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SUMMARY 

This paper addresses the implementation of second-moment closure into a collocated variable arrangement 
body-fitted-finite-volume scheme in which Cartesian velocity components are used. The methods for 
avoiding instability in the solution procedure are described. A new method for the treatment of the near-wall 
regions for the momentum equations, as well as the prescription of the stresses at the wall, is described in 
detail. The performance of the methodology is assessed by applying it to two flow situations, where 
experimental data are available: the flow over a backward step, and the flow through a sinusoidal pipe 
constriction. The results are very promising. 
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INTRODUCTION 

The use of a staggered grid in the SIMPLE algorithm has proved the need for storage or 
recomputation of large amount of geometrical and other quantities. This problem can be avoided 
by solving the governing equations for the components of the dependent variables in fixed 
Cartesian co-ordinates on a non-staggered grid. This means that all variables are stored at the 
centre of the control volume, In this case, when the governing equations are transferred from 
physical co-ordinates to the computational co-ordinates, the components of the dependent 
variables can be calculated as scalars. This method has been suggested by Rhie and Chow’ and 
has been used by Burns and Wilkes,’ M a j ~ m d a r , ~  Peric et ~ l . , ~  Miller and S ~ h m i d t , ~  Shyy et 
and Braaten and Shyy.’ 

Another advantage of collocated variable arrangement is that the control volume for all 
variables coincide with the boundaries of the solution field and, therefore, simplifies the specifica- 
tion of the boundary conditions. 

However, the use of collocated variable arrangement may cause non-physical oscillations in the 
pressure and velocity fields. This problem can be overcome by means of the Rhie-Chow’ 
interpolation method. 

The crucial role of turbulence in most engineering flows necessitates the development and 
employment of methods which can be used in the simulation of complex turbulent flows with 
acceptable accuracy. In numerical calculations of turbulent flows, a turbulence model is used to 
account for the influence of the Reynolds stresses in the time-averaged momentum equations. In 
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many turbulence models, such as the k-6 model, an eddy viscosity assumption is used for 
calculation of these terms. 

The importance of curvature in all recirculating and swirling flows and weakness of the eddy 
viscosity models to capture the interaction between curvature-related strain and turbulent 
transport has shifted the attention away from these models and focused on the second-moment 
closure models (RSM).' 

The employment of second-moment closure with a general non-orthogonal collocated scheme 
gives rise to some difficulties. These difficulties are associated with the boundary conditions, the 
tensorial nature of the wall reflection terms in the pressure-strain components of the Reynolds 
stress transport equations, numerical instability due to the storage of the calculated stresses in the 
centre of the control volumes and lack of stability-promoting second-order gradients in the mean 
flow equations. 

The objective of this paper is to describe the use of second-moment closure model in 
a body-fitted finite-volume code with a collocated variable arrangement. 

SOLUTION METHODOLOGY 

General calculation procedure 

The basic idea in this method is to map the complex flow domain in the physical space to 
a simple rectangular domain in the computational space by using a curvilinear co-ordinate 
transformation. In other words, the Cartesian co-ordinate system x i  in the physical domain is 
replaced by a general non-orthogonal system ti. 

The steady transport equation for a general dependent variable @ in the two-dimensional 
Cartesian co-ordinates can be written as 

where rQ is the exchange coefficient and is equal to the viscosity in the momentum equations and 
to AjC, in the energy equation. The dependent variable Q, can be U ,  V,  T, k, E ,  G, etc. 

The total flux, convective and diffusive fluxes, is defined as 

It is now convenient to write equation (1) in the equivalent form 

Integration of equation ( 3 )  over any control volume in the physical space, using Gauss' law, gives 

Equation (4) is used for performing the transformation to the computational space co-ordinates 
(general non-orthogonal co-ordinates) t,. 

The scalar advection-diffusion equation (equation (4)) is discretized. The integration of this 
gives 

(1. A)e +(I A)w +( I .  A),, + (I * A) ,=SO~U,  (5 )  
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where e, w, n and s refer to the faces of the control volume; see Figure 1. The discretized equation 
is rearranged in the standard form 
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where 

The index NB refers to the neighbouring nodes. The summation in (6) and (7) is over the 
neighbouring nodes. The coefficient uNB contain the contribution due to convection and diffusion 
and the source terms Sp and Sc contain the remaining terms. 

