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Abstract

In this paper an improved k � x turbulence model is proposed, which brings the asymptotic boundary value for x into accord

with direct numerical simulation (DNS) data. In the new x-equation both a turbulent and a viscous cross-diffusion term are in-

cluded, justified by an analogy to the Yap-correction and the pressure-diffusion process, respectively. The importance of cross-

diffusion terms in removing the freestream sensitivity with respect to x for free shear flows is shown. The performance of the model

is evaluated and compared with DNS and with other turbulence models in a channel flow, a backward-facing step flow and a rib-

roughened channel flow with heat transfer. The model requires neither wall-function nor wall-distance information and is fully

integrable over the near-wall region.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The Reynolds averaging of the Navier–Stokes equa-

tions results in the Reynolds stress tensor, sij ¼ uiuj, in

the momentum equations and the heat-flux vector, uih,

in the thermal energy equation. These unknowns need to

be modelled in order to close the equation system. In the

framework of eddy-viscosity models (EVMs) the Rey-

nolds stress tensor is modelled with the Boussinesq hy-

pothesis, which assumes an alignment between the sij
and the mean flow deformation, via an eddy-viscosity,

mt. The turbulent stresses/heat fluxes are thus modelled

in analogy to their molecular counterparts. The eddy-

viscosity, mt, is modelled using a velocity scale, u, and a

length scale, l, as

mt � ul ð1Þ
In two-equation EVMs these quantities are obtained

using two turbulent transport equations, where the

turbulent kinetic energy, k, is normally used for the

velocity scale, u �
ffiffiffi

k
p
, while the length scale is modelled

with k and an additional turbulent quantity. In the k � e

models (see e.g. Jones and Launder (1972)), the length

scale is approximated in terms of k and its dissipation

rate, e, as l � k3=2=e, while in the k � x models (see e.g.

Wilcox (1998)), the reciprocal of turbulent time scale, x,

is used, hence l �
ffiffiffi

k
p

=x. There exists several other types
of two-equation EVMs such as the k � s model by

Speziale et al. (1992) which solves for the turbulent time

scale, and the k � mt model, by Peng and Davidson

(2000), which solves directly for the turbulent viscosity

itself.

Since the dissipation rate of turbulent kinetic energy,

e, appears naturally in the exact equation for the tur-

bulent kinetic energy, it is the obvious choice for the

second turbulent quantity in the formulation for mt.

However both physically and numerically, e may not be

the optimum choice. Analyses based on direct numerical

simulation (DNS) data show that e is non-zero and finite

at walls, which is difficult to specify. A remedy to this

problem has been to solve for the reduced dissipation

rate, ~ee, and include an additional term in the k-equation

(see e.g. Launder and Sharma (1974)). Another possible

solution to this deficiency is to solve for an alternative

quantity to e. For example the k � s and k � mt models

have well-posed wall boundary condition with s ¼ 0,
and mt ¼ 0, respectively. In the k � x model, the wall
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boundary condition for x is xw � y�2, which has been
shown to have a numerically stabilising effect. In a study

by Huang and Bradshaw (1995), it was concluded that

the optimum choice for the length scale determining

equation is the specific dissipation rate, x ¼ e=k, based
on the performance of EVMs for flows with adverse

pressure gradient.

In this work, the k � x model is further improved by

reviewing the modelling of the x-equation. Speziale

et al. (1992) showed that, through a transformation

from the e-equation, the appropriate wall boundary

condition for x is 2m=y2, which is indeed consistent with
DNS data for channel flow. It is argued that the inclu-

sion of a viscous cross-diffusion term not only enables

the correct asymptotical wall boundary condition for x,

but also is a reasonable approximation to the pressure-

diffusion term in the x-equation.

In addition a turbulent cross-diffusion term is in-

cluded, which is argued from the transformation of the

e-equation and the two-scale direct interaction ap-

proximation (TSDIA) of Yoshizawa (1987). It is shown

that the turbulent cross-diffusion term may be an

analogy to the Yap correction (Yap, 1987), which im-

proves the heat transfer prediction for recirculating

flows.

It is demonstrated that a major weakness of the

Wilcox k � x models; the freestream sensitivity with

respect to x, can be greatly relaxed through a careful

calibration of the cross-diffusion terms in the x-equa-

tion.

In the present work, through the addition of the

viscous cross-diffusion term, the number of damping

terms is reduced. The model uses only one wall-dis-

tance free damping function, with dependency upon

the turbulent Reynolds number, Rt. This simplifies the

computation of flows in complex geometries, avoiding

any ambiguities with the proper wall-distance in cor-

ners.

The new k � x turbulence model is validated for fully

developed turbulent channel flow in comparison with

DNS data. Improved predictions, as compared with the

k � e� v2 � f model (Lien and Kalitzin, 2001), a k � e

model (Abe et al., 1994) and a k � x model (Wilcox,

1993), are presented for a backward-facing step (BFS)

flow and a rib-roughened channel flow with heat

transfer.

