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Abstract
The present work focuses on studying the axisymmetric turbulent im-
pinging jet numerically. A low-Reynolds ���	� model and the wall-normal
Reynolds stress elliptic relaxation turbulence model ( 
����� model) are
implemented in an in-house Navier-Stokes solver to accomplish the com-
putations. In the present case, the inlet is located two diameters above
the impingement wall; the Reynolds number is ������������� and the flow
being fully developed at the jet discharge. The different results are com-
pared with existing experimental data for their validation.

The standard ����� model fails in predicting flow fields where a stag-
nation point is encountered and/or strong streamline curvature takes
place. This is the case of the impinging flow which is dominated by ir-
rotational straining and flow curvature. Due to its high heat transfer
rates near the stagnation point, impinging jets have been used in many
engineering and industrial applications where heating or cooling pro-
cesses are required. Hence the necessity of developing improved turbu-
lence models which let us correctly forecast the flow and thermal fields
of this type.

The 
��	��� model is found to perform much better than ordinary two-
equation closure models for this flow configuration. As a consequence a
new time scale constraint, based on the realizable 
 � ��� model, is im-
plemented for the low-Reynolds � �!� model. This time scale constraint
substantially improves the flow predictions near the stagnation point
and in the wall-jet region, as well as a better heat transfer coefficient
is obtained. Finally, the use of a limiter for the production of kinetic
energy in the low-Reynolds �"�!� model is also examined.
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Chapter 1

Introduction

The axisymmetric impinging jet studied in this work is a typical exam-
ple of wall-bounded shear flows. The inlet flow which is fully developed
exits a pipe of diameter � at a height of � jet diameters from the wall
( ��������� ), impinges onto the wall surface and disseminates radially
along the solid boundary. Due to its high level of heat transfer rate
near the stagnation point, jet impingement is used in many engineering
and industrial applications where heating, cooling or drying processes
are required. Examples of such applications are cooling of gas turbine
blades and electronic equipment.

The flow field of an impinging jet comprises three distinctive flow re-
gions, namely a free jet region, a deflection region (or stagnation region)
and a wall jet region as shown in Figure 1.1. A shear layer is created
due to the velocity difference between the potential core of the jet and
the ambient fluid. Commonly this shear layer is the source of the tur-
bulence in the jet, however as the inlet-to-wall distance is so short in
the present case, there is not enough gap for mixing to happen with
the surrounding fluid. As a result, the flow field in the vicinity of the
stagnation point has a low turbulence intensity.

In the free jet region, the mean shear strain is zero and the pro-
duction of kinetic energy is exclusively due to the normal straining. As
the flow approaches the wall, the centerline velocity decreases to zero
at the stagnation point. Moreover, the proximity of the solid boundary
causes the deflection of the jet and a strong streamline curvature region
is observed. Downstream the stagnation point, a wall jet evolves along
the wall. Turbulence energy is increased due to the mean shear strain
which dominates in the near-wall region.

1.1 Relevant past studies

All the flow characteristics described above make the axisymmetric im-
pinging jet a challenging case for turbulence models. Previous numer-
ical computations revealed the lack of accuracy of some models in pre-
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Figure 1.1: Flow regions of an axisymmetric impinging jet

dicting the turbulent quantities near the stagnation point. As an exam-
ple, the standard � �"� model overestimates the turbulent kinetic energy
in the deflection region, leading to extremely high values of the com-
puted heat transfer coefficient. Numerous computations with different
configurations of impinging jets have been carried out, showing that the
RANS (Reynolds-Averaged Navier-Stokes equations) models perform
reasonably well in most of the flow domain. However, the stagnation
and near-wall regions are not properly resolved by most eddy-viscosity
models. Attempts to improve the eddy-viscosity assumption using new
velocity and time scales in the definition of the turbulent viscosity show
that the performance of two-equation models can be further enhanced
[17]. Although Reynolds Stress Models (RSM) perform correctly in the
presence of a stagnation point and to streamline curvature, their imple-
mentation is quite complicated. Also, RSM are computationally more
demanding as an equation is solved for each Reynolds stress. A good
compromise can be achieved with the wall-normal Reynolds stress el-
liptic relaxation model ( 
 � ��� model) which solves a stress transport
equation and an elliptic function to account for near-wall effects instead
of using damping functions. Even so, it still employs the eddy viscos-
ity assumption to close the equation system. It is reported [4] that the
model has performed well in stagnation flows and near-wall turbulence.

2



CHAPTER 1. INTRODUCTION

1.2 Experimental test case for validation

The experimental case selected to validate the results of this work is
a set of flow measurements carried out by Cooper et al. [5] and the
heat transfer data of Baughn et al. [3] which have been widely used
by researchers to test turbulence models. Hot-wire measurements have
been carried out employing two different inlet pipe diameters, varying
the inlet-to-plate distance from two to ten diameters and considering
two Reynolds numbers ( ����� �!��� � and �"� ��� � ).

Experimental data of mean velocity, normal stresses and turbulent
shear stress are available at a number of radial locations. Heat transfer
data are reported in the form of Nusselt number as a function of radial
position � ��� . For a detailed description of the experiment see the cited
references as well as the ERCOFTAC database
http://ercoftac.mech.surrey.ac.uk

Only one set of experimental data has been used to validate the re-
sults of the present work, namely ����� � ����� �!��� � and � ��� � � .

3
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Chapter 2

Governing Equations

All fluid motions (laminar or turbulent) are governed by a set of dy-
namical equations, namely the Continuity equation and the Momentum
equation, which can be written in cartesian coordinates using tensor
notation as ���������	� �
�� ������ ��� � �� ���
���� � � � (2.1)

�� � ���
����� � �
�� ���
���� ��� � �
������ � � � ������������� � (2.2)

where
�
����! #"���$ , ��%�! %"���$ and

�� ���&�! %"��'$ represent the i-th component of the
fluid velocity, the static pressure and the viscous stress tensor, respec-
tively, at a point in space   and time

�
.