Convection. For convenience and simplicity, we restrict ourselves in this and the following 
subsections only to the east face of the control volume for explanation of the numerical 
procedure. The total flux I contains convective and diffusive fluxes. The first term on the 
right-hand side of equation (2) is the convective term. The mass flow rate through the east face can 
be expressed as the scalar product of the velocity and area vectors multiplied by the density. Thus, 
we have 

k e  = (PU a Ale = Pe ( uc Aex + ve A,,), 

where the Cartesian areas are calculated by 

A ex = I A I e n  . ex, A e y = l  Alen. e,, 

(8) 

(9) 
where lAle is the total area of the east face, n its normal vector and e the Cartesian base vector. In 
order to obtain the velocity components on the control volume faces from those on the control 
volume centres, the Rhie-Chow' interpolation method is used. In this method the weighted linear 
interpolation in physical space is not used in order to avoid non-physical oscillations in pressure 
and velocity. The method can be described as follows: Consider the interpolation to the east face 
of a control volume centred at P in Figure 2. The pressure gradient is subtracted from the velocity 
components stored at the centre of the control volumes, i.e. 

N 

1 
S 

Figure 1 .  Control volume 
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Figure 2. Grid nomenclature 

The velocity components on the east face is now calculated as 

- ( P E  - Pp)Gu 

! PE I b ) e  ' 
u, = R,6, +(1 -Q,)6, - 

where Q, is the interpolation factor in the x-direction and is calculated as 

and P,, P,, Pee in equation (10) are calculated by linear interpolation. As seen from equation (1 1)' 
the pressure gradient is now calculated using the adjacent nodes of the east face. This avoids 
non-physical oscillations in the pressure field. The velocity V, is Calculated in a similar manner. 

Difuusion. The second term in the total flux I presented in equation (2) is the diffusion term. 
Through an area A, we have 

(I.A)diff= -TA.V@, (13) 

where A - V @  in equation (13) can, for the east face, be rewritten in Cartesian co-ordinates as 

and, in general, non-orthogonal co-ordinates as 

where gi is the covariant (tangent) base vector. The appearance of the metric tensor, g'j in 
equation (1 5), is due to the fact that the components of the product A - g j  and the derivative d@/dtj  
are both covariant and the product of their contravariant base vectors is not zero for i # j  since 
they are non-orthogonal to each other. The components of g'j can be calculated as shown e.g. in 
Reference 9. 

The normal vector n in equation (1 5)  is equal to the cross product of g, and g, which implies 
that n 'g,  - n - g ,  =O. With these identities, equation (15) can be written as 

Pressure correction equation. The pressure correction equation is obtained by applying the 
SIMPLEC algorithm" on the non-staggered grid. The mass flux ri2 is divided into one old value, 
k*, and another correction value, h'. The mass flux correction at the east face can be calculated 
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where U s  is the covariant correction velocity. The covariant velocity components are related to 
the pressure gradient'' 

where 6u is the volume of the control volume. By introducing equation (18) into equation (17), we 
obtain 

Consider the continuity equation in, for simplicity, one dimension: 

ke -mw = 0. (20) 

If riz=fi*+m' and equation (19) are substituted into equation (20), we obtain 

[ $ A - V P f ] w  - [ $ A .  V P ' ]  e +m: -k: =O. (21) 

This is a diffusion equation for the pressure correction P'. A * Vp' can be calculated from equation 
(16) by replacing 0 by P'. 

lmplemen tarion of second-momen t clo.sure 

The momentum equations for a steady, two-dimensional incompressible flow can be written as 
__ 

PUjUi, j =  -P , i  + ( p u i ,  j ) ,  j - ( p U i u j ) ,  j. (22) 

Since the time-averaging process generates unknown products, p G . ,  the closure variant intro- 
duced by Gibson and Launder'* is used to calculate the Reynolds stresses appearing in the above 
equation. The model transport equation for the stress components can be expressed as 

( P U k K . ) ,  k =D. 13 .+ P- 1J . - P & .  1J . + n.. EJ' 

where the terms on the right-hand side represent 

Pi j :  the production rate of G, 
__ __ 

Pi,= -puiulUj,r-PUjUIUi,I,  

c j j :  the dissipation term of G, 
&ij'2VUi, I U j ,  1, 

D i j :  the turbulent difSusion, 

IIij: the pressureestrain correlation term, which promotes isotropy of turbulence 
~ _ _ -  

n i j = p ( u i , j + u j , j ) .  
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In order to eliminate the unknown correlations appearing in the Reynolds transport equation, the 
pressure-strain, dissipation and turbulent diffusion terms require model approximation. 

by The assumption of local isotropy enables us to approximate the dissipation of 

& i j = + 8 i j E ,  ( 28 )  

where E is the dissipation rate of kinetic energy. The fluctuating pressure p can be eliminated from 
the pressure-strain correlation via a Poisson equation for p .  It can be shown that there are three 
distinct processes which contribute to the pressure--strain correlation. These are: 