Nomenclature

A cross-section area

C turbulence model constant with various sub-

scripts

Cf skin friction coefficient

Dh hydraulic diameter

e rib size

fl damping function

h step height

H channel height

k turbulent kinetic energy

l turbulent length scale

_mm mass flow

Nu Nusselt number

P distance between two consecutive ribs

(pitch)

P mean pressure

p pressure fluctuation

Pk, Pe, Px production terms

Pr Prandtl number, Pr ¼ 0:71 for air
Prt turbulent Prandtl number

Re Reynolds number, UH=m
Rt turbulent Reynolds number, mt=m or k=ðxmÞ
t time

Ui mean velocities

ui velocity fluctuations

uiuj Reynolds stresses

x streamwise distance

y wall normal distance

Greeks

d0 free shear layer spreading rate, d0 � dd=dx,
according to Wilcox (1998)

e dissipation rate of k

j van Karman constant, j ¼ 0:41
m kinematic viscosity

mt turbulent eddy-viscosity

q density

x specific dissipation rate

P pressure-diffusion term

W destruction term

rk, re, rx turbulence model constant

s turbulent time scale

sw wall shear, qu2s
H mean temperature

h temperature fluctuations

Superscripts

þ normalised variables using wall parameters

m viscous part

T turbulent part

Subscripts

b bulk value

r re-attachment value

w wall value

s value based on the friction velocity, us ¼ffiffiffiffiffiffiffiffiffiffi

sw=q
p

1 freestream value
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2. Model formulation

2.1. Governing equations

The governing equations for an incompressible flow

are the continuity equation, the momentum equations

and the temperature equation. These are respectively

oUi

oxi
¼ 0 ð2Þ

DUi

Dt
¼ � 1

q

oP

oxi
þ o

oxj
m
oUi

oxj

�

� uiuj

�

ð3Þ

DH

Dt
¼ o

oxi

m

Pr

oH

oxi

�

� uih

�

ð4Þ

As discussed above this equation system is not closed

due to the Reynolds stress tensor, uiuj, in the momen-

tum equations and the heat flux vector, uih, in the

temperature equation. In an EVM the Reynolds stress

tensor is modelled through the Boussinesq hypothesis

�uiuj ¼ mt
oUi

oxj

�

þ oUj

oxi

�

� 2
3
kdij ð5Þ

In a low-Reynolds number (LRN) turbulence model

the eddy-viscosity, mt, is modelled as

mt ¼ Clfl
k2

e
or mt ¼ Clfl

k

x
ð6Þ

where Cl is a constant and fl is a damping function. The

turbulent heat-flux vector is modelled as

�uih ¼ mt

Prt

oH

oxi
ð7Þ

where the turbulent Prandtl number, Prt, is either set as

a constant or computed from an algebraic relation as

proposed by Kays and Crawford (1993)

Prt ¼
1

0:5882þ 0:228Rt � 0:0441R2t 1� exp � 5:165=Rtð Þ½ �
ð8Þ

where Rt is the turbulent Reynolds number with Rt ¼
mt=m.

2.2. The k � e model

The exact equations for the turbulent kinetic energy

and its dissipation rate are

Dk

Dt
¼ Pk � eþPk þ DTk þ

o

oxj
m
ok

oxj

� �

ð9Þ

De

Dt
¼ Pe � Ue þPe þ DTe þ

o

oxj
m
oe

oxj

� �

ð10Þ

where Pk and Pe are the production terms, e and Ue are

the destruction terms, DTk and DTe are the turbulent dif-

fusion term, and the last terms in Eqs. (9) and (10) are

the viscous diffusion terms.

For the k-equation the Boussinesq hypothesis is in-

corporated into the production term, viz

Pk ¼ �uiuj
oUi

oxj
¼Eq:ð5Þmt

oUi

oxj

�

þ oUj

oxi

�
oUi

oxj
ð11Þ

and the standard gradient diffusion hypothesis (SGDH)

is used for the diffusion terms

Pk þ DTk ¼ � o

oxj

ujp

q

�

þ ujuiui

�

� o

oxj

mt

rk

ok

oxj

� �

ð12Þ

The dissipation rate, e, in the k-equation is computed

from its own transport equation. The modelled k-

equation reads

Dk

Dt
¼ Pk � eþ o

oxj
m

��

þ mt

rk

ok

oxj

��

ð13Þ

The transport equation for the dissipation rate is

modelled similarly to the k-equation as

De

Dt
¼ Ce1

e

k
Pk � Ce2

e2

k
þ o

oxj
m

��

þ mt

re

oe

oxj

��

ð14Þ

with the following constants, as suggested by Launder

and Spalding (1974)

Ce1 ¼ 1:44; Ce2 ¼ 1:92; rk ¼ 1:0; re ¼ 1:3 ð15Þ
For LRN modified models a damping function, f2, is

often multiplied to the constant Ce2.

2.3. Transformation from a k � e-model to a k � x-model

The specific dissipation rate of turbulent kinetic en-

ergy, x, is defined as

x  e

Ckk
ð16Þ

Consequently the x-equation may be constructed from

the k- and e-equations. That is

Dx

Dt
¼ D

Dt

e

Ckk

� �

¼ 1

Ckk

De

Dt
� x

k

Dk

Dt
ð17Þ

Inserting the exact equations for k (Eq. (9)) and e (Eq.

