: ṁout = ρ
∑

outlet Uout∆y

– Compute correction velocity: Ucorr = (ṁin − ṁout)/(ρAout), where
Aout =

∑

outlet ∆y.

– Correct Ue so that global continuity (i.e. ṁin = ṁout) is satisfied:
Unew
e = Ue + Ucorr

This boundary condition is implemented in subroutine mod.f, entry modcon

for the hump flow.

6.3 Remaining variables

Set ∂Φ/∂x = 0, and implement it through Φni = Φni−1 each iteration.

6.4 Interior boundary conditions

Sometimes we want to prescribe a fixed value on a variable in an interior cell.
A typical example is turbulent quantities. The wall boundary condition for
dissipation, ε, and the specified dissipation, ω, are usually fixed at wall-adjacent
nodes as

εw =
2νk

y2w

ωw =
6ν

βy2w
(6.1)

where yw is the distance from the cell center to the wall and β = 0.075. These
interior boundary conditions are conveniently prescribed using source terms.
The 1D discretized equation with the general source term reads

aPΦP = aEΦE + aWΦW + SU , aP = aE + aW − SP (6.2)

with, for example, Φ = ε. Now we prescribe ε at a wall-adjacent cell with source
terms as

sP = −1020, sU = 1020εw (6.3)

Insert Eq. 6.3 into Eq. 6.2 gives

1020ΦP ≃ 1020εw (6.4)

since aW ≪ 1020 and aE ≪ 1020 which gives ΦP = εw as intended.
This boundary condition is implemented in subroutine mod.f, entry moded.

7. The Smagorinsky Model 21

7 The Smagorinsky Model

subroutine: vist les

The simplest model is the Smagorinsky model [33]:

τij −
1

3
δijτkk = −νsgs

(

∂v̄i
∂xj

+
∂v̄j
∂xi

)

= −2νsgss̄ij

νsgs = (CS∆)
2 √

2s̄ij s̄ij ≡ (CS∆)
2 |s̄| (7.1)

and the filter-width is taken as the local grid size

∆ = (∆VIJK)1/3 (7.2)

Near the wall, the SGS viscosity becomes quite large since the velocity gradient
is very large at the wall. However, because the SGS turbulent fluctuations near
a wall go to zero, so must the SGS viscosity. A damping function fµ is added
to ensure this

fµ = 1− exp(−x+2 /26) (7.3)

A more convenient way to dampen the SGS viscosity near the wall is simply
to use the RANS length scale as an upper limit, i.e.

∆ = min
{

(∆VIJK)
1/3

, κn
}

(7.4)

where n is the distance to the nearest wall. CS is set to 0.1.

8 The WALE model

subroutine: vist wale

The WALE model by [30] reads

gij = ∂v̄i
∂xj

, g2ij = gikgkj

s̄dij = 1
2

(

g2ij + g2ji
)

− 1
3δijg

2
kk

νsgs = (Cm∆)
2 (s̄dij s̄

d
ij)

3/2

(s̄ij s̄ij)
5/2+(s̄dij s̄dij)

5/4 (8.1)

with Cm = 0.325 which corresponds to Cs = 0.1.

9 The PANS Model

subroutines: calcte pans, calced pans, vist pans

The low-Reynolds number partially averaged Navier-Stokes (LRN PANS)
turbulence model reads [26]

Dk

Dt
= ∂

∂xj

[(

ν + νt
σku

)

∂k
∂xj

]

+ Pk + Pktr − ε

Dε

Dt
= ∂

∂xj

[(

ν + νt
σεu

)

∂ε
∂xj

]

+ Cε1Pk
ε
k − C∗

ε2
ε2

k

νt = Cµfµ
k2

ε , Pk = 2νts̄ij s̄ij , s̄ij =
1
2

(

∂v̄i
∂xj

+
∂v̄j
∂xi

)

C∗
ε2 = Cε1 +

fk
fε
(Cε2f2 − Cε1), σku ≡ σk

f2
k

fε
, σεu ≡ σε

f2
k

fε

σk = 1.4, σε = 1.4, Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09, fε = 1 (9.1)

10. The k − ω Model 22

where D/Dt = ∂/∂t+ v̄j∂/∂xj denotes the material derivative. The damping
functions are defined as

f2 =
[

1− exp
(

− y∗

3.1

)]2
{

1− 0.3 exp

[

−
(

Rt

6.5

)2
]}

fµ =
[

1− exp
(

− y∗

14

)]2
{

1 + 5

R
3/4
t

exp

[

−
(

Rt

200

)2
]}

Rt = k2

νε , y∗ = Uεy
ν , Uε = (εν)1/4 (9.2)

The term Pktr in Eq. 9.1 is an additional term which is non-zero in the
interface region because Dfk/Dt 6= 0. This is used at the inlet in the hump flow
(see subroutine mod.f, entry modte).

The function fε, the ratio of the modeled to the total dissipation, is set to
one since the turbulent Reynolds number is high. fk is set to 1 in the RANS
region and to 0.4 in the LES region.

It may also be computed and then the interface is chosen automatically [17],
see Sections 19.

10 The k − ω Model

subroutines: calcte kom, calcom, vist kom

The Wilcox k − ω turbulence model reads [38]

∂k

∂t
+
∂v̄ik

∂xi
= P k − cµkω + ∂

∂xj

[(

ν + νt
σk

)

∂k
∂xj

]

∂ω

∂t
+
∂v̄iω

∂xi
= Cω1

ω
kP

k − Cω2ω
2 + ∂

∂xj

[(

ν + νt
σω

)

∂ω
∂xj

]

(10.1)

νt = k
ω

where cµ = 0.09, cω1
= 5/9, cω2

= 3/40, σk = 0.5 = σω = 2.0.

11 The IDDES Model

This model will be implemented by the course participants during the workshop,
see Section 25.6.

We start by defining – as in DES and DDES – a RANS and LES lengthscale
as

LLES = CDES∆dw

LRANS = k3/2

ε

∆dw = min (max [Cdwdw, Cw∆max,∆nstep] ,∆max) (11.1)

where dw denotes the distance to the nearest wall and ∆step is the grid step size
in the wall-normal direction. The final lengthscale is blended

Lt = fd (1 + fe)L:ES + (1− fd)LRANS , (11.2)

11. The IDDES Model 23

In DES, ψ is computed from Eq. 25.1. In IDDES, it is computed as

ψ = max

(

1,
LRANS

Lt

}

(11.3)

The blending functions in Eq. 11.2 read

fd = max {(1− fdt) , fB} (11.4)

fe = max {(fe1 − 1) , 0}fe2, (11.5)

where fdt and fB in Eq. 11.4 read

fdt = 1− tanh
[

(8rdt)
3
]

(11.6)

fB = min
{

2 exp
(

−9α2
)

, 1
}

(11.7)

with

α = 0.25− dw/hmax (11.8)

The functions fe1 and fe2 in Eq. 11.5 read

fe1 = 2 exp
(

−11.09α2
)

if α ≥ 0

fe1 = 2 exp
(

−9α2
)

if α < 0 (11.9)

and

fe2 = 1−max {ft; fl} , (11.10)

where the functions ft and fl are given by

ft = tanh
[

(

c2t rdt
)3
]

fl = tanh
[

(

c2l rdl
)10

]

(11.11)

The constants ct and cl above, depend on the background RANS model. They
were originally tuned in [32] for the SA model, and later in [22] for the k − ω
SST model. The chosen values are ct = 1.87 and cl = 5. The quantities rdt and
rdl in Eqs. 11.6 and 11.11 are defined as

rdt = νt
κ2d2

w max{S,10−10}

rdl = ν
κ2d2

w max{S,10−10} (11.12)

where

S =

√

(

∂ui
∂xj

∂ui
∂xj

)2

(11.13)

12. Inlet boundary conditions 24

12 Inlet boundary conditions

In RANS it is sufficient to supply profiles of the mean quantities such as veloc-
ity and temperature plus the turbulent quantities (e.g. k and ε). However, in
unsteady simulations (LES, URANS, DES . . .) the time history of the velocity
and temperature need to be prescribed; the time history corresponds to turbu-
lent, resolved fluctuations. In some flows it is critical to prescribe reasonable
turbulent fluctuations, but in many flows it seems to be sufficient to prescribe
constant (in time) profiles [9, 10].

There are different ways to create turbulent inlet boundary conditions. One
way is to use a pre-cursor DNS or well resolved LES of channel flow. This method
is limited to fairly low Reynolds numbers and it is difficult (or impossible) to
re-scale the DNS fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuations is the vortex method [25].
It is based on a superposition of coherent eddies where each eddy is described
by a shape function that is localized in space. The eddies are generated ran-
domly in the inflow plane and then convected through it. The method is able
to reproduce first and second-order statistics as well as two-point correlations.

A third method is to take resolved fluctuations at a plane downstream of
the inlet plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlet fluctuations.

12.1 Synthesized turbulence

The method described below was developed in [2, 3] for creating turbulence
for generating noise. It was later further developed for inlet boundary condi-
tions [15, 6, 8, 7].

A turbulent fluctuating velocity fluctuating field (whose average is zero) can
be expressed using a Fourier series, see [12]. Let us re-write this formula as

an cos(nx) + bn sin(nx) =

cn cos(αn) cos(nx) + cn sin(αn) sin(nx) = cn cos(nx− αn) (12.1)

where an = cn cos(α) , bn = cn sin(αn). The new coefficient, cn, and the phase
angle, αn, are related to an and bn as

cn =
(

a2n + b2n
)1/2

, αn = arctan

(

bn
an

)

(12.2)

A general form for a turbulent velocity field can thus be written as

v′(x) = 2
N
∑

n=1

ûn cos(κn · x+ ψn)σn (12.3)

where ûn, ψn and σn
i are the amplitude, phase and direction of Fourier mode

n. The synthesized turbulence at one time step is generated as follows.

12.2 Random angles

The angles ϕn and θn determine the direction of the wavenumber vector κ, see
Eq. 12.3 and Eq. 12.1; αn denotes the direction of the velocity vector, v′. For
more details, see [12].

It is implemented in function random in subroutine synt generate.

12.3. Highest wave number 25

0

ξn1

ξn1

ξn2

ξn3
ξn3

x1

x2

x3

κni

ϕn

θn

αn

σn
i

Figure 12.1: The wave-number vector, κni , and the velocity unit vector, σn
i , are

orthogonal (in physical space) for each wave number n.

12.3 Highest wave number

Define the highest wave number based on mesh resolution κmax = 2π/(2∆)
(see [12]), where ∆ is the grid spacing. Often the smallest grid spacing near
the wall is too small, and then a slightly larger values may be chosen. The
fluctuations are generated on a grid with equidistant spacing (or on a weakly
stretched mesh), ∆η = x2,max/N2, ∆x3 = x3,max/N3, where η denotes the wall-
normal direction and N2 and N3 denote the number of cells in the x2 and x3
direction, respectively. The fluctuations are set to zero at the wall and are then
interpolated to the inlet plane of the CFD grid (the x2 − x3 plane).

This is implemented in subroutine synt init.