1. Interaction of fluctuating velocities (l-Iij)l, which is also referred to as the return-to- 
isotropy term,13 

2. Interaction of mean strain and fluctuating velocities (nij)2, which is also referred to as the 
return-to-isotropy of the production term,14 

3. Both processes in equations (29) and (30) are influenced by the pressure of wall proximity 
effects” which damp fluctuations normal to the wall and enhance fluctuations parallel to 
the wall. These effects are presented by 

where 

with Aq being wall normal distance, ,f is the wall-distance function and may be related to 
Cartesian-velocity-oriented components by 

.fx=ntf, fy=n22f,  f x , = n l n z f :  (34) 

The minor contribution of the turbulent diffusion can be approximated by 

The transport equation (23 )  for Reynolds stresses are discretized in the same way as for any other 
dependent variable CD. 

The Reynolds stress equation may be expressed as 

- - pE - C . . - D . . = a . .  I J  
I ]  I ] ,  1 p 11 + a i j ,  Z p 2 2  + “ i j ,  3 pl2 + aij, 4 P k k  +k (aij, g u z  + xi,, g v 2  + aij, 7uuj-k aij, 8PE,  (36)  

where the commas in the x-coefficients are not the tensorial differential sign. Cij  represents the 
convection term of equation (23). The a-coefficients are tabulated in Table I. 
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Table I. a-coefficients in equation (36) 

- 2 ( i i = l l )  7 (ii=22) uv ( i i  = 12) 

The turbulence energy k and its rate of dissipation c are calculated by 

a 
- axi (pUiE) =L axi  [ ( p + ~ )  &] +: (cE1 Prod. - c E Z p ) ,  

where the production term, Prod., has the following form in RSM: 

whereas in k-E, 

(37) 

(38) 

The model constants are (see e.g. Reference 15) 

( ~ 1 ,  ~ 2 ,  c;, c;, c,, cE1. cE2, ~,)=(1~8,0.6,0*5,0.18,0~22,0.18, 1-45, 179,049) 

Stability assurance. At sufficiently high Reynolds number, the viscous effects become negligible 
and the viscous diffusion term in equation (22) becomes negligible and, in the absence of any 
linkage between the stresses with their corresponding strain, the problem of numerical instability 
arises. This problem can be overcome by reformulation of the &&equation in a way that 
a gradient-type diffusion term pij U1,  appears in the equation. p i j  is called the apparent viscosity16 
and should be unconditionally positive. 

The equation for G. at any grid point can be written in the following form: 
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The 8-coefficients are tabulated in Table TI. Note that the comma in the 8-coefficients are not the 
tensorial differential sign. 

The apparent viscosities extracted from the above equation are 

(no summation on i ) ,  (42) 

Insertion of these viscosities into the 
co-ordinates, 

P(Uu, j ) ,  j =  -p .  I 

( i # j  and no  summation on i and j ) .  (43) 

U-momentum equation, for example, gives in Cartesian 

+ (Pl1 u1, 1 ), 1 + ( P I 2  U L d ,  2 + sex,,,. (44) 

The remaining terms in equation (41) after extraction of apparent viscosities are inserted 
into S,,,,,. 

According to  equation (16), the apparent viscosities should be transferred to the general 
non-orthogonal co-ordinates (l ,  q). 

The rules for transformation from the Cartesian co-ordinate system to any other general 
co-ordinate system and vice versa are 

where [ A ]  and [ B ]  are given in Reference 17. J (= Jacobian) is the determinant of [ A ] ,  which is 
equal to Jy, see Reference 9. The derivatives dUj5x and aV/dx ,  for example, can be written by 

Table 11. b-coefficients in equation (41) 
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means of equation (46) as 

Identification of equations (42), (43) and (47) gives the apparent viscosities in general orthogonal 
co-ordinates as 

Pl 1 =1;1 1(B11l2 + 1;1*(B21)2, 

P12 = 111 ( B ,  212 + P I  2 (B2J2> 

(48) 

(49) 

where p l l  and pi2 are associated with 6 U / 2 t  and I?Ujr?q, respectively, neglecting the terms 
containing cross-derivatives. Above, the integrated diffusion term (i.e. the first derivatives) has 
been transformed. 