(10)) in Eq. (17) yields

Dx

Dt
¼ 1

Ckk
Pe �

x

k
Pk

� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Production; Px

� 1

Ckk
Ue �

x

k
e

� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Destruction; Ux

þ 1

Ckk
Pe �

x

k
Pk

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pressure diffusion; Px

þ 1

Ckk
DTe �

x

k
DTk

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Turbulent diffusion; DTx

þ 1

Ckk
m
o
2e

ox2j
� x

k
m
o
2k

ox2j

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous diffusion; Dm
x

ð18Þ
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Using the standard k � e-model the resulting modelled

x-equation becomes

Dx

Dt
¼ Px � Ux þPx þ DTx þ Dm

x ð19Þ

where

Px ¼ 1

Ckk
Ce1

e

k

�

� x

k

�

Pk ¼ Ce1ð � 1Þx
k
Pk

Ux ¼ 1

Ckk
Ce2

e2

k
� x

k
Ckxk ¼ Ce2ð � 1ÞCkx

2

Px ¼ 0

Dm
x ¼ 1

Ckk
m
o2e

ox2j
� x

k
m
o2k

ox2j
¼ 2m

k

ok

oxj

ox

oxj
þ m

o2x

ox2j

DTx ¼ 1

Ckk

o

oxj

mt

re

oe

oxj

� �

� x

k

o

oxj

mt

rk

ok

oxj

� �

¼ mt

k

1

re

�

þ 1

rk

�
ok

oxj

ox

oxj
þ mt

x

k

1

re

�

� 1

rk

�
o2k

ox2j
þ mt

� x

k2
1

re

�

� 1

rk

�
ok

oxj

� �2

þ o

oxj

mt

re

ox

oxj

� �

The main difference between this and the x-equation in

the Wilcox model (1988, 1993) is the cross-diffusion

terms, i.e. the terms proportional to ok=oxj ox=oxj.
A well known weakness of the Wilcox k � xmodels is

the freestream sensitivity with respect to x. This is

particularly true for free shear flows, for which it is

possible to predict almost arbitrary result through dif-

ferent, although reasonable, freestream values of x.

Menter (1991) proposed a remedy to this problem by

introducing a turbulent cross-diffusion term, mt=k ok=
oxj ox=oxj, in the x-equation. Recently proposed k � x

models by Menter (1994), Peng et al. (1997), Wilcox

(1998) and Kok (2000) have all included such a term.

In Fig. 1, the predicted spreading rates using the

present model, which includes both a viscous and a

turbulent cross-diffusion term, is compared with the

standard k � x model, Wilcox (1993) and the modified

k � x model by Peng et al. (1997) (PDH). The k � e

model by Abe et al. (1994) (AKN) is used as a reference

model. The results are normalised with the predicted

spreading rate, d0 ¼ dd=dx, using a x1;ref equivalent to

setting the eddy-viscosity to a small value, 10�7.
Here it is re-confirmed that the accuracy of the Wil-

cox model is severely affected by the chosen x1. The
addition of cross-diffusion terms, however significantly

reduces the k � x models freestream sensitivity with

respect to x. The present model predicts a behaviour

similar to the k � e model, while the PDH-model,

without a viscous cross-diffusion term, yields inaccurate

results only for large values of x1.

In addition to the improvements for free shear flows,

Speziale et al. (1992) showed that the inclusion of the

viscous cross-diffusion term is essential for wall bounded

flows. The near-wall balance of the x-equation is

� Ce2ð � 1ÞCkx
2 þ 2m

k

ok

oy

ox

oy
þ m

o
2x

oy2
¼ 0 ð20Þ

Applying a LRN turbulence model with a damping

function, f2, to the coefficient Ce2, the asymptotic rela-

tion for x becomes, with f2Ce2 ! 0 and k � y2 as y ! 0

x ! 2m

Cky2
ð21Þ

With the above definition of x, Eq. (16), this relation is

consistent with DNS-data (Mansour et al., 1988) for the

dissipation rate

Fig. 1. Spreading rates, free shear flows.
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ew ¼ m
o
2k

oy2

�
�
�
�
y¼0

� 2m k

y2
ð22Þ

The above results clearly demonstrates the im-

portance of including both a viscous and a turbulent

cross-diffusion term in the x-equation. Contrary to the

present model, the non cross-diffusion modified Wilcox

k � x models is neither able to capture a correct free-

stream behaviour, nor being compatible with near-wall

DNS data.

2.4. Modelling the k- and x-equations

2.4.1. The damping function, fl
The inclusion of damping functions is a result of ac-

counting for viscous and wall-damping effects. Through

proper treatment of the exact terms, such effects may be

partly represented by the modelled terms without using

damping functions. In the present model the viscous

cross-diffusion term plays such a role in the viscous sub-

layer by reducing x.

To yield correct near-wall asymptotic behaviour for

the turbulent shear stress a damping function, fl, is in-

troduced for mt, Eq. (6). In accordance with Wilcox

(1993), the damping function should in the limit of

Rt ! 0 comply with

Cx1Clfl < Cx2

Ck

Clfl
! 1

ð23Þ

These conditions necessitates that fl ! 0:09, as Rt ! 0.