�� is the fluid density. Body
forces are not taken into account and the tilde symbol indicates that an
instantaneous quantity is being considered.

For many flows of interest, the fluid behaves as a Newtonian fluid
in which the viscous stress tensor is related to the fluid motion using a
property of fluid, the molecular viscosity ( ( )��)���*���� � �+(-, �./��� � �� �. � �!0 ���!1 (2.3)�./��� is the instantaneous strain-rate tensor given by�. �2� � �� , ���
���� � � ���
���� � 1 (2.4)

For incompressible flows, any derivative of density is zero and hence 2.1
& 2.2 are simplified to obtain the Navier-Stokes equations���
����� � � � (2.5)�3�
�����4� �
�� ���
���� � � � �� ������ � �65 � � �
���� � �� � (2.6)
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where constant kinematic viscosity ( 5�� ( � � ) is also assumed. Now, we
have a system of four equations which form a complete description of
the velocity and pressure fields. The system of equations can be solved
numerically, without further assumptions, if appropriate boundary and
initial conditions are established. However this is only possible for rela-
tively low-Reynolds number flows. This procedure is known as Direct
Numerical Simulation or DNS, which would require extremely high
computer resources if all the scales of a turbulent flow are to be resolved.
Therefore, it is unlikely that DNS will be generally used in industrial
flow computations for the foreseeable future.

An alternative approach is to consider a turbulent flow as consisting
of two components, a mean part and a fluctuating part�
 � � � � � 
 ��� � � � ��. �2� � � ��� � . ���
This method of decomposing is referred to as Reynolds Decomposition.
Introducing these decomposition into the instantaneous equations and
time-averaging results in the Reynolds Averaged Navier-Stokes (RANS)
equations. � � ��� � � � (2.7)

� � � � ��� � � � �� � ��� � � ��� � � 5 � � ��� � � 
�� 
�� � (2.8)

These equations look very similar to the un-averaged Navier-Stokes equa-
tions (2.1 & 2.2) but for a new term which represents the correlation be-
tween fluctuating velocities, known as Reynolds stress tensor, 
 � 
 � (the
overbar denotes time-averaging). This term encompasses all effects the
turbulent motion has on the mean flow. On the other hand, the process
of averaging adds six new independent unknowns ( 
 � 
�� is a symmetric
tensor) to the three mean velocity components and the mean pressure
gradient. Thus, 
 � 
 � must be related to the mean motion itself if we
want to close the equation system. This is referred to as the closure
problem of turbulence.

As a result, the Reynolds stress tensor needs to be properly modeled
if simulations of complex turbulent flows are to be performed at an at-
tainable computational cost. The most important RANS models are the
Eddy-Viscosity Models (EVM) and the Reynolds Stress Transport Model
(RSTM) which will be briefly discussed later.

A detailed heat transfer analysis requires consideration of the Energy
equation, which is further simplified for incompressible flow with con-
stant properties and adding a relation for the heat conduction term

6
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(Fourier’s law) �
�� � ���� � � 5
� �

� � ���� � �� � (2.9)

where
��

is the instantaneous temperature, and
� � the Prandtl number

of the fluid given by,
� � � (����

�
where ��� and � are the specific heat and thermal conductivity respec-
tively.

If we apply Reynolds decomposition (
�� ��� � �

) to equation 2.9 fol-
lowed by time-averaging, the result is a new RANS equation for the
mean temperature

� � � ��� � �
��� � � 5

� �

�
��� � � 
�� � � (2.10)

The last procedure added three new terms ( 
�� � ) known as the turbulent
heat fluxes, which link the velocity and temperature fluctuations and
need also to be modeled.

Eddy Viscosity Models

EVM employ a direct correspondence to the representation of the vis-
cous stress tensor, as given in equation 2.3, to model the Reynolds stress
tensor

� 
�� 
�� � � 5	� � ��� � �� � 0 ��� (2.11)

This is referred to as the Boussinesq assumption, which relates the
Reynolds stress tensor and the mean velocity gradients ( � ��� is the mean
strain-rate and � the turbulent kinetic energy per unit mass) by means
of a scalar quantity 5
� known as the turbulent viscosity or eddy-viscosity.
Based on dimensional analysis, the eddy-viscosity is commonly defined
as the product of a turbulent velocity scale ( � ) and a turbulent time
scale ( � ) 5	� ������ � � (2.12)

where  � is a constant. There exist different types of EVM depending
on the choice of these turbulent scales to close the eddy-viscosity. Be-
sides, additional modeled transport equations are usually solved for the
turbulent quantities.

Reynolds Stress Transport Models

The RSTM are a more sophisticated approach to the closure problem.
Instead of modelling the Reynolds stresses, a (modeled) transport equa-
tion for each one is solved. However, RSTM are much more complex and

7
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difficult to implement as additional unknown terms come out, which
need to be modeled

� �
� 
�� 
���� � � � ��� ��� ��� � � ��� � � ��� (2.13)

The terms on the right hand side of 2.13 are respectively, diffusion ( � ��� ,
or turbulent transport term), pressure-strain correlation ( � ��� , or redis-
tribution term), production (

� ��� ) and dissipation ( � ��� ). The production is
the only term which does not require modelling as it is computed in its
exact form. Contracting the free indices in 2.13 ( � ��� ) and dividing by
two, we get an equation for the turbulent kinetic energy ( � ����


�� 
�� )
� � � ��� � � � � � � � � � (2.14)

where only the diffusion, the production and the rate of dissipation of
kinetic energy ( � ) terms are present. The latter term also plays an im-
portant role in deriving the time scale (equation 2.12) of some eddy-
viscosity models. The exact production term in equation 2.14, which
will be examined in the following chapters, is given by

� � � � 
�� 
�� � � ��� � (2.15)

� �
usually takes energy from the mean flow to increase the turbulence.