12.4 Smallest wave number

Define the smallest wave number from κ1 = κe/p, where κe = α9π/(55Lt),
α = 1.453. The turbulent length scale, Lt, may be estimated in the same way
as in RANS simulations, i.e. Lt ∝ δ where δ denotes the inlet boundary layer
thickness. In [6, 8, 7] it was found that Lt ≃ 0.1δin is suitable.

Factor p should be larger than one to make the largest scales larger than
those corresponding to κe. A value p = 2 is suitable.

This is implemented in subroutine synt init.

12.5 Divide the wave number range

Divide the wavenumber space, κmax − κ1, into N modes, equally large, of size
∆κ.

This is implemented in subroutine synt init.

12.6. von Kármán spectrum 26

12.6 von Kármán spectrum

A modified von Kármán spectrum is chosen, see Eq. 12.4 and Fig. 12.2. The
amplitude ûn of each mode in Eq. 12.3 is then obtained from

ûn = (E(κ)∆κ)1/2 (12.4)

E(κ) = cE
u2
rms

κe

(κ/κe)
4

[1+(κ/κe)2]17/6
e[−2(κ/κη)

2]

κ = (κiκi)
1/2, κη = ε1/4ν−3/4

The coefficient cE is obtained by integrating the energy spectrum over all
wavenumbers to get the turbulent kinetic energy, i.e.

k =

∫ ∞

0

E(κ)dκ (12.5)

which gives [23]

cE =
4√
π

Γ(17/6)

Γ(1/3)
≃ 1.453 (12.6)

where

Γ(z) =

∫ ∞

0

e−z′

xz−1dz′ (12.7)

This is implemented in subroutine synt generate.

12.7 Computing the fluctuations

Having ûn, κnj , σ
n
i and ψn, allows the expression in Eq. 12.3 to be computed,

i.e.

v′1 = 2
∑N

n=1 û
n cos(βn)σ1

v′2 = 2
∑N

n=1 û
n cos(βn)σ2

v′3 = 2
∑N

n=1 û
n cos(βn)σ3

βn = kn1 x1 + kn2 x2 + kn3 x3 + ψn (12.8)

where ûn is computed from Eq. 12.4.
In this way inlet fluctuating velocity fields (v′1, v

′
2, v

′
3) are created at the inlet

x2 − x3 plane.
This is implemented in subroutine synt generate.

12.8 Introducing time correlation

A fluctuating velocity field is generated each time step as described above. They
are independent of each other and their time correlation will thus be zero. This
is nonphysical. To create correlation in time, new fluctuating velocity fields, V ′

1,
V ′
2, V ′

3, are computed based on an asymmetric time filter

(V ′
1)m = a(V ′

1)m−1 + b(v′1)m

(V ′
2)m = a(V ′

2)m−1 + b(v′2)m

(V ′
3)m = a(V ′

3)m−1 + b(v′3)m (12.9)

12.8. Introducing time correlation 27

log(κ)

κe

κn

κ1

∆κn

E(κ)

E(κ) ∝ κ−5/3
E(κn)

Figure 12.2: Modified von Kármán spectrum

where m denotes the time step number and

a = exp(−∆t/Tint) (12.10)

where ∆t and Tint denote the computational time step and the integral time
scale, respectively. The second coefficient is taken as

b = (1− a2)0.5 (12.11)

which ensures that 〈V ′2
1 〉 = 〈v′21 〉 (〈·〉 denotes averaging). The time correlation

of will be equal to

exp(−t̂/Tint) (12.12)

where t̂ is the time separation and thus Eq. 12.9 is a convenient way to prescribe
the turbulent time scale of the fluctuations. For more detail, see Section 12.8.
The inlet boundary conditions are prescribed as (we assume that the inlet is lo-
cated at x1 = 0 and that the mean velocity is constant in the spanwise direction,
x3)

v̄1(0, x2, x3, t) = V1,in(x2) + u′1,in(x2, x3, t)

v̄2(0, x2, x3, t) = V2,in(x2) + v′2,in(x2, x3, t)

v̄3(0, x2, x3, t) = V3,in(x2) + v′3,in(x2, x3, t) (12.13)

where v′1,in = (V ′
1)m, v′2,in = (V ′

2)m and v′3,in = (V ′
3)m (see Eq. 12.9). The

mean inlet profiles, V1,in, V2,in, V3,in, are either taken from experimental data,
a RANS solution or from the law of the wall; for example, if V2,in = V3,in = 0
we can estimate V1,in as [37]

V +
1,in =







x+2 x+2 ≤ 5
−3.05 + 5 ln(x+2) 5 < x+2 < 30
1
κ ln(x+2) +B x+2 ≥ 30

(12.14)

13. Procedure to generate anisotropic synthetic fluctuations 28

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

τ

B(τ)

Figure 12.3: Auto correlation, B(τ) = 〈v′1(t)v′1(t − τ)t (averaged over time, t).
: Eq. 12.12; : computed from synthetic data, (V ′

1)
m, see Eq. 12.9.

where κ = 0.4 and B = 5.2.
The method to prescribed fluctuating inlet boundary conditions have been

used for channel flow [7], for diffusor flow [10] as well as for the flow over a bump
and an axisymmetric hill [11].

This is implemented in subroutine synt generate.

13 Procedure to generate anisotropic synthetic

fluctuations

The methodology is as follows:

1. A pre-cursor RANS simulation is made using a RANS model. For fully-
developed channel flow, this may be done with the Python or Matlab
script rans which can be found at [13].

2. After having carried out the pre-cursor RANS simulation, the Reynolds
stress tensor is computed using the EARSM model [36]. This is done with
the Python/Matlab script synt main earsm at [13].

3. The Reynolds stress tensor is used as input for generating the anisotropic
synthetic fluctuations. The integral length scale, Lint, need to be pre-
scribed; it can be set to 0.1δ < Lint < 0.3δ, where δ denotes half-channel
width.

4. Since the method of synthetic turbulence fluctuations assumes homoge-
neous turbulence, we can only use the Reynolds stress tensor in one point.
We need to choose a relevant location for the Reynolds stress tensor. In
a turbulent boundary layer, the Reynolds shear stress is by far the most
important stress component. Hence, the Reynolds stress tensor is taken at
the location where the magnitude of the turbulent shear stress is largest.

14. Post-processing 29

5. Finally, the synthetic fluctuations are scaled with
(

|u′v′|/|u′v′|max

)1/2

RANS
,

which is taken from the 1D RANS simulation.
This is done in subroutine mod entry modu in the hump flow.

The only constant used when generating these synthetic simulations is the
prescribed integral length scale.

Eigenvalues and eigenvectors are computed in the Python/Matlab script
synt main earsm which can be found in [13]. In that script, the eigenvalues
are denoted by a11, a22, a33 and the eigenvectors by r11, r12, . . . r33; they are
stored in the files a synt inlet.dat and R synt inlet.dat, respectively, read
by the subroutine synt init.

14 Post-processing

The processing during the Workshop is made by Python and Matlab/Octave
scripts. CALC-LES generates output files on TEcplot fprmat which can be read
by – among others Tecplot (of course) and the open-source package Paraview
Paraview. To generate a TEcplot file set tecplot=.true..

15 Flow Chart

Go in to the directory calc-les-flowchart/html and open the file index.html
with your Internet browser (in Firefox you should type file:// in the address
field). Or you can simply type firefox index.html at the prompter.

To see the flowchart, click on main.f.

16 Subroutines

calced, calced pans, calcpe, calcph, calcte, calcte pans, calcte kom, calcu, calcv, calcw, calcom:
compute source terms etc for ε, ε (PANS), p, Φ, k, k (PANS),k (k − ω),
v̄, v̄, w̄ and ω)

calcte keqabl one-equation turbulence model (only used for ABL (atmospheric
boundary layer))

coeff: compute discretized coefficients for different discretization schemes

conv: compute mass flux through control volume face

ctdma: cyclic TDMA

dphidx, dphidxo, dphidy, dphidyo, dphidz, dphidzo:
∂Φ

∂x
,
∂Φo

∂x
(old time

step),
∂Φ

∂y
, . . . ,

∂Φo

∂z
(old time step)

echo1: echoes input data

forest: computes the drag force in the forest (only used for ABL)

http://www.paraview.org

17. Fully-developed channel flow 30

forest init: calculates the LAD (Leaf-Area Density) of a given forest (only
used for ABL)

forest heat: calculates the forest heat flux as a distributed source term (only
used for ABL)

init: computes geometrical quantities, initialization, . . .

init turb: sets an initial flow field by superimposing syntgetic flucutatins on
a RANS flow field

inter pol: interpolates the RANS inlet profiles to a new grid

key, key2: pointers used in MG solver for p̄

main: main

mg 2d: 2D MG solver for p̄

muscle: MUSCL discretization scheme

peter 2d relax, peter cyclic, peter init, peter multi, peter relax: subroutines
used in MG solver for p̄

restr1: if restrt.eq.true, reads binary file savres

save1: save.eq.true, (over)writes binary file savres

solvt: TDMA solver

statisz: time averaging for post-processing

synt generate, synt init: files for generating synthetic inlet fluctuations

update: update phi=phio

van leer: van Leer scheme

vist, vist les, vist pans, vist wale, vis kom: computes turbulent viscos-
ity for the k − ε, Smagorinsky, PANS, WALE and k − ω model

vist smagabl, vist keqabl computes turbulent viscosity the Smagorinsky and
the one-equation turbulence model (only used for ABL (atmospheric bound-
ary layer))

17 Fully-developed channel flow

DNS of Fully-developed channel flow at Reτ = 500. The case is defined in
subroutines setup and mod.

17.1 Setup

17.1.1 Section 1

nphmax=6 Number of variables in phi. If you want to solve for more variables,
increase this.

17.1. Setup 31

17.1.2 Section 2

Default values.

17.1.3 Section 3

urfvis=0.5 Under-relaxation for turbulent viscosity (see vist wale).

17.1.4 Section 4

maxit=10 Maximum number of outer iterations.

17.1.5 Section 5

sormax =1.e-3 Convergence limit at each time step.