In addition the damping function should approach unity

for fully developed turbulent flows, hence fl ! 1, as

Rt ! 1.
Following Hanjalic and Launder (1976), the fluctu-

ating quantities in the vicinity of a wall, using Taylor

expansion series is

u ¼ a1y þ b1y
2 þ � � �

v ¼ b2y
2 þ � � �

w ¼ a3y þ b3y
2 þ � � �

p ¼ a4 þ b4y þ � � �

ð24Þ

By the definition of k and e the asymptotic relations

for them are k � y2 and e � y0, respectively. Conse-

quently, the specific dissipation rate varies as x � y�2,
when y ! 0. Thus the damping function should vary as

y�1 to impose a correct near-wall behaviour for the
turbulent shear stress.

It is numerically convenient to avoid any wall-dis-

tance dependencies in a model when applied to flows in

complex geometries. A commonly used parameter for

damping function in devising wall-distance free damping

functions is the turbulent Reynolds number, defined in a

k � x model as Rt ¼ k=ðxmÞ.

The damping function in the present model is devised

as

fl ¼ 0:09þ 0:91

�

þ 1

R3t

�

1

"

� exp
(

� Rt

25

� �2:75
)#

ð25Þ
which has been optimised numerically using DNS data

for channel flow. Note that R�0:25
t � y�1.

2.4.2. Modelling the pressure-diffusion term

The modelling of the pressure-diffusion term has

historically been rather rudimentary, mainly due to the

difficulties of measuring the near-wall velocity–pressure

correlations. In the k � e model, the pressure-diffusion

term has either been neglected or modelled together with

the triple velocity-correlation term through the SGDH,

Eq. (12). The values of rk and re have traditionally been

tuned to give accurate results in the logarithmic region,

with less attention paid to their near-wall accuracy.

In the DNS analyses by Mansour et al. (1988) and

Rodi and Mansour (1993), it was shown that the tur-

bulent diffusion process, ðPk þ DTk Þ, close to the wall
does not decrease as rapidly as a SGDH-type turbulent

diffusion model, would predict. A remedy to this has

been to allow near-wall rk and re to vary, see e.g. the

Hwang and Lin k � e model (1998).

Furthermore the DNS data indicates that even

though the pressure-diffusion process has generally little

influence, it becomes significant for the balance of the

equations in the viscous sub-layer, where the dissipation

is balanced by both the viscous- and pressure-diffusion

terms.

The pressure-diffusion term in the exact x-equation

can be obtained by a transformation of the exact pres-

sure-diffusion terms in the k- and e-equations as

Px ¼ 1

Ckk
Pe �

x

k
Pk

¼ � 1

Ckk

2m

q

o

oxj

op

oxk

ouj

oxk

� �

þ x

k

1

q

o

oxj
puj
� �

ð26Þ

Analysis of the asymptotic near-wall properties of Eq.

(26) suggests that

� 1
Ckk

2m

q

o

oxj

op

oxk

ouj

oxk

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pe

! y�2

þ x
k

1

q

o

oxj
puj
� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Pk

! y�3
ð27Þ

In the near-wall region, the contribution of the

pressure-diffusion of the k-equation is thus more im-

portant than that of the pressure-diffusion of the e-

equation. Based on analysis of DNS data, Kawamura

(1991) proposed a cross-diffusion type model for Pk,
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which was used in e.g. the Hwang and Lin k � e tur-

bulence model. It reads

Pk ¼ CPm
o

oxj

k

e

oe

oxj

� �

ð28Þ

Transforming Eq. (28) in terms of k and x gives

Pk ¼ CPm
o

oxj

1

x

okx

oxj

� �

¼ CPm
1

x

ok

oxj

ox

oxj

"

þ o
2k

ox2j
� k

x2
ox

oxj

� �2

þ k

x

o
2x

ox2j

#

ð29Þ
with k � y2 and x � y�2, a near-wall analysis shows that
the four terms on the right-hand-side balance each other

to the first order, yielding an asymptotic dependence for

Pk as y. However when transformed, via Eq. (26), these

terms would impose an inaccurate near-wall behaviour

for the x-equation as y�3. By including only the cross-
diffusion term the near-wall dependency of x-equation is

maintained, and hence the pressure-diffusion is modelled

as

Px ¼ �x

k
Pk ¼ �CP

m

k

ok

oxj

ox

oxj
ð30Þ

with the near-wall balance for x given as (cf. Eq. (20))

� Ce2ð � 1ÞCkx
2 þ 2ð � CPÞ

m

k

ok

oxj

ox

oxj
þ m

o
2x

ox2j
¼ 0 ð31Þ

In Eq. (20), the near-wall x could only be fulfilled

through the inclusion of a damping function, f2. With

the addition of the pressure-diffusion model this can

however be avoided through the usage of appropriate

coefficients. The ratio of Cx2  ðCe2 � 1ÞCk and Ck can

be established in decaying turbulence where experi-

mental observation indicates that (Townsend, 1976)

k � t�n; n ¼ 1:25� 0:06 ð32Þ
For a k � x model, Wilcox (1998) shows that n ¼
Ck=Cx2. With Ck ¼ 0:09 the range for Cx2 is: 0:069 <
Cx2 < 0:076. Using Cx2 ¼ 0:072, the correct asymptotic
relation for x, given by Eq. (21), is achieved provided

that, CP ¼ 0:9.

2.4.3. Modelling the turbulent cross-diffusion term

For non-equilibrium flows, the k � e model often

predicts a too large turbulent length-scale, leading to an

overprediction of mt and consequently the heat transfer.