It will be shown that appropriate modelling of
� �

is essential for im-
pinging jet flow predictions.
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Chapter 3

Turbulence Models
Considered

3.1 Low-Reynolds-Number � � � Model

The model of Abe-Kondoh-Nagano (AKN model) can accurately predict
the near-wall limiting behavior in a variety of wall-bounded flows em-
ploying a couple of damping functions. The square root of the turbulent
kinetic energy ( � � ) is used as the obvious velocity scale in equation 2.12,
while the dissipation rate is used to form the time scale. The modeled
� and � equations are given below together with the respective wall-
boundary conditions. For a complete description of the AKN model see
reference [1].

� � � ��� � �
��� � � , 5�� 5 �� � 1 � ��� ��� � � � � � (3.1)

� � � ��� � �
��� � � , 5�� 5	���� 1 � ��� � � � �

�
� � � � � � � � � � � � � $ (3.2)

� � �
�

� � �
�
� �����	� , ��
 ���� � 1 � �� � �!� �������	���� , � �� ��� 1 �����


 � � 
�� �5��	� ��� �
� � � � �5 �

where 
 is the distance from the wall, � � is the turbulent Reynolds num-
ber and � the time scale needed to define the eddy-viscosity

5 � � � � � � � � � � � � � � �� (3.3)

9
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and �	� the damping function to take into account the near-wall effects
on 5	�

� � �
�
� �����	� , � 
 ���� 1 � �� � � �

� � � �� ������� � , � �� � � 1 � � �
The constants of the model are given in the following table:

� � � � � ��� � � � � � ��� � � � � � ��� � � � � ��� ��� � � ���
The production term (equation 2.15) is computed using the Boussi-

nesq assumption (2.11) as

� � � � 5	� � � (3.4)

where � ��� � �2� � ���	� � , is the mean strain-rate magnitude.

Wall Boundary Conditions

The turbulent kinetic energy goes to zero at the wall whereas � retains
a finite value on the wall surface according to the near wall limiting
behavior

��
 � � (3.5)

��
 � � 5 � �
 � � (3.6)

the indices � and � denote the wall and the nearest grid point from the
wall, respectively. A complete derivation of the �
 boundary condition
is found in references [1] and [17].

3.2 Standard ��� ��� Model

The 
�� ��� (or � ��� ) model does not use the damping functions of the
previous section to solve the � and � equations (setting � � � � on the
right hand side of equation 3.2, we get the standard � ��� model). In-
stead, a wall-normal Reynolds stress ( 
 � ) is introduced together with an
elliptic relaxation function ( � ) which handles the wall damping effects
on the stress component. Then, an additional modeled transport equa-
tion must be solved for the 
 � stress, which is derived from the exact
Reynolds stress transport equation, especially looking at the redistri-
bution term in equation 2.13 to take into account the damping effects.
A detailed description of the 
 �	��� model along with its derivation is
found in references [12] and [16].

10
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� 
����� � � � � 
���� � �
��� �  , 5�� 5	�� � 1 � 
���� � � � � � � � 
 � �� (3.7)

� � � � ��� � � � � � � �
�

�

��
� �

�
��� � � � � �� � �

�

� � 
��
� �

�
��� (3.8)

The time ( � ) and length (
�

) scales are given by

� � ��� � , � � " �	� 5
�
1 (3.9)

� � ��
��� �  � � � �� "
��� , 5 �� 1 ��� � � (3.10)

where the time-scale has been bounded such that it will not be smaller
than the Kolmogorov time-scale ( ��� � � 5 � � ). This limit guarantees to
avoid singularities in the governing equations as the wall is approached.
Making use of the new velocity scale ( � � � 
 � $ ��� � ), the eddy-viscosity is
defined as 5	� � � � 
�� � (3.11)

The “constant” � � � (equation 3.2) is also damped near the wall according
to

� � � � � ��� , � � � ����� � � 
�� 1 (3.12)

and the remaining constants of the model are listed on the table below:

� � � � ��� � � ��� ��� � � � � � � � � � ����� � � � � ��� � � ��� ���� � � � � � ��� � � ��� ��
 ��� ��� � ��� � � � �

Wall Boundary Conditions

The � and � wall boundary conditions are the same as the ones given
by equations 3.5 and 3.6 in the AKN model. Besides, the wall-normal
Reynolds stress and the relaxation function go to zero at the wall for the
modeled equations considered here [16]


 �
 � � (3.13)

� 
 � � (3.14)
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3.3 Realizable � � � � Model

The modeled production of kinetic energy (equation 3.4) becomes very
large at the stagnation region due to the high value of the strain-rate
magnitude, � . That is the reason why the turbulent kinetic energy is
high at this point. On the other hand, it should be checked that all
the normal stresses remain positive, say 
 �� � � . Durbin [13] imposed
a time scale constraint for the 
 � � � model based on this realizable
criteria which is of great importance for EVM in stagnation flow. The
Boussinesq assumption (equation 2.11) for the normal stress to the im-
pingement wall (see Figure 1.1) can be simplified to
 �� � �

� �"� � 5 � � � � (3.15)

If � � � gets too large, then 
 ���� � which is unphysical. Thus, let’s ex-
amine when � � � becomes largest. The symmetric strain-rate tensor � ���
has real eigenvalues and is diagonal in principal-axes coordinates. The
diagonal elements of � ��� in the rotated coordinate system are its eigen-
values ( ��� "�� � � " � ) which can be found solving the equation

�
� ��� ���	� � � � (3.16)

In two dimensions, the solution of 3.16 along with the incompressible
flow assumption ( � � � � � � � ��� , equation 2.7) gives

� ��� � � � �
� �

��� � ��� � � �
� � � (3.17)

As all the strains are now normal, equation 3.15 results in (also impos-
ing the realizability constraint)
 �� � �

� �"� � 5 � � ��� � � �

5 � �
�
� � �	� � (3.18)