Due to the involvement of the normal stresses in the apparent viscosities, special care must be 
taken to assure that at no stage in the iterative sequence do the normal stresses become negative. 
This can be assured by special treatment of the source term 

s = sc +SpZi. (50) 
If the production terms during the iteration process attain positive values, they are insered into 
the constant part of the source term S,; otherwise, they are inserted into S,: 

Sc=max(rii, 1f'11,0)+max(xii, 2 P 2 2 r  0) 
- 

(51) 
E 

+max(aii. 3 ~ 1 2 . 0 ) + m a x ( r ~ ~ , q ~ ~ ~ ,  o)+I ajj.(7- j)u:-i+aii, nE, 

Sp=[min(aii, l P l l ,  0)+min(aii,2P22, 0) 

(52) 
E 

+min(aii, 3 ~ 1 2 ,  ~ ) + m i n ( c e ~ ~ . ~ ~ ~ ~ ,  0) ] / i i7++~~,(~+~))  -. 
k 

Boundary conditions 

Inlet and outlet. In the present case studies the fully developed values of all the variables are 
prescribed at the inlet. Since there are no area changes (in our cases) at the outlet region, and this 
region is sufficiently long and far downstream, the flow may safely be assumed as fully developed, 
which implies negligible streamwise gradients of all variables 

@= Ui,  P', k ,  8, G,. (53) 

Walls. Due to the viscous influences near the walls, the local Reynolds number becomes very 
small; thus, the turbulence model, which is appropriate only for high Reynolds numbers, becomes 
inadequate. Both this fact and the steep variation of the properties near the walls necessitate 
a special treatment for nodes close to the walls. 

When using wall functions for the momentum equations, shear stresses are prescribed at the 
boundaries. In Cartesian geometries or when solving for covariant velocity components where 
the velocity components are parallel to the boundaries this poses no problem. The procedure of 
applying shear stresses in a general co-ordinate system when the velocity components are not 
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parallel to the boundaries is more complicated. In the present work a novel, simple treatment is 
proposed. 

The wall function employed in this work can be summarized as follows: 

(a) Far q+ 2 11.63, where pJp% 1 ,  7 ~ 7 ~ :  

The wall shear stress is obtained by calculating the viscosity at the node adjacent to the wall 
from the log law. The turbulent viscosity used in the momentum equations is prescribed at 
the nodes adjacent to the wall as follows: 

au u 
7 , = p U : = p t - Z p , - .  ar r 

For pi, we obtain 
u, p * = u  PU*V 

The law of the wall can be written as 

u 1  
- ln(Eqf). 

u* Jc 

Finally, we have for pr 

(54) 

(55) 

where E=9  and the von Karman constant, h:=O41. q denotes the normal distance to the 
wall. 
The turbulent kinetic energy is set as 

s (58) k = C - 0 ‘ 5  u2 * ’  
The energy dissipation rate is set as 

The turbulent stresses are obtained by two methods (BCI and BC2 below) 
(i) The first method (BC1) was derived by Launder et aE.,18 who studied several well- 

documented wall flows and presented the following boundary conditions for the 
turbulent stresses: 

d P  u u = - u ~ + y - - ,  
- 

dX 

(ii) The second method (BC2) has been presented by Lein and Leschziner.” They derived 
the following values of the stresses in the log-law region by applying the stress equation 
to local energy equilibrium, and setting the wall distance function equal to unity and 
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using equation (59): 
A - 

t i2  = 1-098k, 

v = 0.247k, 

uv =0.255k, 

w2 =@653k, 

- - 
* ~- 

A __ 

The above stresses are wall-oriented and should be transformed to the Cartesian co- 
ordinate system in which the velocity components are prescribed within the numerical 
scheme. We then have 

1 * _ _  
u2=u*t:. + 7 n :  +2uvt1n1, (68) 

2 = 2 t g  +A: + 2Zt2 112, (69) 

uv = u2 t ,  t2 + 2 n l  n2 + L ( t ,  n2 + t 2 n , ) ,  (70) 

A 1 * 

A - A _ _  

where tl , t 2 ,  nl  and n2 are the tangential and normal components of the wall-oriented 
unit vector, respectively. 

(b) For v' < 11.63, where p t / p e  1 ,  T Z : Z ~ ,  U ,  is obtainedfrorn 

Numerical solution procedure 

A finite-volume method with collocated variable arrangement is used for solving the equation 
system. The pressure and mean velocity fields are coupled by the STMPLEC algorithm." The 
diffusive terms are discretized with the central differencing scheme. Three different discretization 
schemes have been tested for the convective terms: hybrid upwind/central difference,' the 
second-order scheme of van Leer2' and quadratic upstream-weighted interpolation scheme of 
Leonard.21 The algebraic equation system arising from the discretization is solved by the TDMA 
algorithm. The convergence criterion is that the sum of the absolute residuals divided by the inlet 
fluxes is below for all variables. This criterion was satisfied for all results presented in this 
paper. 