17.1.6 Section 6

densit =1. density

prt lam(t)=0.72 viscous Prandtl number

re =500. Reynolds number

viscos =1./re viscosity

17.1.7 Section 7

nsweep(u)=1 Number of sweeps in the TDMA solver for v̄ (see solvt).

nsweep(v)=1 Number of sweeps in the TDMA solver for v̄

nsweep(w)=1 Number of sweeps in the TDMA solver for w̄

nsweep(p)=5 Number of sweeps in the MB solver for p̄

isol(2)=1 This tells the multigrid solver (peter multi) to solve the p̄ equa-
tions at all MG levels by using a TDMA along x grid lines. If these
variable are not set, peter init tries to figure out the best option. If the
grid is highly anisotropic in a plane, a 2D multigrid is used in this plane.
The convergence history of the MG solver is monitored; an example of the
print-out in the output file is

MG solver: iteration: 1 residual: 2.082E-01

MG solver: iteration: 2 residual: 3.590E-02

MG solver: iteration: 3 residual: 1.204E-02

MG solver: iteration: 4 residual: 5.089E-03

MG solver: iteration: 5 residual: 2.397E-03

To extract this convergence history, type grep MG out.

isol(3)=1 Same as above, but TDMA along y grid lines

17.1. Setup 32

17.1.8 Section 8

restrt=.true. Read initial flow fields from binary file savres

les=.false. Not Smagorinsky turbulence model

wale=.false. Not WALE turbulence model

pans=.false. Not PANS turbulence model

save=.true. (over)writes flow fields in binary file savres

cycli=.true. Use cyclic boundary condition in x direction

cyclk=.true. Use cyclic boundary condition in z direction

steady=.false. Not steady

echo=.true. Echoes input data

17.1.9 Section 9

scheme=’c’ Use central scheme

acrank conv=0.51 Use Crank-Nicolson for convection-diffusion (see solvt)

acrank=0.6 Use slightly more implicit than Crank-Nicolson for the pressure
gradient (see, for instance, calcu)

schtur=’h’ Use hybrid central/upwinding for turbulent quantities (not rele-
vant since we are doing DNS)

17.1.10 Section 10

betap=1. Driving pressure gradient (see mod)

17.1.11 Section 11

solve(u)=.true. Solve for v̄

solve(v)=.true. Solve for v̄

solve(w)=.true. Solve for w̄

solve(te)=.false. Don’t solve for k

solve(ed)=.false. Don’t solve for ε

solve(p)=.true. Solve for p̄

17.2. mod 33

17.1.12 Section 12

ni=98 Number of cells in x direction (including boundary nodes)

nj=98 Number of cells in y direction (including boundary nodes)

nk=98 Number of cells in z direction (including boundary nodes)

Note that the MG solver for pressure wants as many grid levels as possible.
This means that we want to be able to divide the number of cells in each di-
rection with 2m−1 where m is as large as possible. In this case m = 6 (i.e. 6
MG levels) so that the number of cells on the coarsest grid level is 3 (96/25).
The number of MG levels are computed in peter init and written to standard
output

NUMBER OF LEVELS= 6

xmax=2.*3.14 The domain in x direction is 2 · 3.14 (equidistant)

zmax=1.*3.14 The domain in z direction is 3.14 (equidistant)

yfac=1.065 Stretching away from the walls. Constant cells are used near walls
and in the center

uin=20 Approximate bulk velocity

ntstep=20000 number of time steps

iprint start=10000 start time averaging from this time step

dt(i)=0.5*xc(2,2,2)/uin time step (should give a CFL number of approxi-
mately 0.4)

17.1.13 Section 13

reref(p)=ymax*zmax*uin Scale residuals of pressure (continuity equation)

reref(u)=ymax*zmax*uin**2 Scale residuals of v̄ (Navier-Stokes)

reref(v)=ymax*zmax*uin**2 Scale residuals of v̄ (Navier-Stokes)

reref(w)=ymax*zmax*uin**2 Scale residuals of w̄ (Navier-Stokes)

17.1.14 Section 14

imon, jmon, kmon Print time history of field variables for this cell

17.1.15 Section 15-17

Not relevant since we are doing DNS

17.2 mod

17.2.1 entry modini

It is called from main.
Compute delta.

17.3. Run the code 34

17.2.2 entry modpro

It is called from vist les, vist wale and vist pans.
Set cyclic boundary conditions on vis.

17.2.3 entry modcon

It is called from conv.
Set cyclic or zero boundary conditions on conve,convn and convh. Compute

CFL.

17.2.4 entry modu

It is called from calcu.
Set the driving pressure gradient. It is either set to 1 which gives τw = 1

(i.e. Reτ is prescribed). Or it is set by setting the bulk velocity, Ub (i.e. Reb is
prescribed).

17.2.5 entry modv

It is called from calcv.

17.2.6 entry modw

It is called from calcw.

17.2.7 entry modpp

It is called from calcpe.
Set cyclic or zero boundary conditions on p.

17.2.8 entry modte

It is called from calcte.

17.2.9 entry moded

It is called from calced.

17.2.10 entry modphi

It is called from calcph.

17.3 Run the code

Go into the main directory calc-les-202? and continue down into the direc-
tory channel-500-DNS. The first time, remove all object files because the code
has been compiled on my Linux machine with a different compiler. Do this by

rm -f *.o

rm -f ../*.o

rm -f ../*/*.o

18. Fully-developed channel flow without re-start 35

When you run the code, the post-processing file, vectz.dat, will be over-
written. Also the re-start file savres, will be over-written. Hence copy these
two files to other names, e.g.

cp vectz.dat vectz org.dat

cp savres savres org.dat

Compile the code by typing
make

The default compiler is gfortran. The gfortan compiler is used In the file
makefile. If you want to change compiler, remember to first remove all object
files (*.o).
Let’s run 100 time steps. Change ntstep and iprint start in setup to

ntstep=100

iprint start=1

The code will run 100 time steps and start time-averaging from the first time
step. Run the code by typing

nice -n 19 ./calc-les > out&

The nice -19 sets the priority of the execution as low as possible. That
means that your interactive use of the lap-top is not affected by the fact that
CALC-LES is running (usually you can run two runs at the same time; if you
run more than two jobs they usually slow down each other).

Look at the file out. For example, you will find the line
NUMBER OF LEVELS= 6.
This show that the MG solver in peter init has created six MG levels.

18 Fully-developed channel flow without re-start

In Section 17 we re-start the simulations from a previous simulation (i.e. restrt=.true.).
Here we will start from scratch, i.e. we create a realistic initial flow field.

18.1 Setup

18.1.1 Section 8

restrt=.false. No re-start

nfiles restart=4: save four fields (v̄, v̄, w̄, p̄) in save1

18.2 mod

18.2.1 entry modini

A RANS velocity and shear stress are read. These can be created with the
RANS solver rans.py (Python) or rans.m (Matlab) [13]. The RANS field is
interpolated to a new grid using the subroutine inter pol from e.g. uinit to
uinit)new. In this case the grid is not modified, and hence the interpolation
does not modify the initial profiles. Synthetic turbulence is superimposed to the
RANS field. This is done plane-by-plane (y− z planes) in exactly the same way
as inlet synthetic fluctuations (see Section 12.1). In Section 12.1 many inlet
planes are created and correlation in time is achieved by Eq. 12.9. Here we
create many y − z planes and correlation is introduced using the same formula

19. Fully-developed channel flow at Reτ = 5 200 using PANS 36

but the timestep is taken as ∆t = ∆x/Ubulk; ∆t is the time it takes to convect
the turbulence from x to x+∆x.

19 Fully-developed channel flow at Reτ = 5 200

using PANS

Here we repeat the simulations carried out in [17]. The PANS model is used.
The mesh is 34×98×34 nodes and the Reynolds number isReτ = uτh/ν = 5 200.
setup and mod are modified using the corresponding files in Section 18. Go to
the directory channel-5200-pans-32-96-20000-40000/.

19.1 setup.f

19.1.1 Section 8

pans=.true. use the PANS model

19.2 mod.f

19.2.1 entry modini

Fields from a 1D RANS solution is read from file y u uv k eps pans-akn-re-5200.dat.
Synthetic fluctuations are superinmposed as in Section 18. Initial LES values
are also given to k and ε as

phi(i,j,k,te)=rkinit(j)*0.4 ! PANS with fk=0.4

phi(i,j,k,ed)=epsinit(j)

The value 0.4 is chosen since this is good value when PANS is used in LES
mode [14]. The LES dissipation is the same as RANS dissipation.

19.2.2 entry modu

At the end of this entry, the fk coefficient is computed using Eq. 16 in [17], i.e.

term1=1.-(psi-1.)/(c2-c1)

Below that code, fk is set to 0.4 and 1.0 in the LES and RANS region, re-
spectively, during the 100 first timesteps in order to increase numerical stability.
This is actually not needed in this case.

19.2.3 entry moded

The wall boundary conditions for ε is set by prescribing it as

εw = 2νk/d2 (19.1)

in the wall-adjacent cells. d is the distance from the cell center to the wall. The
code for the south wall reads

phi(i,2,k,ed)=2.*viscos*phi(i,2,k,te)/dist Set the value

20. Hill flow 37

j=2 south wall

su(i,j,k)=great*phi(i,j,k,ed) Use large su

sp(i,j,k)=-great and sp to force ε according to Eq. 19.1

20 Hill flow

LES of periodic hill flow using the PANS model. at Reb = 10 595. The case
is defined in subroutines setup and mod. Here we will comment the sections
that differ from those for the channel flow (see Section 17). We re-start the
simulations from a previous simulations (i.e. restrt=.true.).

Go to the directory hill-pans.

20.1 Setup

20.1.1 Section 8

pans=.true. Use PANS turbulence model

20.1.2 Section 8

pans=.true. Use PANS turbulence model

20.1.3 Section 9

acrank=0.8 Use more implicit than Crank-Nicolson for the pressure gradient
(see, for instance, calcu)

20.1.4 Section 10

betap=1. Not used. It is recomputed in mod, entry modu

20.1.5 Section 11

solve(te)=.true. Solve for k

solve(ed)=.true. Solve for ε

20.1.6 Section 12

open(unit=11,file=’hill 161 81.dat’,status=’unknown’) Read grid

20.1.7 Section 16

c1=1.5 Cε1 in ε equation

c2=1.9 Cε2 in ε equation

20.1.8 Section 16

prt(te)=-1.4 in k equation; it is re-computed in coeff

prt(ed)=-1.4 in ε equation; it is re-computed in coeff

20.2. mod 38

20.2 mod

20.2.1 entry modini

Compute dist2d which is the distance to the nearest wall. It is used in
vist pans and calced pans.

20.2.2 entry modu

Compute the driving pressure gradient from a balance of all forces on the sur-
faces, i.e. wall shear stresses and pressure force. For more details, see Section
3.5 in Irannezhad [24].

20.2.3 entry moded

Sets wall boundary conditions

εw = 2νk/d2

where d is the distance from the cell center to the wall.

21 Hump flow with re-start

LES of hump flow using the PANS model. at Reb = 9.36 · 105. This work is
presented in [17].

The case is defined in subroutines setup and mod. Here we will comment
the sections that differ from those for the hill flow. We re-start the simulations
from a previous simulations (i.e. restrt=.true.).

Go to the directory hump-computed-fk.

21.1 Setup

21.1.1 Section 8

cycli=.false. No cyclic boundary condition in x direction

21.1.2 Section 16

jl0=21 Defines the RAMS region at the inlet for the commutation term at the
inlet (see entry modte below)

21.2 mod

21.2.1 entry modini

fk(i,j,k)=0.4 Sets, initially, fk = 1 near the wall and to 0.4 away from the
wall.

read(84,*)y2,umean in(j),vmean in(j),rkmean in(j),epsmean in(j)

dummy uv,dummy p,uv rans(j) Reads inlet b.c.

phi(1,j,k,u)=umean in(j) Sets initial conditions from inlet b.c.

21.2. mod 39

nstep=500

do n=1,nstep create 500 planes of synthetic fluctuations in order to compute
the synthetic maximum shear stress uv synt (it should be homogeneous)

ss u=(tauw/uv synt)**0.5 scaling factor to get correct (i.e. same as RANS)
peak of shear stress for the synthetic inlet fluctuations

21.2.2 entry modcon

Sets outlet b.c. according to Fig. 6.2.