The equation above gives a bound on the eddy-viscosity. If the definition
of 5	� for the 
 � � � model is now used (equation 3.11) together with
equation 3.17, the following constraint on the time scale � comes about

� �
� �
�

�
� � 
�� � (3.19)

The derived constraint on � lowers its value, leading to a smaller eddy-
viscosity which counteracts the high strain-rates. This is the way the
production of kinetic energy is diminished in the stagnation region. Fi-
nally, equations 3.9 and 3.19 can be merged to fulfil all the turbulent

12



CHAPTER 3. TURBULENCE MODELS CONSIDERED

time scale demands (a model constant is also added on equation 3.19,
see reference [16])

� � �����  ��� � , � � " �	� 5
�
1 " � � � �� � � � 
�� � � (3.20)

A similar realizable condition has been also proposed for the length
scale

�
[16], and it reads� � ��
 ��� ���������  � � � �� " � � � �� � � � 
 � � � "

��� , 5 �� 1 ��� � � (3.21)

Although it was implemented, it was found that the limitation on
�

is
not as significant as that for

�
.

Implementing the Realizability Constraint for the � � ���
Model

Equation 3.8 is of elliptic character so that disturbances in one point
propagate throughout the whole computational domain. Due to the in-
tricate coupling between equations 3.7 and 3.8 along with the time scale
limit of 3.20, the computations are likely to diverge if the realizability
constraint is not implemented in a compatible manner. The main reason
why a given simulation might diverge is directly related to the magni-
tude of � in the domain. If � gets too large, then the source term � �
in equation 3.7 increases the production of the normal stress such that

 � � � � � which also have a feedback on � [17]. To overcome this issue, the
right hand side of 3.8 (its source term) can be used as an upper bound
on � for the term � � in the 
 � equation [9]

���
	
������ ��� � ����� � � " � ��  � � � � � $ 
��� � �� � � � ��� $ � � � �
� �

�
� (3.22)

where � is the old time scale (equation ����� ) without the realizability
condition for stagnation flow. Instead of explicitly using the constraint
on � in equations 3.7 and 3.8, it is imposed for the ratio 
 � � � as


��
� � �����

�

��
�

" � � �� � � � � � " � � (3.23)

This limit is only used in the � and 
 � equations together with the old
time scale given in equation ����� . For the � and � equations the new time
scale limit is turned on (equation 3.20) as well as for the definition of
the eddy-viscosity (equation 3.11).
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3.4 Time Scale Constraint for Low-Reynolds-
Number Model

It will be shown in chapter 5 that the computations carried out with the
realizable 
�� � � model are in good agreement with the experimental
data. Thus, it is suggested to modify the original time scale in the low-
Reynolds number � � � model (AKN model) to dampen the production
of kinetic energy at the stagnation point. In section 3.1 was defined the
eddy-viscosity for the AKN model. If that definition (equation 3.3) is
substituted in the derivation of the realizability constraint (equations
3.17 and 3.18), the following time scale limit arises

� �
� �
�

�
� ���	� � (3.24)

Combining the old time scale ( � ��� � � ) with the new limit and after
adding a model constant, the time scale for the AKN model in impinging
flow is given by

� � ��� �
�
�
�
" � � �� � � ���	� � � (3.25)

3.5 Limiter for
�
� in Low-Reynolds-Number

Model

The time scale constraints presented in the previous sections have a di-
rect effect on the eddy-viscosity which is proportional to the product of
a velocity scale (squared) and a time scale. Thus, the realizable condi-
tion for stagnation flow works well in lowering the production rate of
� (equation 3.4) when the time scale decreases. Instead of restricting
the time scale, it is proposed to apply a limiter directly on the produc-
tion of kinetic energy itself. This can be carried out via a bound on

� �
,

which is expected to operate in the stagnation region. The (constant)
limiter makes the production rate of � (equation 3.1) proportional to the
dissipation rate ( � ) and is stated as,

� � � ��� ��� � � � �	��� � � � "�� ��� (3.26)

where the old time scale ( � � � ) is used for all the equations of the AKN
model as well as in the first part of equation 3.26. Impinging jet flow
simulations were performed to tune the limiter

�
.
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CHAPTER 3. TURBULENCE MODELS CONSIDERED

3.6 Turbulent heat flux

The model for the temperature-velocity fluctuations is also based on the
Boussinesq assumption 
�� � � � 5 �

� � �

�
��� � (3.27)

where
� � � is the turbulent Prandtl number. Replacing equation 3.27

into 2.10, yields the modeled temperature equation

� � � ��� � �
��� � � , 5

� �
� 5	�
� � �

1 �
��� � � (3.28)

The laminar and turbulent Prandtl numbers are set to 0.72 and 0.89,
respectively for all the simulations.
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Chapter 4

Computational Approach

4.1 The Solver

CALC-BFC (Boundary Fitted Coordinates) by Davidson and Farhanieh
[8] is a CFD code for computations of two or three-dimensional steady/-
unsteady, laminar/turbulent recirculating flows. The discretization tech-
nique is based on the Finite Volume Method (FVM) depicted in [18] and
the main characteristics of the code are the use of a non-orthogonal coor-
dinate system, the pressure-correction SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations) algorithm and the co-located grid ar-
rangement with Rhie and Chow interpolation. A segregated Tri- Di-
agonal Matrix Solver (TDMA) is employed to solved the discretized al-
gebraic equations. Hybrid central/upwind differencing, the QUICK and
the Van Leer schemes are available for the discretization of the convec-
tive terms. However, it was found out the Hybrid scheme to perform
good enough for the simulations accomplished in this study.