RESULTS AND DISCUSSION 

The performance of the above-described methodology is assessed by comparing computations 
with experiments and other numerical calculations in two examples: the flow behind a backward- 
facing stepzz and the flow through a sinusoidal pipe con~ t r i c t ion .~~  

The first test case - backward-jacing step 

The schematic diagram of this case is shown in Figure 3. At the inlet, which is located at 5H 
upstream of the step, the fully developed values of the dependent variables are imposed. The 
computations were carried out for 100 x 38 and 80 x 30 grid points. No significant differences 
were observed in the results. However, in order to compare the obtained results with the 
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Figure 3. Backward-facing step configuration 

i H  
numerical results calculated by others,15 100 x 38 grid points were chosen. Turbulent stresses and 
velocity distributions at three different axial locations using the RSM and k-E models are 
presented in Figures 4 and 5. These results are compared with the experimental data of Durst and 
Schmittzl and the numerical results obtained by Obi et al.” The reattachment point is predicted 
to be at x / H  = 7-908 and x / H  = 7.397 using the RSM and k-8 models, respectively. The experi- 
mental reattachment length is 8.5. From the velocity profiles, it can be seen that the k--E model is 
more diffusive than the RSM, and that the velocity gradient in the shear layer bounding the 
recirculation region is smeared out when the k--E model is used; see Figure 4. The reason for this is 
that turbulence is stabilized (damped) by the convex streamlines. The RSM does account for this 
phenomena, whereas the k--E model does not. However, both models underpredict the strength of 
the back flow; see Figure 4. This is further confirmed by comparing the shear stresses in Figure 
5(a), where the experimentally measured are very small-compared to the predicted shear 
stresses-in the backflow region. One explanation for the discrepancy can be the large scale, 
highly turbulent structure of the separated, recirculating flow, where the turbulent fluctuations 
are of the same order as the mean v e l o c i t i e ~ . ~ ~ * ~ ~  The predicted 2-values are rather well in 
agreement with the experimental data. It is interesting to note that, as the reattachment point is 
approached, the difference between the experimental 2 and 7 decreases, i.e. the anisotropy in the 

0 . 0 0  0 . 3  0 . 0 0  0 . 3  0 . 0 0  0 . 3  0 . 6  0 . 9  1 . 2  1 . 5  

u /uo  
Figure 4. Mean velocity profiles calculated with two different turbulence models 
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0 

Figure 5(a). Turbulent shear stress calculated with two different turbulent models 

P r e s e n t  w o r k  
E x p t . , d a t a  o f  D u r s t  o n d  S c h r n i t t  

0 N u m e r i c a l  d a t a  o f  O b i  e t  a l .  

7' 3. . 
H / l  = 2 

1 

0. '7 0 0  

H / l  = 4 . . H / L  = 6 
3' I. 

0 .  

0 

O/ 

0 . 0 0  0 . 0 2  0 . 0 0  0 . 0 2  0 . 0 0  0.02 0 . 0 4  

2 / U o 2  

Figure 5(b). Comparison of the 2-component of normal stresses in recirculating region with experimental and numerical 
data 

experimental normal stresses decreases; this is not the case in the RSM calculations; see Figures 
5(b) and 5(c). These observed differences can be a combination of two effects. First, the near-wall 
terms (nij)wl and (IIij)w2 (see equations (31) and (32)) in the RSM are not suitable for stagnation- 
like flow in the reattachment region. However, there are no better methods to take into account 
the effects of walls on turbulence. Second, the experimental flow in this region is highly unsteady 
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P r e s e n t  w o r k  
E x p l .  d a t a  o f  O u r s t  a n d  S c h r n i I I  

0 N u m e r i c a l  d a t a  o f  O b i  et 0 1 .  

Y 

0 . 0 0  0 . 0 2  0 . 0 0  0.02 0 . 0 0  0 . 0 2  0 . 0 4  

7 /  U O ?  

Figure 5(c). Comparison of the 7-component of normal stresses in recirculating region with experimental and numerical 
data 

with large fluctuations which are greater than or at least comparable to the mean backflow 
velocitie~.’~ Thompson and WhitelawZ4 conjecture that positive instantaneous velocities were 
measured for at least part of the time at all locations throughout this region. The unsteadiness of 
the flow in this region is likely to reduce the anisotropy. 