21.2.3 entry modu

Below, we compute time-averaged normal Reynolds stresses near the inlet (to
be used when prescribing additional commutation source term in k equation for
inlet boundary conditions, see modte)

fnk=float(nk-2)

do k=2,nkm1

do j=1,njm1

do i=1,5

umeanv(i,j)=umeanv(i,j)+phi(i,j,k,u)/fnk

vmeanv(i,j)=vmeanv(i,j)+phi(i,j,k,v)/fnk

umean2v(i,j)=umean2v(i,j)+phi(i,j,k,u)**2/fnk

vmean2v(i,j)=vmean2v(i,j)+phi(i,j,k,v)**2/fnk

wmean2v(i,j)=wmean2v(i,j)+phi(i,j,k,w)**2/fnk

end do

end do

end do

Recall to initialize these variables to zero in entry modini,

an(i,njm1,k)=0. Neumann b.c. on north boundary.

term1=1.-(psi-1.)/(c2-c1) Compute fk using Eq. 16 in [17]

rl in=0.2*0.015 Prescribe length scale of synthetic inlet fluctuations 0.015 is
the boundary layer width

call synt init Compute initial arrays etc for the synthetic fluctuations

a=exp(-dt(itstep)/tturb) a and b from Eqs. 12.10 and 12.11.

call synt generate Create synthetic fluctuations

ss1=(abs(uv rans(j))/uvmax)**0.5 make a non-dimensional v′1v
′
2 profile

ss2=(uvmax/uvmax synt) correct the amplitude

ss=ss1*ss2 scaling factor

uprim=ss*utemp(j,k) scale the inlet fluctuations

ufluct inlet(j,k)=a*ufluct inlet(j,k)+b*uprim see Eq. 12.9.

phi(1,j,k,u)=phi(1,j,k,u)-uinc This make sure that the integral of ufluct inlet(j,k)

over the inlet is zero. This may help convergence.

22. Hump flow without re-start 40

21.2.4 entry modte

rk source=(0.5*(vprim2+uprim2+wprim2)+phi(i,j,k,te))*dfk dt This is the
source term due to the commutation error, see 2.2.1. Interface Model 1
and Eq. 19 in [14]. The inlet boundary condition is set to RANS values,
i.e. rkmean in] see modini.

gente(i,njm1,k)=0. This is done to fix convergence problems which sometime
appear due to the irregular grid near the upper boundary (recall that it is
a symmetry boundary and no turbulence production should occur there)

21.2.5 entry moded

epsmean in The inlet boundary condition is set to RANS values, i.e. epsmean in,
see modini.

22 Hump flow without re-start

When the simulations are not re-started from an earlier simulations, different
tricks must often be used to make the simulations stable. There are two standard
options during the first couple of 100 timesteps:

• use a smaller timestep

• use a dissipative first-order upwind scheme (the hybrid scheme).

Here, it is sufficient to use the first option to make the simulations stable.

22.1 setup

22.1.1 Section 8

restrt=.false. No re-start

nfiles restart=4: save four fields (v̄, v̄, w̄, p̄) in save1

22.1.2 Section 12

if (.not.restrt.and.i.le.200) dt(i)=0.0002. To increase numerical sta-
bility, use smaller timestep the first 200 timesteps

22.2 mod

22.2.1 entry modini

Synthetic initial fluctuations are created in the same way as in Section 18.2.1.
The difference is here that the flow is not homogeneous in x direction. Further-
more, a 2D RANS field must be created, see Section 23.

open(unit=17,file=’savres rans’,form=’unformatted’,status=’old’) The
2D RANS field is read and used as initial mean field.

call init turb create synthetic initial fluctuations

23. Hump flow, 2D RANS 41

22.2.2 entry modu

scheme=scheme org To increase numerical stability, use the first-order hybrid
central/upwind discretization scheme the first iadd source timesteps.

23 Hump flow, 2D RANS

CALC-LES cannot run 2D flow because the multi-grid solver for pressure is a
3D solver.

23.1 setup

23.1.1 Section 9

scheme=’h’ Choose hybrid central/upwind scheme to make the simulations
more stable.

23.1.2 Section 12

nkm1=9 We get eight cells in z direction. That should give three MG-levels

When you look in out you will find the line
NUMBER OF LEVELS= 3.

This shows that the MG solver in peter init has created three MG levels.

23.1.3 Section 14

imon =ni-5

jmon =3 It is difficult to know when the 2D RANS flow field has reached a
steady state. Here we look at the monitor point at the far end of the
domain close to the wall. Note that it is not critical that the flow reaches a
fully steady state; the object is only to use these results as initial conditions
for the PANS simulations later on.

23.1.4 Section 18

fk(i,j,k)=1.0 This turns the PANS model into the RANS AKN model [1].

When the simulations have been finished, copy the savres file to the PANS
simulations, i.e.

cp savres ../hump-computed-fk-no-restart/savres rans

24 Atmospheric boundary layer in a forest

The application of this case is windpower in forests. The work is presented in
[27, 28, 29].

24.1. setup 42

24.1 setup

24.1.1 Section 2a

Details on the forest and the ABL (Atmospheric Boundary Layer) are set here.

24.1.2 Section 8

keq abl=.true. The one-equation turbulence model is used

24.1.3 Section 11

if (stability) solve(t)=.true. The temperature equation is solved

24.1.4 Section 12

xmax=1000. x domain extent is 1000m (streamwise)

ymax=1000. y domain extent is 1000m (vertical)

zmax=1000. z domain extent is 1000m (lateral)

dly=2.0 the cells in the forest is set to 2m

if (y(j).gt.210.) yfac=1.105 stretch the cells by 1.105% above 210m

dly=min(dly,10.) don’t let the cells be larger than 10m

24.1.5 Section 13

dt(i)=0.2 Timestep is 0.2s

24.2 mod

24.2.1 entry modini

call forest init compute LAD

deltaIDDES=min(max(h1,h2,h3),del max) compute ∆

if (.not.restrt) then if no re-start, initialize the flow

24.2.2 entry modpro

vist=(0.41/term1)**2*yp1*upar the wall-function boundary condition is im-
plemented by setting the wall turbulent viscosity, see Section 3.4.1 in [16].

24.2.3 entry modu

deltapx = alpha geo*(udes-uhub)*apmean/volmean the pressure gradient is
adjusted so that the v̄ should be udes.

su(i,j,k)=su(i,j,k)-fcori*phi(i,j,k,w)*vol(i,j,k) add the Coriolis force

sp(i,j,k)=sp(i,j,k)+forceu(i,j,k)*vol(i,j,k) add the drag force due to
the forest

25. Workshop 43

24.2.4 entry modv

sp(i,j,k)=sp(i,j,k)+forcev(i,j,k)*vol(i,j,k) add the drag force due to
the forest

su(i,j,k)=su(i,j,k)+grav*volextcoef*(phi(i,j,k,t)-tplane)*vol(i,j,k)

add the buoyancy force

24.2.5 entry modw

deltapz = alpha geo*(wdes-whub)*apmean/volmean the pressure gradient is
adjusted so that the w̄ should be wdes.

sp(i,j,k)=sp(i,j,k)+forcew(i,j,k)*vol(i,j,k) add the drag force due to
the forest

su(i,j,k)=su(i,j,k)+fcori*phi(i,j,k,u)*vol(i,j,k) add the Coriolis force

24.2.6 entry modphi(nphi)

su(i,j,k) = su(i,j,k) + dqdy(j)*vol(i,j,k) add the heat sink due to the
forest

25 Workshop

25.1 Fully-developed channel flow using PANS

In the workshop we will try to reduce the CPU time as much as we can. We
start from case in Section 19. Hence, we make some simplifications.

• Reduce the number of nodes in the y direction from 98 to 60.

• Reduce the minimum iterations at each timestep from two to one.

• Reduce the number of timesteps

Go to the main directory calc-les-202? and create a new directory for
this case, enter the directory and copy files, i.e.

mkdir channel-pans-workshop

cd channel-pans-workshop

cp ../channel-5200-pans-32-96-10000-20000/* .

25.1.1 setup

Section 4

minit=1 In main, the minimum number of iterations is by default set to two.
In many applications, however, it works fine to set it to one. Note that
the flow equations still much satisfy the convergence criteria (defined by
sormax).

25.2. Fully-developed half-width channel flow using PANS 44

Section 12 Use only 60 grid nodes in the y direction and increase the stretch-
ing to 1.24. The grid is created as

nj=60

yfac=1.24

dy=0.1

y(1)=0.

do j=2,nj/2

y(j)=y(j-1)+dy

if (j.ge.26) yfac=1.

dy=yfac*dy

end do

ymax=y(nj/2)

do j=2,nj/2

y(j)=y(j)/ymax

y(nj+1-j)=2.-y(j-1)

end do

Note that the stretching is omitted after grid node 26 to reduce ∆y near the
center.

Figure 5.1 shows where the time-averaging begins (t1) and ends (t2). In
order to reduce the CPU time, we reduce these numbers as

iprint start=3000 set t1

ntstep=6000 set t2

Now you will compile and run the code.

make Compile the code

nice -n 19 ./calc-les > out& If no error messages appear, run the code

tail -1000 out view the last, say, 1 000 lines of the output

grep ’max res’ out monitor the convergence

grep MG out monitor the convergence of the multigrid solver (i.e. the pressure
solver)

grep CFL out monitor the maximum CFD number in the x, y, z directions

grep CPU out monitor the CPU time time per iteration

25.2 Fully-developed half-width channel flow using PANS

Here we will make simulations in only the lower half of the channel. At he north
boundary, we change the boundary condition from wall to symmetry. We start
from case in Section 25.1. We will compute the flow only in the lower half of
the channel. This reduces the number of nodes from 60 to 34. Note that if we
use 30 nodes, we get very poor results, presumably because of the symmetry
boundary condition at the north boundary reduces the resolved the turbulence.

Go to the main directory calc-les-202? and create a new directory for
this case, enter the directory and copy files, i.e.

25.2. Fully-developed half-width channel flow using PANS 45

mkdir half-channel-pans-workshop

cd half-channel-pans-workshop

cp ../channel-pans-workshop/* .

25.2.1 setup.f

Section 12 Use only 34 grid nodes in the y direction in lower half of the
channel. The grid is created as

nj=34

yfac=1.24

dy=0.1

y(1)=0.

do j=2,njm1

y(j)=y(j-1)+dy

if (j.ge.26) yfac=1.

dy=yfac*dy

end do

ymax=y(njm1)

do j=2,njm1

y(j)=y(j)/ymax

end do

25.2.2 mod.f

entry modini Note that, although the domain now consists only of the lower
part of the channel, the interpolation to a new grid (using the subroutine
inter pol) is still valid.