4.2 Axisymmetry considerations

The general transport equation for a variable � ( � � � " � " � " � " � �  ) in
steady state can be written as��� � � � � � � $ �

��� � ,���� � ��� � 1 � � � (4.1)

where ��� denotes the source per unit volume of the variable � and �
is the diffusion coefficient. After performing the discretization of each
transport equation, the corresponding algebraic equations have the fol-
lowing form

��� � � �
� �	��
 � ��
 � �� (4.2)

where the index ��� denotes the neighboring nodes of node
�

and �� is
the source term. The coefficient at the node under consideration can be
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Figure 4.1: Modified control volume.

expressed (in two-dimensions) as

�	� �
� � ��
 � � � � � ��� � ��� � ��� � ����$ � � �

� � �
� � � � � 

where
�

, � , � and � denote east, west, north and south respectively.
Each coefficient contains the contribution due to convection and diffu-
sion, and the general source term S which is split in a positive part ( �� )
and negative part ( �

�
) holds the terms.

Regardless of the scheme used to discretize the convective terms, the
area of each face of the control volume has to be corrected for the ax-
isymmetric geometry of the impinging jet. For instance, the area of the
east face � � varies with the radial distance � and the area of the north
face has to be computed according to cylindrical coordinates. These
changes are better understood if a single finite volume is considered
as in Figure 4.1. There is a clear correspondence between the cartesian
coordinates (

#" 
 "�� ) and the cylindrical ones ( �
" 
 " � ) which comes after

correcting the areas of the east and north faces as follows [2]

� � � � � ��� � $ � 
 � �  ��� � $ � 
 �  � � � � $ 	! �
� � � � � � � � $ � � � �  � � ��$ �  �  � � � � $ 	! �

�
� � �

�
� � 
 � � � $ �  �
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CHAPTER 4. COMPUTATIONAL APPROACH

where �
�

is the radial (


-direction) location of the control volume and
the index �

���
is used to designate the cartesian areas. Also, the volume

needs to be corrected as 0 � � � 0 � $ 	! � � �
The above changes ensure the right coefficients to be used in any of the
algebraic equations given by 4.2.

4.3 Numerical Method

Diffusion terms were approximated using central differencing and hy-
brid central/upwind differencing or Van Leer was used for the discretiza-
tion of convection in the momentum, temperature and turbulence equa-
tions. However, no appreciable difference in the calculated fields was ob-
served when Van Leer scheme was used. Thus, hybrid central/upwind
differencing was kept as the suitable scheme for convection. The dy-
namic and thermal fields are uncoupled in the impinging jet flow and
therefore the thermal field was solved only once the dynamic field had
converged. Under-relaxation factors ( � � � � � ) were also used implic-
itly

��� 	 �� �
� � 
� �

� �	��
 � ��
 � � � 	 �
� � 	 �� �

� �
�

�
� 	 � � �� � ��� 	 �� � � � � $ � � ��� ��

Changes between successive iterations are slowed down using a suitable
� in each discretized transport equation which stabilizes and improves
the iterative process. Typical under-relaxation factors for the calcula-
tions carried out in this study are shown in Tables 4.1 and 4.2.

� � � � � � 5	�
� ��� � ��� � ��� � ��� � ��� � ��� � ���

Table 4.1: Under-relaxation factors used with the low-Reynolds number
model

� � � � � 
 � � � 5	�
� ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ���

Table 4.2: Under-relaxation factors used with the 
 � � � model
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Figure 4.2: Flow domain.

It was also required to increase the number of sweeps to be per-
formed by the TDMA solver for the pressure ( � ) and radial velocity ( � )
equations, to 30 and 5 sweeps respectively. This was executed in both
models and faster convergence was observed. Convergence was reached
when the total non-dimensionalized residuals for the momentum equa-
tions were below ������� . It was confirmed that reducing residuals below
this value had no effect on results. Each residual is normalized by the
total incoming flux of the dependent variable.

4.4 Domain and Boundary Conditions

Figure 4.2 is a sketch of the computational domain which shows a jet
discharge height of 2 jet diameters and a domain extension of 8 jet di-
ameters in the radial direction.

A fine, non-uniform structured grid of ���������! "� nodes was used with
a high resolution near the impingement wall and in the vicinity of the
symmetry line where the jet evolves. A close-up of this region is shown
in Figure 4.3. The clustered grid spacing at both size of #%$'& ()�"*+�
is required to fit the inlet boundary conditions coming from a fully--
developed pipe flow. Different grid configurations were tested to ensure
grid-independence, and the present grid was selected as the one which
provides satisfactory results at a reasonable computational cost.

Figure 4.2 also outlines the boundary conditions employed in the
impinging jet flow.

20



CHAPTER 4. COMPUTATIONAL APPROACH

X/D

Y
/D

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Focused view of the grid at the stagnation region.

Inlet Boundary

Fully-developed turbulent pipe flow with turbulent Reynolds number,
����� � � � � � (based on the friction velocity and jet diameter) was com-
puted separately to obtain the velocity and turbulent kinetic energy pro-
files as the inlet boundary conditions for each modeled assessed (Figure
4.4). ����� is chosen according to the pipe friction factor, so its value cor-
responds to the experimental Reynolds number of 23000 (based on the
bulk velocity and jet diameter) for the jet simulations. In this computa-
tion, the grid spacing was chosen such that it perfectly fit the grid nodes
at the inlet boundary of the impinging jet. The calculated profiles were
normalized by the bulk velocity computed as

� 
 �  � �
� � � �

� (4.3)

where � denotes the pipes cross sectional area.
When calculating the thermal field, the inlet temperature was fixed

to a constant value (
� � � � � ). Also, the radial velocity was set to zero

(
� � � ) and Neumann condition was prescribed for the remaining vari-

ables as

, � �� 
 1 � �  � � � � (4.4)

where 
 is the axial direction (Figure 4.2) and � represents any of the
variables different from the axial velocity ( � ) and turbulent kinetic en-
ergy ( � ) profiles already specified.
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Figure 4.4: Inlet profiles.