As seen, near the step, the computational data of the present work are in good agreement with 
the experimental data. However, further downstream, the agreement becomes worse. As seen 
from Figure 5(c), the normal stress 3 is underpredicted compared to 2 and E. The calculations 
presented by Obi et a/. ‘5 underpredict v” even more. However, when they restricted the effect of 
the wall reflection (equation (31) and (32)) terms to the near-wall region y +  5100, the results of 3 
improved significantly. In the present work, the effect of the wall reflection terms is taken fully 
into account throughout this case. 

The calculations were performed by discretizing the convection terms of the turbulent quantit- 
ies by the hybrid scheme. The convection terms of the momentum equations were approximated 
by the hybrid as well as the van Leer scheme. No changes in the results could be observed when 
either of the schemes was used, indicating limited numerical diffusion. 

The second test case-sinusoidal pipe constriction 

The schematic diagram of the stenosis is depicted in Figure 6. To assess the effect of curvature 
of the grid lines on the performance of the code in simulating the turbulent flows in geometries 
with curvilinear boundaries, the turbulent flow through an axisymmetric constriction in a tube is 
studied using both a RSM and a k--E model. To study the grid size effects on numerical accuracy, 
exploratory test runs were carried out for three different grid sizes. The results are compared with 
the experimental data obtained by Deshpande et aE.;I9 see Figure 7. The results are only slightly 
affected by the grid size. As in the previous case, 100 x 36 grid points were chosen for the final 
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u c  / Urn,,” 

4R 

Figure 6. Schematic diagram of the pipe with constriction 

E x p t .  r e s u l t s  
1 0 0 x 3 6  G r i d  p o i n t s  

6 0 x 3 6  
1 0 0 x 1 8  ....-...... 

4 

3 

2 

1 

0 I I I I I 1 I I I I I I 

0 5 10 1 5  2 0  2 5  
X 

Figure 7. Centreline velocity distribution in the pipe with constriction for different mesh sizes 

computations. In the computations two different wall boundary condition methods, described 
previously, are applied for prescribing the Reynolds stresses. The second boundary condition 
(BC2) gives slightly better results compared to (BCI). Therefore, the computations were per- 
formed by adopting (BC2). The convection terms of the momentum equations were approximated 
by three different schemes, i.e. hybrid, van Leer and QUICK schemes. The convection terms of 
turbulence quantities were discretized by the hybrid scheme only in order to avoid convergence 
problems. The comparison of these three schemes are presented in Figure 8. The centreline 
velocity predicted by the various scheme for the RSM is not extremely different. However, the k--E 
model with the van Leer scheme gives results differing considerably from the other schemes. Lein 
and Leschziner” adopted a combination of QUICK and MUSCL for approximation of convec- 
tion of momentum and turbulence quantities, respectively. The results obtained in Reference 19 
are almost identical to the ones in the present work, where the van Leer and QUICK schemes are 
used. 
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E x p t .  r e s u l t s  
R S M  - Q u i c k  
R S M  - v a n  L e e r  
R S M  - h y b r i d  
k - E - v a n  L e e r  

I I I I I I I I I I I I 

0 5 1 0  1 5  2 0  2 5  
X 

Figure 8. Comparison of the centreline velocity distribution calculated with three different schemes 

RSM - model 

t - 6 - model 
Figure 9. Velocity vectors at  the downstream of the throat calculated by two different turbulence models 

The velocity vectors and streamfunction are plotted and presented in Figures 9 and 10. This 
case presents a region of strong acceleration with a converging section and a region of severe 
adverse pressure gradient which results in flow separation. Both models, k--E and the stress 
closure, predict the presence of a recirculating region. As seen from Figures 9 and 10, the 
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RSM - model 

k - E - model 

Figure 10. Streamfunction contours in the pipe with constriction-calculated with two different turbulence models 

second-moment closure predicts a longer and higher recirculation zone than the k--E model. 
Figure 9 shows that the second-moment closure predicts a thicker, wider and higher shear layer 
bordering the recirculating region. This can probably be attributed to the ability of the RSM to 
account for streamline curvature. In the shear layer enclosing the recirculating region, the 
streamlines have convex curvature, which stabilizes the turbulence. Another reason why the k--E 
model produces more turbulence than the RSM is that the contraction region causes negative 
production of 2, a phenomenon which RSM accounts for, but the k--E model does not. The 
production terms due to the aU/ax derivative in the two models are: 

- au 
ax RSM: PI, = -2pu2 -, 

2 

k--E: P k = p L ,  (g) . (73) 

The production term P k  in the k--E model can never become negative in accelerating flow, but the 
RSM faithfully reproduces the physical situation. 