In this Section the initial condition for v̄2 is set so as to make is anti-
symmetric (i.e. v̄2 = −v̄2 in the upper half of the channel.

if (j.ge.nj/2) vprim=-vprim switch sign in the middle of the channel to
make the shear stress symmetric

Since we here compute the flow only in the lower half of the channel, we
delete this line. N.B.: this line appears twice, for i = 2 and for all i (delete
both).

entry modpro Set symmetry boundary condition of for vis at the north
boundary

c symmetry

do k=1,nk

do i=1,ni

vis(i,nj,k)=vis(i,njm1,k)

end do

end do

25.2. Fully-developed half-width channel flow using PANS 46

entry modu Set symmetry boundary condition of for v̄ at the north boundary

c symmetry

do k=1,nk

do i=1,ni

phi(i,nj,k,u)=phi(i,njm1,k,u)

an(i,njm1,k)=0.

end do

end do

entry modv No change is made here because for v̄ the boundary condition
is v̄ = 0 (both for a wall and for a symmetry boundary).

entry modw Set symmetry boundary condition of for w̄ at the north bound-
ary

c symmetry

do k=1,nk

do i=1,ni

phi(i,nj,k,w)=phi(i,njm1,k,w)

an(i,njm1,k)=0.

end do

end do

entry modte Set symmetry boundary condition of for k at the north bound-
ary

c symmetry

do k=1,nk

do i=1,ni

phi(i,nj,k,te)=phi(i,njm1,k,te)

an(i,njm1,k)=0.

end do

end do

entry moded Delete the wall-boundary condition and set symmetry bound-
ary condition of for ε at the north boundary

c symmetry

do k=1,nk

do i=1,ni

phi(i,nj,k,ed)=phi(i,njm1,k,ed)

an(i,njm1,k)=0.

end do

end do

Compile and run the code and plot the results.

25.3. Half-width channel flow, with inlet-outlet, using PANS 47

25.3 Half-width channel flow, with inlet-outlet, using PANS

Here we will compute the flow in a half-width channel with inlet and outlet. We
start by copying setup.f and mod.f (and all other files) from Section 25.2. Go
to the main directory calc-les-202? and create a new directory for this case,
enter the directory and copy files, i.e.

mkdir half-channel-pans-inlet-outlet-workshop

cd half-channel-pans-inlet-outlet-workshop

cp ../half-channel-pans-workshop/* .

25.3.1 setup.f

Section 8

cycli=.false. The flow is not periodic in the streamwise direction

25.3.2 mod.f

In Section 21 the hump flow with inlet and outlet is setup. We can copy much
of the coding in mod.f from that case.

entry modini The 1D variables below will be used for inlet boundary condi-
tions.

uinit(j)=uinit_new(j)

uvinit(j)=uvinit_new(j)

rkinit(j)=rkinit_new(j)

epsinit(j)=epsinit_new(j)

These variables are defined as local variables. This means that when the
execution enters mod.f next time (e.g into entry modu), these arrays will re-
set to zero (or some arbitrary value). We fix this by defining the arrays in a
COMMON block at the top of mod.f , e.g.

common/init_com/uinit(jt)

(the name init com can be any name, provided it is not use elsewhere).
Now uinit can be used anywhere in mod.f, but not in any other subroutine (if
you would like to use uinit in other subroutines, you should add it in the file
COMMON).

Add also the variable rl in (the prescribed turbulent lengthscale for initial
and inlet synthetic fluctuations) and uv synt 1d to the COMMON block.

A commutation term is added in entry modte in order to reduce the RANS
k values prescribed at the inlet. The commutation term is based on ∂fx/∂x at
the inlet. Hence, fk must be set at the inlet.

c set fk at inlet; this creates dfk/dx at inlet

do k=2,nkm1

do j=2,njm1

fk(1,j,k)=1.0

end do

25.3. Half-width channel flow, with inlet-outlet, using PANS 48

end do

jl1=nj-jl0+1

do k=2,nkm1

do j=2,jl0

do i=2,nim1

fk(i,j,k)=1.0

end do

end do

end do

do k=2,nkm1

do j=jl1,njm1

do i=2,nim1

fk(i,j,k)=1.0

end do

end do

end do

entry modu Copy the code from the hump flow between

if (.not.cycli.and.iter.eq.1) then

...

end if

This coding adds inlet synthetic fluctuations superimposed on the inlet 1D
RANS field. Note that the RANS inlet profiles in the hump flow (umean in,
. . .) are different from those used in this case (uinit, . . .).

Try to compile the code by typing make. We get a number of compilation
errors because we forgot to dimension new arrays. Dimension, for example,
ufluct inlet(j,k) by adding the line at the top of mod.f

common/init_com_real/uinit(jt),ufluct_inlet(jt,kt)

When we try to compile again, we find that the arrays
umeanv, umean2v,vmean2v,wmean2v

are un-defined. This is because we need to add the commutation term near the
inlet, see 2.2.1. Interface Model 1 and Eq. 19 in [14]. Copy relevant code from
mod.f of the hump flow, i.e.

1. additional source term at i = 2 in entry modte

2. compute umeanv, umean2v . . . in entry modu

3. define umeanv, umean2v . . . in COMMON blocks at the top of mod.f

4. initialize umeanv, umean2v . . . (i.e. set to zero) in entry modu

Now we have added rather much new code. It is easy to make mistakes
and it is often a good idea yo re-compile the entire code letting the compiler
do some additional checks. Add the compilation option -fbounds-check in the
makefile, i.e.

25.4. Half-width channel flow: a hybrid one-equation turbulence model 49

gfortran -O -fbounds-check -Wuninitialized -fdefault-real-8

-Ofast -mcmodel=medium -o $*.o -c $*.f

Furthermore, look carefully for warnings. The option -Wuninitialized is
particularly useful since it warns for uninitialized variables.

When all compilations are fixed, run the code
nice -n 19 ./calc-les > out&

Look at the CPU time by typing grep CPU out. You’ll find that the code
is running much slower than the channel flow simulations in Section 25.2. The
reason is that it takes much time to generate the synthetic inlet fluctuations
(partly because we have few cells in the x direction and because we run only
one iterations, i.e. minit=1).

It turns out that the gfortran compiler is much slower than ifort for
trigonometric functions. Hence, two new functions – rcos and rsin– are written
where cos and sin are approximated by the first terms in Taylor expansion (they
are included at the end of synt generate).

Now plot the result using the Python file pl uuvvww 2d channel.py or the
MAtlab/Octave file pl uuvvww 2d channel.m (they are located in calc-les-202?).

Now you may change some parameters in the synthetic inlet fluctuations in
order to investigate the sensitivity. What happens if you

• change the number of Fourier modes. This is set with the variable nmodes
in subroutine synt init.

• change the integral length scale for defining the location of the peak of the
energy spectrum. This is set with the variable rl in in subroutine mod in
entry modini.

• change the integral time scale. This is set with the variable tturb in
subroutine mod in entry modu.

• change the anisotropy. The eigenvalues and eigenvectors set in subroutine
synt init were obtained from the EARSM model using the Python or
Matlab/Octave script synt main earsm which can be downloaded at [13].
Instead of taking the Reynolds stress tensor from EARSM, you can take it
from DNS as in Section III in [19]. Use then the DNS data file LM Channel 5200 mean prof.dat

(choose, for example, the Reynolds stress tensor where |v′1v′2| is largest).

25.4 Half-width channel flow: a hybrid one-equation tur-
bulence model

Here we will implement a hybrid one-equation turbulence model. The turbu-
lence model is described in Chapter The one-equation hybrid LES-RANS model
in [12].

Start by creating a new directory and copy all files used in Section 25.2.

25.4.1 setup.f

Section 8 We will not use the PANS model. Hence we set

pans=.false.

25.4. Half-width channel flow: a hybrid one-equation turbulence model 50

At the same time, we should define a new logical variable for the new one-
equation model. Let’s call it keq. We active the new turbulence model with

keq=.true.

We want the new logical variable to be global. Hence we must add it in
COMMON at two places

1/alll/save,restrt,cycli,cyclk,steady,echo,les,wale,pans,kom, 2

les abl,stability,keq abl,keq

logical pans,wale,les abl,stability,keq abl,keq

Section 11 The k equation is solved in this model.

solve(te)=.true.

Section 12 The one-equation model is a hybrid model (i.e. a combination of
RANS and LES). Here we will specify at which cell number (in the wall-normal
direction, i.e. j) the model switches from RANS to LES. We do this as

jl0=20

Note that the variable jl0 is already included in the COMMON file (is it
global, accessible in all subroutines). Setting jl0=20 means that for cell 2-20,
RANS is used and for cell 21-njm1, LES is employed.

25.4.2 mod.f

entry modu Delete the code where fk is computed. This coding part starts
with

cdes=0.67

if (iter.eq.1) then

do k=2,nkm1

do j=2,njm1

do i=2,nim1

C

rk=phi(i,j,k,te)

diss1=phi(i,j,k,ed)

entry modte We will solve the k equation. The dissipation, phi(i,j,k,ed),
is added as a sink term in subroutine calcte. This means that we must compute
the dissipation and put it in phi(i,j,k,ed). We do that in modte. Table 25.1
gives the expression for the dissiption. It can be implemented as

c sink term

cl=cappa*cmu**(-.75)

amu=70.

aeps=2.*cl

do k=2,nkm1

25.4. Half-width channel flow: a hybrid one-equation turbulence model 51

URANS region LES region

ℓ κc
−3/4
µ n[1− exp(−0.2k1/2n/ν)] ℓ = ∆

νT κc
1/4
µ k1/2n[1− exp(−0.014k1/2n/ν)] 0.07k1/2ℓ

Cε 1.0 1.05

Table 25.1: Turbulent viscosity and turbulent length scales in the URANS and
LES regions. n and κ denote the distance to the nearest wall and von Kármán
constant (= 0.41), respectively. ∆ = (δV)1/3 (taken from [12])

.

do j=2,jl0

do i=2,nim1

c in calcte: a sink (dissipation) term is added as phi(i,j,k,ed)

c set ed=k**1.5/delta

xy=yp(i,j,k)

rn=max(sqrt(phi(i,j,k,te))*densit*xy/viscos,1.e-5)

c calc lmu & leps

arg=rn/aeps

arg=min(60.,arg)

rleps=cl*xy*(1.-exp(-arg))

c calc eps

phi(i,j,k,ed)=phi(i,j,k,te)**1.5/rleps

end do

end do

end do

do k=2,nkm1

do j=jl0+1,njm1

do i=2,nim1

delt1=vol(i,j,k)**0.33333

phi(i,j,k,ed)=1.05*phi(i,j,k,te)**1.5/delt1

end do

end do

end do

25.4.3 vist keq.f

The turbulent viscosity should be computed, see Table 25.1. To do this, copy –
for example – the file vist.f i.s.

cp vist.f vist_keq.f

Change the name of the subroutine to vist keq so that

subroutine vist_keq

25.5. Half-width channel flow: a DES k − ε turbulence model 52

Then do the coding for the expressions of the turbulence viscosity, see Ta-
ble 25.1.

25.4.4 main.f

Next step is to make sure that the vist keq is called in main.f. Insert the code
line after, for example, the call to vist pans, i.e.

if (pans) call vist pans

if (keq) call vist keq

25.4.5 makefile

The last step is to add the new routine to the makefile. This reads
../coeff.o ../peter relax.o ../conv.o ../filt time.o ../vist keq.o

Now you should compile the code. But since you have changed the COM-
MON file which is included in many subroutine when compiling, you must first
remove all object files. Do this with the command

rm *.o; rm *../*.o

Now compile the code by typing make and execute the code.
Plot the results. You find that the interface at j=jl0 is visible in the velocity

profile. Also you can see that the turbulent viscosity decreases rapidly outside
the interface.