Symmetry Axis

Along the axis of symmetry, zero-gradient (Neumann) condition was ap-
plied for the axial velocity component, turbulent scalars and tempera-
ture , � �� � 1 ��� � � � � ��� � � (4.5)

To implement Neumann condition, the nodal value on the boundary of
the domain was set equal to the neighboring nodal value inside the do-
main. The radial velocity was set to zero at this boundary

� � � , so
there is no momentum flux across the symmetry line.

North Boundary

Slip condition was applied along this boundary. To implement this con-
dition, the axial velocity was set to zero � � � . Neumman condition was
implemented for the radial velocity component (

�
), turbulent scalars

and temperature

, � �� 
 1 � 	
� ��� � � (4.6)

Outlet

At the right hand outlet boundary, zero gradient conditions were applied
to all the variables

, � �� � 1 	
� �  � � � � (4.7)
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Although the flow through this boundary should be leaving the domain,
during the iteration process flow is allowed to enter or exit through the
boundary. Then, the velocity along this boundary is corrected in order
to satisfy global continuity.

Impingement Wall

The wall boundary conditions for the turbulence quantities were al-
ready discussed in Chapter 3 for each model considered in this study.
However, nothing was said concerning their implementation.

The boundary condition for the dissipation rate ( � ) is implemented
implicitly via its source term �  (equation 4.2), while the value at the
wall ( 
 � � ) for the remaining turbulence quantities was explicitly as-
signed to the nodes lying on this boundary.

Constant heat flux was applied along the wall and it was imple-
mented via the source term �  for the discretized temperature equa-
tion. Besides, the south coefficient

� �
is set to zero, so that no other

means of heat flux takes place.
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Chapter 5

Results and Discussion

5.1 Performance of the Time Scale Constraint
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Figure 5.1: Velocity at the stagnation line normalized by the bulk veloc-
ity of the jet.

The performance of the realizable V2F, the standard AKN and re-
alizable AKN models is considered in this section. The axial velocity
on the stagnation line is given in Figure 5.1 showing that there is very
little difference between the three predictions (in fact, the standard and
realizable AKN models give almost the same results) and quite a good
agreement with the experimental data is noted.

Also, a comparison of the measured velocity magnitude and the com-
putations with the V2F model and the two versions of the AKN model
at six different radial locations is presented in Figure 5.2. At � ��� ��� ��� ,
the three models predict slightly higher velocities. However, if one
moves downstream and enters into the wall-jet region at � ��� � � � � ,
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Figure 5.2: Profiles of the normalized velocity magnitude at different
radial locations. Key as Figure 5.1.

the velocity magnitude increases from a value of zero to some maxi-
mum and subsequently decays to a very small value. The V2F and the
realizable AKN models correctly predict the flow acceleration; there is
excellent agreement with the data at this location. The standard AKN
model predicts slightly lower velocities in the wall region and higher
velocities in the outer region. Farther downstream, it can be noticed
a better match between the V2F and the realizable AKN models with
the experimental data. The standard AKN model carries on predicting
lower velocities near the wall and higher velocities in the outer region,
all the way downstream. As can be seen, the realizable AKN model per-
forms much better than the standard AKN model when considering the
velocity profiles.
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Figure 5.3: Normalized wall-parallel Reynolds stress profiles at differ-
ent radial locations. Key as Figure 5.1.

The development of the Reynolds stresses as the flow develops away
from the stagnation point is presented in Figures 5.3 to 5.5. Looking
at the wall-parallel Reynolds stress profiles of Figure 5.3, it can be said
that none of the models perfectly matches the experimental data. Nev-
ertheless, the predicted profiles at � ��� ��� ��� and � ��� � � � � given by the
V2F and realizable AKN models are reasonably good, especially in the
wall region. On the other hand, the standard AKN model predicts too
high 
 � values at these two particular locations. The V2F gives quite
good results even though the Boussinesq assumption (equation 2.11) is
employed to compute this stress and again, very little difference is ob-
served between the profiles given by the V2F and the realizable AKN
models.
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Figure 5.4: Normalized wall-normal Reynolds stress profiles at different
radial locations. Key as Figure 5.1.

The differences between the models are more appreciable when look-
ing at the wall-normal stress profiles of Figure 5.4. It is evident that the
performance of the V2F model is outstanding compared to both versions
of the AKN model. The main reason is due to the implementation of a

 � transport equation in the V2F model instead of using the Boussinesq
assumption. However, it should be noticed the improved prediction ob-
tained by the realizable AKN not too far from the stagnation line (at
� ��� � � ��� and � ��� � � � � ). It can be noticed that the V2F model yields
a moderate anisotropy between the wall-parallel stress component seen
in Figure 5.3 and the wall-normal component, especially for the first
two profiles. Once again, the results given by the standard AKN model
considerably deviate from the measured data.
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Figure 5.5: Normalized turbulent shear stress profiles at different ra-
dial locations. Key as Figure 5.1.

A similar behavior can be observed from the turbulent shear stress
profiles of Figure 5.5. Again, the V2F and realizable AKN models give
the most accurate account of the development, with the standard AKN
model being less successful in matching the experimental data, though
not as spectacularly so as for 
 � .

Measurements of the wall-normal Reynolds stress at the symmetry
(stagnation) line are compared in Figure 5.6 with � � � � from the two
versions of the AKN model and the V2F model calculations, as well as

�� from V2F computations. This figure clearly shows that � predictions
in the vicinity of the stagnation point obtained from the standard AKN
model are one order of magnitude higher than 
 � , hence this model ex-
ceedingly over-estimates the fluctuating quantities and heat transfer
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Figure 5.6: Normalized wall-normal Reynolds stress and turbulent ki-
netic energy on the stagnation line.

rates. On the other hand, a significant lower level of � is predicted by
the realizable AKN, very similar to the result given by the V2F model.
This is due to the time scale constraint which is expected to act in the
stagnation region damping the production rate of kinetic energy.