Axial variations of the centreline velocity in Figure 8 show good agreement with the experi- 
mental data up to the throat section. A difference can be observed beyond this point. None of the 
models predicts the correct behaviour of the centreline velocity, but the second closure model 
responds more sensitively to the adverse pressure gradient beyond the throat; see Figure 8. As 
mentioned above, both models predict the recirculating region. However, this region is found to 
be thinner and longer than the region which actually exists. Comparing the prediction of the 
models, it seems that the stress model captures the recirculation somewhat better than the k-E 
model. The computed and the experimental data reach a good agreement far downstream since 
both tend to fully developed values. 

Unlike the previous case, the wall reflection terms caused some difficulties in this case. By 
taking these terms into account, it was observed that the recirculating region stretched along the 
axial direction near the wall. The main purpose of these terms is to damp the wall-normal 
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components as a function of the turbulent length scale and the wall distance. In this case, where 
a separated shear layer associated with large turbulent length scales develops from the throat, this 
effect becomes unfavourably strong in the core of the pipe flow despite the large distances from 
the wall. Therefore, the computations were performed without applying wall reflection terms in 
the recirculating region. Other works have reported similar problems.” 

It is somewhat disappointing that the RSM does not produce results in much closer agreement 
than the k--E model does. One reason for the poor performance of the RSM can be due to 
inadequate modelling of the near-wall region; the near-wall correction term in 2 is one problem. 
Another one might be due to the wall functions. 

CONCLUSIONS 

The successful incorporation of the Reynolds stress closure into a body-fitted-finite-volume 
framework in which collocated variable arrangement as well as Cartesian velocity components 
are used is reported in this paper. The absence of diffusion-related strain terms in the momentum 
equations at high Reynolds numbers causes instability in the solution sequence. This problem 
and the problem of the appearance of non-physical oscillations in the solution domain due to the 
employment of collocated variable arrangement are addressed in detail. The near-wall treatment 
of the dependent variables, necessary to match the curvilinear boundaries is also presented. Two 
complex applications were used to assess the performance of the described methodology. The 
computed data of flow over a backward-facing step are in good agreement with the experimental 
results in the vicinity of the step. However, further downstream, discrepancies can be observed. 
The calculated results of the flow through a pipe constriction show the correct prediction of the 
recirculating zone. The predictions of the velocity along the axis of the pipe agree reasonably well 
with the experimental data. However, both turbulence models fail in predicting the axial velocity 
variation in the diverging section of the pipe. 

APPENDIX: NOMENCLATURE 

A area 
a coefficients in discretized equations 
c1, cz, c;, c;, 
CE? C&1, C&Z, 

c, 
Dij turbulent diffusion term 
ei Cartesian unit base vector 
f wall-distance function 
g.. 11’ g i j  

gi 
9 determinant of gij 
H 
I 
k turbulent kinetic energy 
L 
m mass flow rate 
n unit normal vector 
P pressure 
P’ pressure correction 

coefficients in the turbulence models 

covariant and contravariant components of the metric tensor 
covariant base vector (=unit base vector tangential to the grid lines) 

inlet height of the backward-facing step 
total flux (convective and diffusive fluxes) 

length of the backward-facing step 
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-puiuj 
s1 

production term in k-6 model 
production term in RSM 
source term in general equation 
temperature 
fluctuation velocity in the main flow direction 
velocity in x-direction 
centreline velocity in x-direction 
velocity components 
mean velocity 
velocity in y-direction 
fluctuation velocity in y-direction 
streamwise co-ordinate 
transversal co-ordinate 
volume of a control volume 
dissipation rate of the turbulent kinetic energy 
dissipation term of G. 
distance normal to the wall 
thermal conductivity 
dynamic viscosity 
kinematic viscosity 
co-ordinates along (tangential to) the grid lines 
pressure-strain correlation term 
density 
general dependent variable 
Reynolds stress components 
interpolation factor 

REFERENCES 

t .  C. M. Rhie and W. L. Chow, ‘Numerical study of the turbulent flow past an airfoil with trailing edge separation’, 