Change jl0, re-compile and run the code and see what happens.

25.5 Half-width channel flow: a DES k − ε turbulence model

We will implement a k − ε model DES based on the AKN model which is the
basis of the PANS model used in Section 25.2.

When implementing a DES k − ε turbulence model, we will modify the dis-
sipation term in the k equation so that −ε is replaced with −ψε where (see Eq.
11 in [17])

ψ = max

(

1,
k3/2/ε

CDES∆max

)

, ∆max = max(∆x1,∆x2,∆x3) (25.1)

Start by creating a new directory and copy all files used in Section 25.2.

25.5.1 setup.f

We will not use the PANS model. Hence we set

Section 8

pans=.false.

At the same time, we should define a new logical variable for the new DES
k − ε model. Let’s call it des. We active the new turbulence model with

des=.true.

25.5. Half-width channel flow: a DES k − ε turbulence model 53

We want the new logical variable to be global. Hence we must add it in
COMMON at two places

1/alll/save,restrt,cycli,cyclk,steady,echo,les,wale,pans,kom, 2

les abl,stability,keq abl,keq,des

logical pans,wale,les abl,stability,keq abl,des

Section 11 The k and ε equations are solved in this model.

if (des) then

solve(te)=.true.

solve(ed)=.true.

end if

Section 16 We use the same turbulent constants as as in the PANS model.
We insert the coding

if (des) then

c1=1.5

c2=1.9

end if

Section 17 We use the same turbulent Prandtl numbers as in the PANS
model. So insert this code at the end of the section:

if (des) then

prt(te)=1.4

prt(ed)=1.4

end if

25.5.2 mod.f

entry modu Delete the code where fk is computed. This coding part starts
with

cdes=0.67

if (iter.eq.1) then

do k=2,nkm1

do j=2,njm1

do i=2,nim1

C

rk=phi(i,j,k,te)

diss1=phi(i,j,k,ed)

25.5.3 calcte des.f

Copy the file calcte.f to calcte des.f, i.e.

cp calcte.f calcte_des.f

Now we should insert ψ in Eq. 25.1. This is done with the coding

25.5. Half-width channel flow: a DES k − ε turbulence model 54

ymin=yp(i,j,k)

rl_dist=0.15*ymin

dy=yc(i,j,k)-yc(i,j-1,k)

dx=xc(i,j,k)-xc(i-1,j,k)

dz=zc(i,j,k)-zc(i,j,k-1)

delta_max=max(dx,dz,dy)

rk=phi(i,j,k,te)

diss=phi(i,j,k,ed)

rl=rk**1.5/diss

dmax=0.67*delta_max

psi=rl/dmax !DES

psi=max(1.,psi)

c store it in fk for post-processing

fk(i,j,k)=psi

c---------dissipation term

sp(i,j,k)=sp(i,j,k)-densit*psi*phi(i,j,k,ed)/phi(i,j,k,te)

& *vol(i,j,k)

25.5.4 calced des.f

Copy the file calced pans.f to calced des.f. Remove the fk function in the
destruction tern, i.e.

c--------dissipation term

sp(i,j,k)=sp(i,j,k)-fdampf2*c2*densit*phi(i,j,k,ed)

& *vol(i,j,k)/phi(i,j,k,te)

25.5.5 main.f

Next step is to make sure that the calcte des, calced des, vist keq are
called in main.f. Insert the code line after, for example, the call to calcte keqabl,
i.e.

elseif (keq abl) then

call calcte keqabl

elseif (des) then

call calcte des

and

elseif (des) then

call calced des

25.6. Half-width channel flow: a IDDES k − ε turbulence model 55

and

if (pans.or.des) call vist pans

25.5.6 makefile

The last step is to add the new routine to the makefile. This reads
../coeff.o ../peter relax.o ../conv.o ../filt time.o ../vist keq.o

../calcte des.o ../calced des.o

Now you should compile the code. But since you have changed the COM-
MON file which is included in many subroutine when compiling, you must first
remove all object files. Do this with the command

rm *.o; rm *../*.o

Now compile the code by typing make and execute the code.
Plot the results. Plot also fk (it it loaded as fk2d).

25.6 Half-width channel flow: a IDDES k − ε turbulence
model

Here we will implement a IDDES k − ε turbulence model.
Repeat the procedure in Section 25.5, but now for IDDES. The formulas to

be used are given in Section 11.

25.7 Heat transfer in half-width channel flow with inlet-
outlet

Here we will compute heat transfer and the flow in a half-width channel with
inlet and outlet. We use PANS as a turbulence model. We start by copying
setup.f and mod.f (and all other files) from Section 25.3.

25.7.1 setup.f

Section 11 We will solve for temperature. Hence set

solve(t)=.true.

You find in the beginning main that the variable t is already defined (it is
set to t=9). Hence you must increase the variable nphmax in Section 1 to 9, i.e.

nphmax=9

Check also in COMMON to verify that the dimension of phi, solve ... is suffi-
cient. You find that

parameter(it=454,jt=200,kt=102,nphit=9,nphito=9)

which is large enough (nphit=9,nphito=9).

Section 6 Set the laminar Prandtl number to 0.72, i.e.

prt_lam(t)=0.72

25.7. Heat transfer in half-width channel flow with inlet-outlet 56

Section 11

solve(t)=.true.

For the momentum equations we use central differencing (scheme=’c’) and
for the turbulent quantities we use first-order hybrid/upwind (scheme=’h’). For
scalar equations (like temperature) we usually need to use a bounded scheme.
Here we choose the MUSCL scheme

schemet=’m’

When using the MUSCL scheme, we can choose to use full MUSCL or a
linear combination of MUSCL and central differencing. This is determined by
the variable blend. If it is equal to one, it is full central differencing (deferred
correction). If it is zero, it is full MUSCL (which we choose). Hence

blend=0.

Section 17 The turbulent Prandtl number σc must be set. We choose

prt(t)=0.8

25.7.2 main.f

Look at this routine. Go to the 110 loop, i.e.

do 110 nphi=9,nphmax

You find that calcph is solved if solve(t)=.true. and that the discretize scheme
is determined by the variable schemet.

25.7.3 mod.f

entry modph We will set inlet boundary conditions T = 0 for the tempera-
ture. All variables are set to zero by default at all boundaries. Hence we don’t
need to do anything.

Let us set a constant heat transfer at the lower boundary. We do that in
modph which is called by calcph.

do i=2,nim1

do k=2,nkm1

j=2

su(i,j,k)=su(i,j,k)+1.*areany(i,j-1,k)

as(i,j,k)=0.

j=njm1

an(i,j,k)=0.

end do

end do

Note that the usual heat transfer via the diffusion is cut-off be setting aS = 0.
We also define the upper surface as an adiabatic surface.
Now run and plot. Check in file out that you see the temperature variable,

for example

25.8. Dispersion of passive pollution source 57

-------------------- Section 11 --------------------

The following variables are solved:

U

V

W

P

TE

ED

T

You can plot skinfriction and Nusselt number as well as resolve temperature
fluctuations at the wall.

You can also plot a contour of the temperature as by inserting the following
lines in pl uuvvww 2d channel.py

x2d=np.zeros((ni,nj))

y2d=np.zeros((ni,nj))

for i in range(0,ni):

for j in range(0,nj):

x2d[i,j]=x[i]

y2d[i,j]=y[j]

fig10 = plt.figure()

plt.xlabel("x")

plt.ylabel("y")

plt.contourf(x2d,y2d,t2d, 100)

plt.clim(0,1)

plt.title("temperature")

plt.colorbar()

plt.savefig(’t_contour.eps’)

25.8 Dispersion of passive pollution source

Here we will simulate dispersion of passive pollution source with heat transfer
in a half-width channel with inlet and outlet. We will use PANS as a turbulence
model. We start by copying setup.f and mod.f (and all other files) from
Section 25.7

25.8.1 main.f

You find in the beginning of main that the there is no variable for a concentra-
tion. Let’s denote the concentration conc (note that you cannot, for example,

25.8. Dispersion of passive pollution source 58

call it c1 since that is already used as a constant in the k − ε turbulence model).
We define conc as solution variable number 10, i.e.

conc=10

Check also in COMMON to verify that the dimension of phi, solve ... is
sufficient. You find that

parameter(it=454,jt=200,kt=102,nphit=9,nphito=9)

which is not large enough. Set

parameter(it=454,jt=200,kt=102,nphit=10,nphito=10)

We must also define the variable conc as an integer

integer u,v,w,p,pp,m,te,ed,t,f1,f2,f3,om,conc

and define it as a global variable

1/point/u,v,w,p,pp,m,te,ed,t,f1,f2,f3,om,conc

25.8.2 echo1.f

We need to define the name of the concentration. Look for the line if (nphmax.ge.9)

name(t)=’T’. Insert

if (nphmax.ge.9) name(t)=’T’

if (nphmax.ge.10) name(conc)=’C’

25.8.3 setup.f

We must increase nphmax to 10, i.e.

nphmax=10

Section 6 Set the laminar Prandtl number to 0.72, i.e.

prt_lam(conc)=0.72

Section 11

solve(conc)=.true.

The same discretization scheme as the temperature is used.

Section 17 The turbulent Prandtl number σt must be set. We choose

prt(conc)=0.8

25.8. Dispersion of passive pollution source 59

25.8.4 mod.f

entry modph When we solved for the temperature in the Section 25.7 is was
done by calling calcph. This will also be the case for the concentration and it
is called automatically in main.f. The boundary conditions for concentration
will be set in entry modph both for temperature and concentration. Hence, the
boundary conditions set for temperature in Section must in enclosed in an IF
statement as

if (nphi.eq.t) then

do i=2,nim1

do k=2,nkm1

j=2

su(i,j,k)=su(i,j,k)+1.*areany(i,j-1,k)

as(i,j,k)=0.

j=njm1

an(i,j,k)=0.

end do

end do

end if

We will set inlet boundary conditions C = 0 for the temperature. All vari-
ables are set to zero by default at all boundaries. Hence we don’t need to do
anything.

Solving for C
Now we will introduce a pollution source at x ≃ 1 and for y < 0.1. Look

at x and y coordinates in the file out in the directory used in Section 25.7. We
find that we should set the source for cells i = 12 and j = 2 − 19. We set the
source over the entire z direction. We choose the strength of the source as 0.001
per unit volume. Hence

if (nphi.eq.conc) then

i=10

do k=2,nkm1

do j=2,21

su(i,j,k)=su(i,j,k)+vol(i,j,k)*0.001

end do

end do

endif

We also define the lower and upper surface as zero-flux boundaries

do i=2,nim1

do k=2,nkm1

j=2

as(i,j,k)=0.

j=njm1

an(i,j,k)=0.

end do

end do

25.9. Heat transfer with buoyancy 60

We need to time and spanwise average the concentration. Open the statisz.f
file in the main directory. We could define a new variable cvec. But it is easier
to instead put the concentration in the wvec variable (which anyway is zero).