Finally, some contours of the velocity field, the dissipation rate and
turbulent kinetic energy are plotted in Figure 5.7. This figure is a com-
posite: on the left half are contours of each variable predicted by the
standard AKN and on the right predictions of V2F. The predicted ve-
locity fields by both models (subfigures a and b) look quite similar to
each other. However, � and � contours (subfigures c and d) greatly differ
from one model to the other. Focusing on the kinetic energy contours,
it is observed a marked maximum near the wall on the symmetry axis,
according to the standard AKN computations. This is responsible for
the excessive heat transfer rate at the stagnation point, leading to an
over-predicted Nusselt number as it will be shown later. The maximum
value of � predicted by the standard AKN model is 55% higher than that
by V2F. The location of this maximum is at about � ����� � ��� for the V2F
which has been confirmed by experimental work [4]. The increase in the
turbulent energy away from the stagnation point is produced by high
near-wall shear strains (region of strong streamline curvature) which
generates turbulence energy. In addition, the shear layer reaches the
wall in this region, carrying high levels of turbulence energy.
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Figure 5.7: Comparison of various contours obtained from two different
turbulence models.

5.2 Limiter effect on the AKN model

Here is described how the limiter
�

in equation 3.26 was optimized. Sev-
eral simulations were carried out for different values of

�
, ranging from

1.5 to 15 and the results were compared with the existing calculations
obtained from the standard and realizable AKN models. The results
presented below correspond to the most distinctive limiters found in
this study, that is to say

� � ����� " � and ��� .
The axial velocity on the symmetry line shown in Figure 5.8 indi-

cates no limiter dependence as there is no perceptible difference be-
tween the three predictions, as well as very good agreement with the
measured data is noticed. However, the predicted velocity profiles down-
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Figure 5.8: Normalized velocity at the stagnation line using three dif-
ferent limiters for

� �
in the AKN model.

stream the stagnation line differ from each limiter, as it is shown in
Figure 5.9. For example, at � ��� � � ��� in the wall-jet region the limiter� � ����� gives a more accurate prediction close to the wall than the other
two limiters. Unfortunately, none of the limiters satisfactorily matches
the experimental data as one moves away from the surface in the wall--
jet region.

The limiters response is clearly differentiated when looking at the
predicted turbulent kinetic energy on the stagnation line. � predictions
from the AKN model setting

� � ��� and
� � � are still too high near

the stagnation point, though much smaller than the value given by the
standard AKN model. The prediction after adjusting

�
to ����� surpris-

ingly gives as acceptable levels of � as the realizable version. Indeed,
the two curves are fairly similar along the symmetry line. Thus, the lim-
iter

� � ����� was chosen as the suitable value to reduce the production
rate of kinetic energy in the AKN model. It is important to emphasize
that the limiter was not found by chance, but performing a set of simu-
lations to tune its value.

5.3 Comparison of the results given by the Con-
straint and the Limiter

The results obtained from the AKN model employing the limiter
� � �����

are compared to those given by the realizable and standard AKN mod-
els. Figures 5.11 and 5.12 show velocity profiles at different radial lo-
cations as it was shown in the previous sections. Again, a very good
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Figure 5.9: Limiter effect on velocity profiles, AKN model. Key as Fig-
ure 5.8.

agreement with the measured data is observed on the stagnation line
for all the AKN versions. Downstream is noted the remarkable perfor-
mance of the realizable version in predicting the velocity profiles, even
though the limiter also improves the predictions compared to the results
given by the standard AKN version. The development of the Reynolds
stresses as the flow develops away from the stagnation point is pre-
sented in Figures 5.13 to 5.15. When looking at the three different sets
of stress profiles, it can be noticed the predicted results given by the
limiter are in between those given by the realizable and standard mod-
els. As it was expected, the realizable and limiter AKN models provide
much better results in the stagnation region than those of the standard
AKN model. Besides, far from the stagnation point (at � ��� � ��� � ) the
results given by the three AKN versions differ very little, which means
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Figure 5.10: Limiter effect on the stagnation line, AKN model.
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Figure 5.11: Normalized velocity at the stagnation line predicted by
three versions of the AKN model.

a weak influence from the upstream conditions.
In addition, a comparison of the turbulent kinetic energy contours is

shown in Figure 5.16. It is well noted the resemblance of the contours
given by the realizable condition and the limiter. Also, the maximum
occurs away from the stagnation line; both predicted values differ only
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Figure 5.12: Predicted velocity profiles at different radial locations by
three versions of the AKN model. Key as Figure 5.11.

slightly and take place approximately at the same location ( � ��� � � ��� ).
The results presented above indicate the similarity between the real-
izability constraint and the use of a limiter for the production rate of
kinetic energy in the AKN model. Although the realizable AKN per-
forms slightly better in predicting the Reynolds stress, it can be af-
firmed with no doubt that both approaches considerably improve the
predictions given by the standard AKN.

5.3.1 Near-wall behavior

Here is analyzed the behavior of the strains in the vicinity of the wall.
It is expected that the irrotational strains dominate in the stagnation
region as the flow decelerates in the axial direction before turning at the
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Figure 5.13: Predicted wall-parallel Reynolds stress profiles at different
radial locations by three versions of the AKN model. Key as Figure 5.11.

wall. So, the normal strain
� � � � 
 represents an important contribution

when calculating the wall-normal stress


 � � �
� � �!� 5 � � �� 
 (5.1)

This is verified looking at the results given by the three versions of the
AKN model in the stagnation region seen in Figure 5.17. � � � � is also
plotted for comparison. The normal strain has a negative value due to
the flow deceleration in the proximity of the wall, which increases the
wall-normal stress of equation 5.1. The three AKN versions point out
the same trend to a more or less extent.