Yap (1987) was able to improve the result through an

additional term in the e-equation, i.e. the Yap-correc-

tion, which reduces the length-scale by increasing the

dissipation. It can be argued that the inclusion of a

turbulent cross-diffusion term may play a similar role.

Using TSDIA, Yoshizawa (1987) derived a sophisti-

cated model for the turbulent diffusion process, which

introduce cross-diffusion terms, similar to those given

above, Eq. (19). The TSDIA produces cross-diffusion

terms in both the k- and e-equations, although Yoshiz-

awa (1987) pointed out that the inclusion of such terms

in the k-equation would not render an improved per-

formance compared to the standard k-equation. For the

e-equation, however, Yoon and Chung (1995) concluded

that a cross-diffusion term may significant improve the

model behaviour for non-equilibrium flows.

In the k � e model of Yoon and Chung (1995) the

cross-diffusion term in the e-equation takes the form

DCD
e ¼ Cemt

ok

oxj

oðe=kÞ
oxj

ð33Þ

This term would, similarly to the Yap-correction, in-

crease the dissipation if, Ce < 0, since in the near-wall
region, oðe=kÞ=oy < 0 and ok=oy > 0. Transforming Eq.
(33) to the x-equation yields, with the definition of x as

in Eq. (16)

DCD
x ¼ 1

Ckk
DCD

e ¼ Ce

mt

k

ok

oxj

ox

oxj
ð34Þ

Thus the combination of the Yap-correction term, Eq.

(34) and the turbulent cross-diffusion term from the

transformation of the e-equation, Eq. (19) results in the

following term in the x-equation

mt

k

1

rx

þ 1

rk

þ Ce

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cx

ok

oxj

ox

oxj
ð35Þ

In order to retrieve a positive Yap-correction when

transformed back to the e-equation it is necessary to

have Cx < ð1=rx þ 1=rkÞ. In the present model it is
numerically optimised as, Cx ¼ 1:1, which yields a

positive Yap-correction in the near-wall region with

Ce ¼ �0:45.
For comparison, Table 1 lists Cx and Ce for relevant

models, where Cx and Ce are the model constants for the

turbulent cross-diffusion in the x-equation (Eq. (35))

and e-equation (Eq. (33)), respectively.

2.4.4. Model constants

The model constants of a k � x model may be ob-

tained from the transformation of a k � e model as in

Eq. (19) which suggests that Cx1 ¼ Ce1 � 1 and Cx2 ¼
CkðCe2 � 1Þ. For the present model the value of Cx2 is

Table 1

Turbulent cross-diffusion coefficients, from various turbulence models

Model Cx rk re, rx Ce

Menter (1994) 1.712 1 1.17 �0.143
Yoon and Chung (1995) 1.07 1 0.75 �1.26
Peng et al. (1997) 0.75 0.8 1.35 �1.25
Wilcox (1998) 0.3 1 1.67 �1.3
Rahman and Siikonen (2000) 0.77 1 1.3 �1
Kok (2000) 0.5 1.5 2 �0.67
Present 1.1 1 1.8 �0.45
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set to 0.072, using analogy to decaying turbulence, Eq.

(32). In the standard k � e model Ce1 ¼ 1:44, (Launder
and Spalding, 1974) here a slightly tweaked value, 1.49,

is applied, which translates to Cx1 ¼ 0:49.
The Wilcox k � x models (1988, 1993) uses rather

high turbulent Schmidt numbers of rk ¼ 2 and rx ¼ 2.
One of the reasons for this is probably due to the

neglected cross-diffusion terms, as compared with a

transformed e-equation. The addition of these terms to

the present model ensure that the standard value for the

k � e model of rk ¼ 1 can be applied. The value for rx is
connected to Cx1 and Cx2 through the log-law

Cx1 ¼
Cx2

Ck

� j2
ffiffiffiffiffiffiffiffiffiffiffi
CkCl

p
rx

ð36Þ

With j ¼ 0:41, the appropriate value for the turbulent
Schmidt number is, rx ¼ 1:8.

2.5. The new k � x turbulence model

In summary the new k � x turbulence model has been

developed in the following forms:

Dk

Dt
¼ Pk � Ckkxþ o

oxj
m

��

þ mt

rk

�
ok

oxj

�

Dx

Dt
¼ Cx1

x

k
Pk � Cx2x

2 þ Cx

m

k

�

þ mt

k

�
ok

oxj

ox

oxj

þ o

oxj
m

��

þ mt

rx

�
ox

oxj

�

The turbulent viscosity is given by

mt ¼ Clfl
k

x

fl ¼ 0:09þ 0:91

�

þ 1

R3t

�

1

"

� exp
(

� Rt

25

� �2:75
)#

with the turbulent Reynolds number defined as Rt ¼
k=ðxmÞ. The constants in the model are given as

Ck ¼ 0:09; Cl ¼ 1; Cx ¼ 1:1; Cx1 ¼ 0:49;
Cx2 ¼ 0:072; rk ¼ 1; rx ¼ 1:8

3. Solution procedure

3.1. Numerical method

The new model was implemented and evaluated using

the incompressible finite-volume method code CALC-

BFC (Davidson and Farhanieh, 1995). The code employs

the second-order bounded differencing scheme (van

Leer, 1974) for the convective derivates, and the second-

order central differencing scheme for the other terms.