2. A. D. Burns and N. S. Wilkes, ‘A finite difference method for the computation of fluid flow in complex three- 

3. S. Majumdar, ‘Developing of a finite-volume procedure for prediction of fluid flow problems with complex irregular 

4. M. Perk, R. Kessler and G. Scheuerer, ‘Comparison of finite-volume numerical methods with staggered and 

5. T. F. Miller and F. W. Schmidt, ‘Use of a pressure-weighted interpolation method for the solution of the incompress- 

6. W. Shyy, S. S. Tong and S. M. Corre, ‘Numerical recirculating flow calculation using body-fitted coordinate system’, 

7. M. Braaten and W. Shyy, ‘Study of recirculating flow computation using body-fitted coordinates: consistency aspects 

8. M. A. Leschziner, ‘Modelling engineering flows with Reynolds stress turbulence closure’, J .  Wind Eng. Ind. Aero- 

9. F. Irgens, Tensoranafyse og Kontinumsmekanik, del Ill. Institutt for Mekanikk, Norge Tekniska Hoskole, Trondheim 

10. J. P. Van Doormal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid 

11. S. V. Patankar, ‘Numerical Heat Transfer and Fluid Flow, McGraw-Hill, Washington, DC, 1980. 
12. M. M. Gibson and B. E. Launder, ‘Ground effects on pressure fluctuations in the atmospheric boundary layer’, 

13. J. C. Rotta, Turbulente Stromungen, B. G. Teubner, Stuttgart, 1972. 

AIAA J. ,  2, 1527-IS32 (1983). 

dimensional geometries’, AERE R 12342, Harwell Laboratory, U.K., 1986. 

boundaries, SFB 2/0/T/29, University of Karlsruhe, 1986. 

collocated grids’, Comput. Fluids, 16, 389-403 (1988). 

ible Navier-Stokes equations on a non-staggered system’, Nunter. Heat Tramfer, 14, 213-233 (1988). 

Numer. Heal Transfer, 8, 99-113 (1985). 

and mesh skewness’, Numer. Heat Transfer, 9, 559-574 (1986). 

dynam., 35, 21-47 (1990). 

1966 (in Norwegian). 

flows’, Numer. Heat Transfer, I, 147-163 (1984). 

J .  Fluid Mech., 86, 491 (1978). 



544 B. FARHANIEH, L. DAVIDSON AND B. SUNDEN 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
25. 

D. Naot, A. Shavit and M. Wolfshtein, ‘Interaction between components of the turbulent-velocity correlation tensor’, 
Israel J. Techn., 8, 259 (1970). 
S. Obi, M. Perit and G. Scheuerer, ‘A finite-volume calculation procedure for turbulent flows with second-order 
closure and collocated variable arrangement’, Proc. 7th Symp. Turbulent Shear Flows, Stanford University. 1989, 
pp. 17.4.1-17.4.6. 
P. G. Huang and M. A. Leschziner, ‘Stabilization of recirculating-flow computations performed with second moment 
closures and third-order discretization’, Proc. 5th Symp. Turbulent Shear Flows, Cornell University, 1985, 

L. Davidson and B. Farhanieh, ‘CALC-BFC a finite-volume code employing collocated variable arrangement and 
Cartesian velocity components for computation of heat and mass transfer in complex three-dimensional geometries’, 
Publication 91/14 ZSSN 1101-9972, Dept. of Thermo- and Fluid Dynamics, Chalmers University of Technology, 
Goteborg, Sweden, 1991. 
B. E. Launder, G. J. Reece and W. Rodi, ‘Progress in the development of a Reynolds-stress turbulence closure’, 
J .  Fluid Mech., 68, 537-566 (1975). 
F. S. Lein and M. A. Leschziner. ‘Second-moment modellinp of recirculatine flow with a non-orthoeonal collocated 

pp. 20.7-20.12. 

., ., ., 
finite-volume algorithm’, Proc. 8th Symp. Turbulent Shear Flows, Technical University of Munich, I99 1, pp. 
20.5.1-20.5.3. 
B. Van Leer, ‘Towards the ultimate conservative-difference-scheme. 11. Monotonocity and conservation combined in 
a second-order scheme’, J. Comput. Phys., 14, 361-370 (1974). 
B. P. Leonard, ‘A stable and accurate convective modeling based on quadratic upstream interpolation’, Comput. 
methods appl. mech. eng., 19, 59 (1979). 
F. Durst and F. Schmitt, ‘Experimental studies of high Reynolds number backward-facing step flows’, Proc. 5th Symp. 
Turbulent Shear Flows, Cornell University, 1985, pp. 5.19-5.24. 
M. D. Deshpande and D. P. Giddens, ‘Turbulence measurements in a constricted tube’, J .  Fluid Mech., 97, 65-89 
(1980). 
R. L. Simpson, ‘Turbulent boundary-layer separation’, Ann. Reu. Fluid Mech., 21, 205-234 (1989). 
B. E. Thompson and J. H. Whitelaw, ‘Characteristics of a trailing-edge flow with turbulent boundary-layer 
separation’, J .  Fluid Mech., 157, 305-326 (1985). 