Hence re-write the line as

vvec(i,j) =vvec(i,j) +phi(i,j,k,v)/fnk

wvec(i,j) =wvec(i,j) +phi(i,j,k,conc)/fnk

Compile and run. Since you have made many changes in COMMON. it may be
a good idea to compile with the option -fbounds-check and run a couple of
time steps. When it works, recompile without this option (is slows down the
code).

Check in file out that you see the concentration variable, for example

@@

time step: 1 dt: 1.227E-03 time: 1.227E-03

variable: U residual: 7.125E-05

variable: V residual: 2.526E-05

variable: W residual: 3.414E-05

variable: P residual: 1.375E-03

variable: TE residual: 7.353E-04

variable: ED residual: 2.758E+08

variable: T residual: 8.582E-04

variable: C residual: 1.186E-11

max residual: 1.375E-03 at iteration 1 time step 1

You can now add line plots of the concentration in pl uuvvww 2d channel.py.
Recall that it is stored in statisz.f as w. So type

w=vectz[iw]/ntstep

conc2d=np.reshape(w,(ni,nj))

Not you can make line plots in the same way as you plot viscosity or temper-
ature. You can also make contour plots of concentration (cf. end of Section 25.7)

fig11 = plt.figure()

plt.xlabel("x")

plt.ylabel("y")

plt.contourf(x2d,y2d,conc2d, 100)

plt.clim(0,0.02)

plt.title("concentration")

plt.colorbar()

plt.savefig(’c_contour.eps’)

25.9 Heat transfer with buoyancy

Here we will simulate heat transfer with buoyancy. We start by copying setup.f
and mod.f (and all other files) from Section 25.7

The only thing we need to change is to add a buoyancy term in the vertical
momentum equation. We assume that the channel walls are aligned with the
x− z plane, and hence the vertical direction is y.

26. COMMON blocks 61

25.9.1 mod.f

entry modv Here we add the buoyancy source term (cf. entry modv in
Section 24)

! add bouyancy term to the v-eq

tref=0.

grav = 9.81 ! gravitation

tnoll = 300.0 ! reference temperature (T_0 = 300K)

volextcoef = 1./tnoll ! volumetric expansion coefficient of air (1/T_0)

do k=2,nkm1

do j=2,njm1

do i=2,nim1

su(i,j,k)=su(i,j,k)+grav*volextcoef*

& (phi(i,j,k,t)-tref)*vol(i,j,k)

end do

end do

end do

You may notice that whereas in Section 24 we set the reference tempera-
ture to the plane-averaged temperature, here we use a constant value. We can
use a plane-averaged temperature in the former case since we have periodic
boundaries.

26 COMMON blocks

26.1 COMMON

Make sure that the dimension of the vectors is sufficient.

it Must be larger than ni

jt Must be larger than nj

kt Must be larger than nk

nphit, nphito Must be larger than numph

If you change anything in this file, you must re-compile the entire code. This
is done by deleting all object files *.o and ../*.o and then type make.

26.2 PETER COMMON

iomax Must be larger than 1.2 * ni * nj * nk

io2dmax Must be larger than 1.5 * n1 * n2 where n1 is the largest of (ni,
nj, nk) and n2 is the second largest

If you change anything in this file, you must re-compile the entire code. This
is done by deleting all object files *.o and ../*.o and then type make.

26.3. Variables in COMMON blocks in file COMMON 62

26.3 Variables in COMMON blocks in file COMMON

acrank: time integration scheme for pressure (1: fully implicit)

acrank conv: time integration scheme for convection and diffusion (1: fully
implicit)

alpha geo: some kind of under-relaxation factor on the pressure gradient (only
for ABL)

areaex,areaey,areaez: the x, y and z component of the area of east face

areahx,areahy,areahz: the x, y and z component of the area of high face

areanx,areany,areanz: the x, y and z component of the area of north face

aw,ae,as,an,al,ah,ap: discretization coefficients, aW , aW , aS , aN , aL, aH ,
aP

betap: driving pressure gradient

c1,c2,cappa: turbulence model constants, Cε1, Cε2, κ

cdfor: drag value of forest [31] (only for ABL)

cdiss: dissipation parameter [20] (only for ABL1)

cmu,cd,cmucd: turbulence model constants, Cµ, Cd = 1, cmucd = cmu ∗ cd

conv blend: blending factor between CDS and MUSCL (1: fully CDS)

conve,convn,convh: convection through east, north and high face

cycli,cyclk: if true, cyclic in i and k direction

delta leaf: leaf size, lf [31] (only for ABL)

densit: density, ρ

dist2d: distance to the nearest wall (used in PANS)

dqdy: y derivative of heat flux in forest (only for ABL)

dt: time step

echo: if true, echoes settings

elog,pfun: constants in RANS wall-function, E, P

extinct: extinction coefficient in forest (only for ABL)

f lad: Leaf-Area Density (LAD) (only for ABL)

fcori: Coriolis coefficient (only for ABL)

1Atmospheric boundary layers

26.3. Variables in COMMON blocks in file COMMON 63

fk,fe: fk, fε, used in PANS

flowangle: the direction of the wind [degrees] (only for ABL)

fmax leaf area dens: max value for the leaf area density (only for ABL)

forceu,forcev,forcew: Drag force due to forest in u, v and w momentum
equations (only for ABL)

forheight: forest height (only for ABL)

formaxdens,: height at which the forest is most dense (only for ABL)

fx,fy,fz: fx, fy, fy, the interpolation function in I, J and K direction

gente: velocity derivatives in P k in the k and ε equations

grav: acceleration gravity coefficient (9.81) (only for ABL)

great: 1e20

head(nphi): name of variable nphi

heat forest: total heat source in forest (only for ABL)

hWind: the height at which the wind should be specified [m] (only for ABL)

imon,jmon,kmon: print time history of phi for this node

iprint start: timestep at which time averaging begins

isol(7): Governs the way the p̄ equation is solved in the MG solver (see
peter init.)

it,jt,kt: dimension of the arrays (i,j,k direction)

iter: current global iteration

itstep: current timestep

jformax: number of cells in forest (only for ABL)

jhub: hub height, index j (only for ABL)

jl0: interface between RANS and LES in PANS

keq abl: one-equation SGS model for atmospheric boundary layers (only for
ABL)

kom: if true, k − ω model

les: if true, LES (Smagorinsky)

les abl: Smagorinsky model (only for ABL)

maxit: maximum number of global iterations at each timestep

minit: minimum number of global iterations at each timestep

name(nphi): short name of variable nphi

26.3. Variables in COMMON blocks in file COMMON 64

nfiles restart: number of variables in restart file

ni,nj,nk: number of cell centers (including boundaries) in i, j and k direction

nim1,njm1,nkm1: ni-1, nj-1, nk-1

nphit,nphito: size of phi and phio arrays

nphmax: number of nphi

nsweep(nphi): number of sweeps in TDMA solver and MG solver

ntstep: number of timesteps

pans: if true, PANS model

phi(nphi): dependent variable (v̄, v̄, ...)

phio(nphi): dependent variable (v̄, v̄, ...) at old time step

prt(nphi): σΦ, turbulent Prandtl number

prt lam(nphi): σΦ, viscous Prandtl number

qfluxh: constant heat flux at canopy top [Km/s] (only for ABL)

resor(nphi): scaling of residuals

restrt: if true, read the flow field from file ’savres’

rrl: used to compute cdiss (only for ABL)

save: if true, save the flow field to file ’savres’ (it overwrites old file)

scheme: discretization scheme for v̄, v̄, w̄, θ̄ (’c’, CDS; ’h’, hybrid; ’v’, van Leer;
’m’, MUSCL)

schemet: discretization scheme for temperature

schtur: discretization scheme for k, ε, ω

small: 1e-20

solve(nphi): true if phi is solved for

sormax: global convergence limit in each time step

sp,su: discretization source terms, Sp, SU

spvw: discretization SP source terms in v̄ and w̄ equations (used for van Leer
and MUSCL)

stability: is set to true if the temperature equation should be solved for (only
for ABL)

steady: if true, steady

suv,suw: discretization SU source terms in v̄ and w̄ equations (used for van
Leer and MUSCL)

26.3. Variables in COMMON blocks in file COMMON 65

tecplot: generate a Tecplot data file or not

time: current time

tnoll: reference temperature (T0 = 300K) (only for ABL)

u,v,w,p,pp,te,ed,om: integers used in phi, prt, . . . (v̄, v̄, w̄, p̄, p′, k, ε, ω)

u geo,w geo: the desired wind speed magnitude in u and w (only for ABL)

urfvis: under-relaxation factor for turbulent viscosity

ustarv: friction velocity, uτ

vis: effective dynamic viscosity, µeff = µ+ µt:

viscos: dynamic viscosity, µ

vol: volume of cell

volextcoef: volumetric expansion coefficient of air (1/T0) (only for ABL)

wale: if true, WALE model

xc,yc,zc: XC , YC , ZC , coordinates of east-north-high corner of cell

xp,yp,zp: XP , YP , ZP , cell center coordinates in x, y and z direction

ynoll: surface roughness at ground [31] (only for ABL)

References

[1] K. Abe, T. Kondoh, and Y. Nagano. A new turbulence model for predicting
fluid flow and heat transfer in separating and reattaching flows - 1. Flow
field calculations. Int. J. Heat Mass Transfer, 37(1):139–151, 1994.

[2] M. Billson. Computational Techniques for Turbulence Generated Noise.
PhD thesis, Dept. of Thermo and Fluid Dynamics, Chalmers University of
Technology, Göteborg, Sweden, 2004.

[3] M. Billson, L.-E. Eriksson, and L. Davidson. Jet noise prediction using
stochastic turbulence modeling. AIAA paper 2003-3282, 9th AIAA/CEAS
Aeroacoustics Conference, 2003.

[4] A. D. Burns and N. S. Wilkes. A finite difference method for the compu-
tation of fluid flow in complex three-dimensional geometries. Aere r 12342,
Harwell Laboratory, U.K., 1986.

[5] L. Davidson. LES of recirculating flow without any homogeneous direc-
tion: A dynamic one-equation subgrid model. In K. Hanjalić and T. W. J.
Peeters, editors, 2nd Int. Symp. on Turbulence Heat and Mass Transfer,
pages 481–490, Delft, 1997. Delft University Press.

[6] L. Davidson. Hybrid LES-RANS: Inlet boundary conditions. In
B. Skallerud and H. I. Andersson, editors, 3rd National Conference on
Computational Mechanics – MekIT’05 (invited paper), pages 7–22, Trond-
heim, Norway, 2005.

26.3. Variables in COMMON blocks in file COMMON 66

[7] L. Davidson. Using isotropic synthetic fluctuations as inlet boundary con-
ditions for unsteady simulations. Advances and Applications in Fluid Me-
chanics, 1(1):1–35, 2007.

[8] L. Davidson. Hybrid LES-RANS: Inlet boundary conditions for flows with
recirculation. In Second Symposium on Hybrid RANS-LES Methods, Corfu
island, Greece, 2007.