The SIMPLE-C algorithm was used to deal with the

velocity–pressure coupling. CALC-BFC uses boundary-

fitted-coordinate, on a non-staggered grid with the

Rhie–Chow (1983) interpolation to smooth non-physi-

cal oscillations. In order to improve the diagonal dom-

ination in the TDMA solver, the cross-diffusion terms

are added to the left-hand side if they are negative and

on the right-hand side otherwise.

3.2. Boundary conditions

For the BFS flow, all variables are prescribed in the

inlet, while the Neumann condition are used at the

outlet. For the channel flow and rib-roughened cases,

periodic boundary conditions are applied for the inlet

and outlet boundaries. On the walls, no-slip condition is

used, Ui ¼ 0, k ¼ 0. The boundary condition for x is set
using the asymptotic relation, Eq. (21), for the first two

nodes to ensure the correct derivate at the wall. Fol-

lowing Wilcox (1998), this asymptotic relation is valid

only for yþ < 2:5 and hence it is of importance to refine
the mesh to ensure that at least the first two nodes stay

within this limit. Wilcox suggest that 7–10 grid points

are needed to eliminate any numerical errors. However,

it has been shown previously (Bredberg, 1999) that this

requirement can be relaxed substantially with little effect

on the predicted results, even for near-wall critical

properties such as the Nusselt number.

4. Results and discussion

The new k � x turbulence model is evaluated and

compared with other turbulence models for three dif-

ferent test-cases: the fully developed turbulent channel

flow, Res ¼ 395 (Moser et al., 1999), the BFS flow,
Reh ¼ 5100 (Le et al., 1997), and a rib-roughened

channel, ReH ¼ 30000 (Rau et al., 1998). Previous re-
views of turbulence models by e.g. Patel et al. (1985) and

Wilcox (1993) concluded that many of the older models

are not adequate. The turbulence models used for

comparisons are the Wilcox k � x (1993) denoted Wil-

cox, the k � e of Abe et al. (1994) (AKN), and a variant

of the Durbin k � e� v2 � f model, Lien and Kalitzin

(2001), (Durbin).

4.1. Fully developed channel flow

The new k � x turbulence model is first validated

through a fully developed turbulent channel flow, with

Res ¼ 395, (Kim, unpublished work, also Moser et al.
(1999)). The test-case is attractive, since periodic inlet–

outlet conditions can be applied. The self-similarity also

makes 1D computation possible reducing the CPU cost

to a minimum. In spite of the simplicity of this test-case,

the important wall effects are present in the flow. The

channel flow thus represents an appropriate test for
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LRN models. In addition, since the case is well analysed

in DNS, the model behaviour may be scrutinised to a

level not reachable for other test-cases.

Figs. 2 and 3 show the distribution of normalised

streamwise velocity and turbulent kinetic energy, res-

pectively, in comparison with DNS data. Included in the

figures are also the predicted results from the models by

Lien and Kalitzin (2001), Abe et al. (1994) and Wilcox

(1993).

The present model yields predictions in excellent

agreement with the DNS data. The Wilcox model gen-

erally underpredicts the velocity profile while the Durbin

model overestimates the velocity. The peak in the tur-

bulent kinetic energy is predicted as kþ ¼ 4:3, by the
present model, similar to the Wilcox and Durbin model,

while the AKN model underestimate k. DNS data gives

kþ ¼ 4:57. The predicted result for the turbulent shear
stress and dissipation rate, e, (not shown here), is similar

to other two-equation models.

4.2. Backward-facing step

For the BFS flow, the flow undergoes separation, re-

circulation and re-attachment followed by a re-devel-

oping boundary layer. In addition, this flow involves a

shear-layer mixing process, as well as an adverse pres-

sure, thus the BFS is an attractive flow for calibrating

turbulence models.

The case used here is the one that has been studied

using DNS by Le et al. (1997). This case has a relatively

low Reynolds number, Reh ¼ 5100, based on the step-
height, h. In the present computation the inflow con-

dition is specified using DNS data at x=h ¼ �10.
Neumann condition is applied for all variables at the

outlet located at x=h ¼ 30. No-slip condition is used on

the walls. The overall calculation domain ranges from

x=h ¼ �10 to 30, with the step located at x=h ¼ 0. The
channel height is 5h in the inlet section and 6h after

the step, yielding an expansion ratio of 1.2. A grid-

dependency study was performed with two different

meshes; a coarse mesh with 100� 90 nodes and, a fine
mesh with 200� 180 nodes. Both meshes gives almost
identical predictions although a discrepancy of about

1% is caused in the predicted re-attachment length,

through the usage of the coarse mesh. It should be noted

that the re-attachment length is a parameter most sen-

sitive to the grid refinement.