The opposite behavior is observed when looking at the results in the
wall-jet region of Figure 5.18. Far from the stagnation point, the flow
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Figure 5.14: Predicted wall-normal Reynolds stress profiles at different
radial locations by three versions of the AKN model. Key as Figure 5.11.

develops as a boundary layer flow dominated by the shear strains
 
 � � 5 � , � �� 
 � � ��
�
1 (5.2)

Now the strain
� � � � 
 becomes important. As can be also seen, the nor-

mal strain
� � � � 
 goes to zero in the wall-jet region. This trend is accu-

rately predicted by all versions of the AKN model. Thus, shear replaces
normal straining as the principal energy generation mechanism.

5.3.2 Time-Scale Constraint and Limiter operation

The use of the different time-scales and the limiter (
� � ����� ) in the do-

main are shown in Figure 5.19 for both AKN versions. For comparison,

37



Prediction of the Axisymmetric Impinging Jet with Different ����� Turbulence
Models

−0.02 0 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/D=0.5

PSfrag replacements

� � ��� ��	��
 �

�
�

−0.02 0 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/D=1.0

PSfrag replacements

� � ��� ��	��
 �

�
�

−0.02 0 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/D=2.5

PSfrag replacements

� � ��� ��	��
 �

�
�

−0.02 0 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/D=3.0

PSfrag replacements

� � ��� ��	��
 �

�
�

Figure 5.15: Predicted turbulent shear stress profiles at different radial
locations by three versions of the AKN model. Key as Figure 5.11.

the time-scale usage of the V2F model is also presented.

There are many interesting features to point out. First, the time--
scale constraint for the AKN and V2F models are active in the stagna-
tion region as expected. However, there is also a narrow shaded area
(sub-figure a) which starts at the inlet and goes down along the free jet
region, where the time-scale constraint for the realizable AKN model
is active. This was not expected to happen as the time-scale constraint
should be active only in the stagnation region. This spurious behav-
ior might be attributed to a high strain-rate magnitude � along the jet
shear layer, which causes the time-scale constraint in equation 3.25 to
be active. Nonetheless this does not greatly affect the predicted flow
field.
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Figure 5.16: Comparison of turbulent kinetic energy contours obtained
from three versions of the AKN model.

On the other hand, the limiter
� � ����� only works at the stagnation

region as it is depicted in sub-figure b. In fact, the shaded area where
the limiter is used in the domain resembles a lot to that where the V2F
time-scale constraint acts to lower the production rate of � (sub-figure
c).

Also, the V2F highlights the use of the Kolmogorov limiter in equa-
tion 3.20 which is used in the near-wall region as well as close to the jet
inlet, along a short and narrow area which is due to the convected pipe
flow.

5.4 Heat transfer coefficient

If
� 
��   
	� � � � , convection heat transfer occurs in both the stagnation

and wall-jet region. The Nusselt number in the impinging jet flow is
evaluated as

� 
 � � �
� �

�� 
��   �
��� $ � � �( � � 
��   � � � � $ (5.3)

where the ratio of the constant heat flux � 
��   to the specific heat � �
is prescribed to calculate the Nusselt number, as the discretized equa-
tion of temperature is already normalized by � � in the code. The wall
temperature is estimated as� 
��   � �

� � 
 � �� 
��   �
��� $ � �( (5.4)

where the index 1 denotes the nearest grid point from wall surface.
The predicted Nusselt number along the wall by the different tur-

bulence models is shown in Figure 5.20. None of the models perfectly
matches the experimental data, however big differences are observed
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Figure 5.17: Influence of the strain-rates in the stagnation region. Re-
sults given by three versions of the AKN model.

to one another. The heat transfer rate is greatest at the stagnation
point, with � 
 at its maximum. Nevertheless, � 
 is significantly over-
predicted by the standard AKN model. In this model, the stagnation
Nusselt number is about � �@? higher than the measured value, whereas
the V2F model prediction is only �%? too high. This high predicted value
given by the standard AKN model is due to the spurious kinetic energy
maximum at the stagnation point illustrated in Figures 5.6 and 5.7.

On the other hand, the realizable AKN and the limiter under-predict
the Nusselt number at the stagnation point by

� ���)? and � �%? respec-
tively. Again, it should be noted the resemblance in the predicted Nus-
selt number given by these two AKN versions.

Downstream of the stagnation region the standard AKN Nusselt
number rapidly decreases and approaches the predicted values of the
other two AKN versions. For � ��� � � ��� all the models, including the
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Figure 5.18: Influence of the strain-rates in the wall-jet region. Results
given by three versions of the AKN model.

V2F, under-predict the experimental results. The secondary peak in
Nusselt number, observed in the experiments of reference [3] at � ��� �
� , is probably caused by an increase in the turbulent kinetic energy
away from the stagnation region, near the point where the shear layer
is impinging on the wall. However, none of the present models predict
this local rise in � 
 .
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Figure 5.19: Regions where constraints are active (colored white).
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Figure 5.20: Variation of Nusselt number with radius.
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Chapter 6

Future Work

All the previous computations have been conducted at a Reynolds num-
ber of ����� � ��� � . Although the realizable and limiter forms of the AKN
model give satisfactory flow results, it is essential to check their accu-
racy at different ��� � . So, simulations should be carried out to validate
the time-scale constraint and the limiter as compulsory variations of
the AKN model when dealing with stagnation flow regimes. It would
be interesting to find out whether the limiter

� � ����� can be considered
a fixed value or not. Also, the effect of the Reynolds number on the
Nusselt number should be considered.

Furthermore, the effect of varying the jet distance ����� needs to be
evaluated. However, it is required to look for a wider range of experi-
mental data in order to compare the calculated results for the various
impinging jet configurations and flow conditions.

A non-linear 
 � ��� model has been recently proposed to take into
account the stress anisotropy when calculating heat transfer. So, im-
proved heat transfer predictions might be obtained by solving the tem-
perature equation based on the flow field already calculated by the cur-
rent linear realizable 
 � � � model. Hopefully this model will be able to
predict the correct shape of the Nusselt number profile.
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