[9] L. Davidson. Inlet boundary conditions for embedded LES. In First CEAS
European Air and Space Conference, 10-13 September, Berlin, 2007.

[10] L. Davidson. Hybrid LES-RANS: Inlet boundary conditions for flows in-
cluding recirculation. In 5th International Symposium on Turbulence and
Shear Flow Phenomena, volume 2, pages 689–694, 27-29 August, Munich,
Germany, 2007.

[11] L. Davidson. HYBRID LES-RANS: Inlet boundary conditions for flows
with recirculation. In Advances in Hybrid RANS-LES Modelling, volume 97
ofNotes on Numerical Fluid Mechanics and Multidisciplinary Design, pages
55–66. Springer Verlag, 2008.

[12] L. Davidson. Fluid mechanics, turbulent flow and turbulence
modeling. eBook, Division of Fluid Dynamics, Dept. of Ap-
plied Mechanics, Chalmers University of Technology, Gothen-
burg, http://www.tfd.chalmers.se/˜lada/postscript files/solids-and-
fluids turbulent-flow turbulence-modelling.pdf, 2014.

[13] L. Davidson. Python and matlab scripts
for synthetic fluctuations, 2014. URL
http://www.tfd.chalmers.se/~lada/projects/inlet-s̄boundary-s̄conditions/proright.html.

[14] L. Davidson. Zonal PANS: evaluation of different treatments of the RANS-
LES interface. Journal of Turbulence, 17(3):274–307, 2016.

[15] L. Davidson and M. Billson. Hybrid LES/RANS using synthesized turbu-
lent fluctuations for forcing in the interface region. International Journal
of Heat and Fluid Flow, 27(6):1028–1042, 2006.

[16] L. Davidson and B. Farhanieh. CALC-BFC: A finite-volume code employ-
ing collocated variable arrangement and cartesian velocity components for
computation of fluid flow and heat transfer in complex three-dimensional
geometries. Rept. 95/11, Dept. of Thermo and Fluid Dynamics, Chalmers
University of Technology, Gothenburg, 1995.

[17] L. Davidson and C. Friess. A new formulation of fk for the PANS model.
Journal of Turbulence, pages 1–15, 2019. doi: 10.1080/14685248.2019.
1641605. URL http://dx.doi.org/10.1080/14685248.2019.1641605.

[18] L. Davidson and S.-H. Peng. Hybrid LES-RANS: A one-equation SGS
model combined with a k − ω model for predicting recirculating flows. In-
ternational Journal for Numerical Methods in Fluids, 43:1003–1018, 2003.

http://www.tfd.chalmers.se/~lada/projects/inlet-boundary-conditions/proright.html
http://dx.doi.org/10.1080/14685248.2019.1641605

26.3. Variables in COMMON blocks in file COMMON 67

[19] L. Davidson and S.-H. Peng. Embedded large-eddy simulation
using the partially averaged Navier-Stokes model. AIAA Jour-
nal, 51(5):1066–1079, 2013. doi: doi:10.2514/1.J051864. URL
http://dx.doi.org/10.2514/1.J051864.

[20] J. W. Deardorff. Stratocumulus-capped mixed layers derived from a three-
dimensional model. Boundary-Layer Meteorology, 18(4):495–527, 1980.

[21] P. Emvin. The Full Multigrid Method Applied to Turbulent Flow in Ven-
tilated Enclosures Using Structured and Unstructured Grids. PhD thesis,
Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology,
Göteborg, 1997.

[22] M. Gritskevich, A. Garbaruk, J. Schütze, and F. R. Menter. Development
of DDES and IDDES formulations for the k − ω shear stress transport
model. Flow, Turbulence and Combustion, 88:431–449, 2012.

[23] J. O. Hinze. Turbulence. McGraw-Hill, New York, 2nd edition, 1975.

[24] M. Irannezhad. DNS of channel flow with finite difference method on a
staggered grid. Msc thesis, Division of Fluid Dynamics, Department of
Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden,
2006.

[25] N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser. A synthetic-
eddy-method for generating inflow conditions for large-eddy simulations.
International Journal of Heat and Fluid Flow, 27(4):585–593, 2006.

[26] J. Ma, S.-H. Peng, L. Davidson, and F. Wang. A low Reynolds
number variant of Partially-Averaged Navier-Stokes model for tur-
bulence. International Journal of Heat and Fluid Flow, 32(3):
652–669, 2011. doi: 10.1016/j.ijheatfluidflow.2011.02.001. URL
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.02.001.
10.1016/j.ijheatfluidflow.2011.02.001.

[27] B. Nebenführ and L. Davidson. INFLUENCE OF A FOREST CANOPY
ON THE NEUTRAL ATMOSPHERIC BOUNDARY LAYER - A LES
STUDY. In Proceedings of 10th International ERCOFTAC Symposium on
Engineering Turbulence Modelling and Measurements (ETMM10), Mar-
bella, Spain, 17-19 September, 2014.

[28] B. Nebenführ and L. Davidson. Large-eddy simulation study of ther-
mally stratified canopy flow. Boundary-Layer Meteorology, pages 1–
24, 2015. ISSN 0006-8314. doi: 10.1007/s10546-̄s015-s̄0025-s̄9. URL
http://dx.doi.org/10.1007/s10546-s̄015-s̄0025-s̄9.

[29] B. Nebenführ and L. Davidson. Prediction of wind-turbine fatigue
loads in forest regions based on turbulent les inflow fields. Wind
Energy, 2016. ISSN 1099-1824. doi: 10.1002/we.2076. URL
http://dx.doi.org/10.1002/we.2076. we.2076.

[30] F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the
square of the velocity gradient tensor. Flow, Turbulence and Combustion,
62(3):183–200, 1999.

http://dx.doi.org/10.2514/1.J051864
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.02.001
http://dx.doi.org/10.1007/s10546-015-0025-9
http://dx.doi.org/10.1002/we.2076

26.3. Variables in COMMON blocks in file COMMON 68

[31] R. H. Shaw and U. Schumann. Large-eddy simulation of turbulent flow
above and within a forest. Boundary-Layer Meteorology, 61:47 – 64, 1992.

[32] M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin. A hybrid
RANS-LES approach with delayed-DES and wall-modelled LES capabili-
ties. International Journal of Heat and Fluid Flow, 29:1638–1649, 2008.

[33] J. Smagorinsky. General circulation experiments with the primitive equa-
tions. Monthly Weather Review, 91:99–165, 1963.

[34] B. van Leer. Towards the ultimate conservative difference scheme. Mono-
tonicity and conservation combined in a second order scheme. Journal of
Computational Physics, 14(4):361–370, 1974.

[35] B. van Leer. Towards the ultimate conservative difference scheme. V.
A second-order sequel to godonov’s method. Journal of Computational
Physics, 32:101–136, 1979.

[36] S. Wallin and A. V. Johansson. A new explicit algebraic Reynolds stress
model for incompressible and compressible turbulent flows. Journal of Fluid
Mechanics, 403:89–132, 2000.

[37] J. R. Welty, C. E. Wicks, and R. E. Wilson. Fundamentals of Momentum,
Heat, and Mass Transfer. John Wiley & Sons, New York, 3 edition, 1984.

[38] D. C. Wilcox. Reassessment of the scale-determining equation. AIAA
Journal, 26(11):1299–1310, 1988.

	Introduction
	Geometrical Details of the Grid
	Grid
	Nomenclature for the Grid
	Area Calculation of Control Volume Faces
	Volume Calculation of Control Volume
	Interpolation

	Gradient

	Diffusion
	Convergence Criteria
	2D Diffusion

	Convection – Diffusion
	Central Differencing Scheme (CDS)
	First-Order Upwind Scheme
	Hybrid Scheme
	Second-Order Upwind Scheme
	Bounded Second-Order Upwind Scheme

	The Fractional-step method
	Boundary Conditions
	Inlet
	Exit velocity
	Remaining variables
	Interior boundary conditions

	The Smagorinsky Model
	The WALE model
	The PANS Model
	The k- Model
	The IDDES Model
	Inlet boundary conditions
	Synthesized turbulence
	Random angles
	Highest wave number
	Smallest wave number
	Divide the wave number range
	von Kármán spectrum
	Computing the fluctuations
	Introducing time correlation

	Procedure to generate anisotropic synthetic fluctuations
	Post-processing
	Flow Chart
	Subroutines
	Fully-developed channel flow
	Setup
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8
	Section 9
	Section 10
	Section 11
	Section 12
	Section 13
	Section 14
	Section 15-17

	mod
	entry modini
	entry modpro
	entry modcon
	entry modu
	entry modv
	entry modw
	entry modpp
	entry modte
	entry moded
	entry modphi

	Run the code

	Fully-developed channel flow without re-start
	Setup
	Section 8

	mod
	entry modini

	Fully-developed channel flow at Re=5 200 using PANS
	setup.f
	Section 8

	mod.f
	entry modini
	entry modu
	entry moded

	Hill flow
	Setup
	Section 8
	Section 8
	Section 9
	Section 10
	Section 11
	Section 12
	Section 16
	Section 16

	mod
	entry modini
	entry modu
	entry moded

	Hump flow with re-start
	Setup
	Section 8
	Section 16

	mod
	entry modini
	entry modcon
	entry modu
	entry modte
	entry moded

	Hump flow without re-start
	setup
	Section 8
	Section 12

	mod
	entry modini
	entry modu

	Hump flow, 2D RANS
	setup
	Section 9
	Section 12
	Section 14
	Section 18

	Atmospheric boundary layer in a forest
	setup
	Section 2a
	Section 8
	Section 11
	Section 12
	Section 13

	mod
	entry modini
	entry modpro
	entry modu
	entry modv
	entry modw
	entry modphi(nphi)

	Workshop
	Fully-developed channel flow using PANS
	setup
	Section 4
	Section 12

	Fully-developed half-width channel flow using PANS
	setup.f
	Section 12

	mod.f
	entry modini
	entry modpro
	entry modu
	entry modv
	entry modw
	entry modte
	entry moded

	Half-width channel flow, with inlet-outlet, using PANS
	setup.f
	Section 8

	mod.f
	entry modini
	entry modu

	Half-width channel flow: a hybrid one-equation turbulence model
	setup.f
	Section 8
	Section 11
	Section 12

	mod.f
	entry modu
	entry modte

	vist_keq.f
	main.f
	makefile

	Half-width channel flow: a DES k- turbulence model
	setup.f
	Section 8
	Section 11
	Section 16
	Section 17

	mod.f
	entry modu

	calcte_des.f
	calced_des.f
	main.f
	makefile

	Half-width channel flow: a IDDES k- turbulence model
	Heat transfer in half-width channel flow with inlet-outlet
	setup.f
	Section 11
	Section 6
	Section 11
	Section 17

	main.f
	mod.f
	entry modph

	Dispersion of passive pollution source
	main.f
	echo1.f
	setup.f
	Section 6
	Section 11
	Section 17

	mod.f
	entry modph

	Heat transfer with buoyancy
	mod.f
	entry modv

	COMMON blocks
	COMMON
	PETER_COMMON
	Variables in COMMON blocks in file COMMON