The inlet condition in the BFS-case is crucial for a

critical evaluation and comparison. The DNS data of

Spalart (1988) for the velocity profile and the k-profile,

are directly applied at the inlet. The inflow e or x is

specified in such a way that the model prediction mat-

ches the DNS data at x=h ¼ �3.
The skin friction coefficient, defined as: Cf ¼ 2sw=

ðqU21Þ, is shown in Fig. 4. One of the commonly used
quantities to justify the accuracy of a turbulence model

in a BFS-case is the re-attachment length of the main

separation. The present model gives, xr=h ¼ 6:3, which is
close to that of the DNS data, xr=h ¼ 6:28. The other
models give; xr=h ¼ 7:6 (Durbin), xr=h ¼ 5:7 (AKN) and
xr=h ¼ 7:8 (Wilcox). The skin friction coefficient is well
predicted but with some discrepancies in the re-devel-

oping region (x=h > 10), where the present model pre-
dicts a too rapid recovery to turbulent flow, notable in

Fig. 4, through the overestimation of Cf . This process is

highly effected by the diffusion of turbulent kinetic

energy, hence the value of rk. For the present model, Cf
can be slightly improved by increasing rk, however with

a degraded representation of the velocity profile as a

consequence.Fig. 2. Velocity profile, channel flow at Res ¼ 395.

Fig. 3. Turbulent kinetic energy, channel flow at Res ¼ 395.
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The normalised streamwise velocity profiles, U=U1
at x=h ¼ 4, 6, 10 and 15 are shown in Fig. 5. The profiles
matches the DNS data perfectly at x=h ¼ �3 for all
models (not shown), which was a pre-request for the

prescribed inlet conditions. In the re-circulation zone,

06 x=h6 6 the present model, gives markedly improved
predictions as compared with the other models, partic-

ular near the region of the re-attachment point (i.e. at

x=h ¼ 6). In the re-developing zone, x=hP 10 the pre-

sent model recovers quickly and matches the DNS data

fairly accurate.

The normalised turbulent kinetic energy profiles,

k=U 21 are shown in Fig. 6. In the re-circulation zone, at
x=h ¼ 4 and 6, the predicted turbulent kinetic energy is
connected to the predicted size of the bubble. A low

turbulence level (Durbin and Wilcox models) gives a

large bubble, while the opposite is valid for the AKN-

model. All models underpredict the turbulence level in

the mixing shear-layer, y=h � 1:5, similar to what Peng
and Davidson (2000) found in their predictions of the

same case.

The accuracy of the predicted turbulent kinetic en-

ergy with the present model is overall better than the

other models. Note that in the outer region of the

boundary layer, all the models used underestimate

the turbulence level. The level of reduction is connected

to the value of rk, and the magnitude of the turbulent

cross-diffusion. Increasing Cx for the cross-diffusion

term, and/or rk results in a more pronounced reduction

of the turbulence level at the edge of the boundary layer.

The present model represents an acceptable combina-

tion of the two constants. It should be noted that the

cross-diffusion term acts as production terms in this

region, increasing x, and hence reducing the eddy-

viscosity. A benefit from this construction, as noted by

Menter (1991) is that the model becomes less sensitive to

the freestream value of x, which otherwise is a draw-

back of the standard k � x model (see Fig. 1).

The profiles of the normalised shear stress, uv=U 21,
are shown in Fig. 7. The connection between the tur-

bulence level and the size of the re-circulation zone is

even more accentuated in these figures, where the Dur-

bin and Wilcox models severely underpredict the shear

stress at x=h ¼ 4 and 6. Beyond the re-attachment point
the results are improved for y=h < 1, while the results in
the shearing layer, y=h � 1:5 are generally underpre-
dicted.

4.3. Rib-roughened channel

The heat transfer performance of the present model is

evaluated in the rib-roughened case (RR) of Rau et al.

Fig. 4. Skin friction coefficient, BFS-case.

Fig. 5. Normalised mean velocity at x=h ¼ 4, 6, 10 and 15, BFS-case.

Fig. 6. Normalised turbulent kinetic energy at x=h ¼ 4, 6, 10 and 15,
BFS-case. Legend as in Fig. 5.
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(1998). The Reynolds number, based on the mean ve-

locity and the hydraulic diameter, Dh, is ReD ¼ 30000.
In the experiment, constant heat flux boundary condi-

tion was supplied through resisting heating, with the

wall temperature pattern provided by liquid crystals.

The channel, measuring 50� 50� 1000 mm, was made
of Plexiglas, to provide visual observation. The ribs,

which were insulated, and of size: 5� 5 mm, giving a
ratio of height-to-channel hydraulic diameter, e=Dh, of
0.1. Different locations of the ribs were used in the ex-

periment, here only the pitch-to-height ratio, P=e, of 9
with single-sided ribs case is used for comparison. The

experiment provides both flow field and heat transfer

measurements. In the present study the centreline

streamwise velocity and Nusselt number are used in the

comparison. The measured Nusselt numbers were nor-

malised with the Dittus–Boelter equation (Dittus and

Boelter, 1930) as introduced by McAdams (1942)

Nu1 ¼ 0:023Re0:8Pr0:4 ð37Þ
The uncertainty in the resulting enhancement factor,

Nu=Nu1, was estimated to be 5% for the experiment.
The computations were made using periodic bound-

ary condition at the streamwise boundaries, which was

verified in the experiment to prevail in the test section.

This reduces the uncertainty in the result due to the inlet

boundary condition. No-slip condition and constant

heat flux were applied at the walls. The rib was, as in the

experiment, insulated. In the present computation a 2D

mesh with: 100� 120 nodes was used. A grid-indepen-
dent study is shown in Fig. 8, where the mesh refinement

was reduced to half and doubled, respectively. As seen,

the computation on different meshes gives only a mar-

ginal effect on the predicted Nusselt number. The result

on the 100� 120, mesh is considered asymptotically
valid.

A 2D simulation for a channel with aspect ratio of

one may be questioned, due to the side-wall effects. The

side-wall induced secondary flows modify the centreline

streamwise velocity, however, whereas the local heat

transfer in the centre of the duct is only marginally af-

fected, which was also noted by Ooi et al. (2000). The

slight difference in predicted Nusselt number can be

observed in Fig. 8, where a comparison is made between

a 3D mesh (50� 60� 25) and three 2D meshes (coarse:
50� 60, used: 100� 120 and fine: 200� 240). Based on
these results, it was felt confident to use the results from

the 2D computations for the discussion. In addition, a

comparison between the present results with the pre-

dictions by Ooi et al. (1998) confirms the accuracy of the

numerical method.

The predicted streamwise velocity and turbulent vis-

cosity are compared with the experimental data in Fig. 9.

The velocity profiles are normalised using the bulk ve-

locity, Ub ¼ _mm=ðAqÞ. Since no vertical profiles of a tur-
bulent quantity, were presented in Rau et al. (1998), the

profiles of the turbulent viscosity are included only as

complementary data, and to aid in understanding the

behaviour of the models. The predicted turbulent vis-

cosity is normalised using the kinematic viscosity, m. The

computation domain measures x=e ¼ 9 by y=e ¼ 10,
with the rib located in the centre of the domain from

x=e ¼ 4 to 5. The profiles are shown only from the lower
wall to the centreline, with their origin located at

x=e ¼ 4:5 (centred on the rib) and x=e ¼ 8:5. The latter
location is close to the measured re-attachment point of

9:0 < xr=e < 9:25.
The present model predicts overall an accurate

distribution of the streamwise velocity, compared to

the measured data. The AKN model predicts, as for the

BFS-case, too a short re-circulation bubble, while the

Wilcox and Durbin model yield too a long bubble. None

Fig. 7. Normalised shear stress at x=h ¼ 4, 6, 10 and 15, BFS-case.
Legend as in Fig. 5.

Fig. 8. Grid dependency, RR-case
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of the models reproduces accurately the sharp velocity

gradient on the rib, or the intensive backflow in the re-

circulation zone. As noted from the turbulent viscosity

profiles, the velocity profiles are closely connected to the

predicted level of turbulent viscosity. In general, the

AKN model yields a high level of turbulence while

the Wilcox model gives a low one.

Two different approaches are used to specify the

turbulent Prandtl number, Prt in the present prediction:

either a constant Prandtl number according to Eq. (7),

or an algebraic relation as proposed by Kays and

Crawford, Eq. (8). A comparison between the Kays–

Crawford formulation and the constant turbulent

Prandtl number, with Prt ¼ 0:9 yields only a marginal
difference in the predicted heat transfer. A decrease of

the turbulent Prandtl number to Prt ¼ 0:8, resulted in a
general increase in the Nusselt number by 5%. For the

presented results the Kays and Crawford heat transfer

model was used.

Fig. 10 compares the Nusselt numbers predicted from

the different turbulence models. Both the present model

and the Durbin model give reasonable predictions, while

the Wilcox model underpredicts the Nusselt number,

and the AKN yields discrepancies immediately down-

stream the rib.

In a previous work (Bredberg et al., 2000), for a

similar rib-roughened configuration, a discussion was

made on the close connection between heat transfer and

turbulence level. It is re-confirmed in this computation.

The AKN-model which predicts a high level of turbu-

lence also overestimates the heat transfer, while the

Wilcox model underestimates the heat transfer as a re-

sult of the low levels of mt. This is consistently reflected

in the BFS-case where the re-attachment length was

underestimated by the AKN model and overpredicted

by the Wilcox model.

In contrast the Durbin model reproduces rather an

accurate heat transfer, in spite of its underestimation of

turbulence, Fig. 9(b). The reason may be attributed to

the formulation of the eddy-viscosity, in the Durbin

model, which contrary to the standard EVMs, is based

on two velocity scales, the turbulent kinetic energy, k,

and the wall normal fluctuating velocity vv.

5. Conclusions

In this study an improved k � x turbulence model is

presented. The model is evaluated through comparison

Fig. 9. Velocity and turbulent viscosity, RR-case.

Fig. 10. Nusselt number, RR-case.
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with available DNS and experiment data and with three

EVMs. The present model yields improved results for all

test-cases compared with the original Wilcox k � x

model. The model gives similar or improved predictions

as compared with the numerically and computational

more demanding four-equation k � e� v2 � f model of

Durbin.

The present model includes both viscous and turbu-

lent cross-diffusion terms, in the x-equation. Using an

analogy to the Yap-correction, through TSDIA, the

turbulent cross-diffusion is theoretically founded, and its

importance to reduce the sensitivity to the freestream

value of x is demonstrated. The viscous cross-diffusion

term represent an model for the pressure-diffusion pro-

cess, and also enables the present model to use the DNS

consistent boundary condition for the specific dissipa-

tion rate, xw ¼ 2m=Cky
2. Using the improved modelling

the number of empirical damping functions could be

reduce to one.
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