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Abstract

Calculations of unsteady 2D-flow around rectangular cylinders at incidence are presented.
The Reynolds numbers are low so that the flow presumably is laminar. Experimental results,
at these low Reynolds numbers, are rather scarce. When available, however, the global flow
periodicity and the mean drag, respectively, seems to be well predicted. An incompressible
SIMPLEC code is used employing non-staggered grid arrangement. A third-order QUICK
scheme is used for the convective terms. The time discretization is implicit and a second-order
Crank-Nicolson scheme is employed. The sensitivity of calculation domain sizes upstream,
downstream and sideways (solid blockage) as well time and spatial resolution, respectively,
is investigated. The influence of cylinder side ratio (B/A = 1,2,4) at various angles of
incidences (o = 0°—90°) and for Re = 100, 200 is investigated. A number of quantities such
as Strouhal number, lift and drag coefficients and various surface pressure coefficients are
calculated.

1 Introduction

From the days of Leonardo da Vinci or maybe earlier, the flow around slender cylindrical bluff
bodies has been a source of fascination and intricacy and thus this flow situation has stimulated
and attracted a waste amount of research studies. However, it was not until 1878, when Strouhal
published his pioneering paper [60] on singing wires due to vortex shedding, that this type of
flow turned into a subject of quantitative research. The flow situation is popular not only
because of its academic attractiveness but also due to its related technical problems associated
with energy conservation and structural design. For instance, fuel-consumption of aircrafts and
road vehicles might be decreased by reducing aerodynamic drag and multi-storey buildings such
as skyscrapers ought to be designed so as to minimize convective heat loss and dust deposits.
In addition, structures must be designed so as to avoid potentially disastrous wind-induced
oscillations and knowledge of vortex shedding characteristics is crucial in the design of vortex
shedding flowmeters.

Slender bluff body cross flow configurations arise in numerous industrial applications and en-
vironmental situations, e.g. flow-metering devices; cooling of electronic components and equip-
ment; the obstructed spaces between co-rotating disks in magnetic disk storage devices; tall
buildings and other technical structures such as cooling towers, chimneys, off-shore platforms,
pipelines, periscopes, tubular heat exchangers, suspension bridges, towers, pylons, poles, cables,



masts and wires. Bluff-body induced-flow unsteadiness and mixing may also be used to enhance
heat and mass transfer to or from the bluff body and/or its surroundings.

Aside from the above practical motivating factors, the unsteady flow and heat transfer associated
with cylindrically shaped bluff bodies are interesting in their own right and have been the
subject of considerable basic research. In these studies the principal objective has mostly been
to measure and/or calculate the field variables and related quantities from which to determine
cylinder drag and lift coefficients as well as Strouhal and Nusselt numbers. The studies can be
classified according to the number, arrangement and cross-sectional shapes of the cylinders, the
character of the approaching flow and whether it is of a free-stream or confined type.

A bluff body is one in which the flow under normal circumstances separates from a large section
of body surface thus creating a massive wake region downstream. We now consider a slender
bluff body of constant cross sectional area, i.e. a cylinder, exposed to a cross flow with a constant
free stream velocity, Us,. An appropriate Reynolds number is then Re = Uy d/v, where d is
the projected width of the cylinder in the streamwise direction. As a rule of thumb, significant
separation then occurs at Reynolds numbers above unity. In this flow situation there are two free
shear layers that trail aft in the flow bounding the wake region. Since the innermost portion of
the free shear layers moves much more slowly than the outermost portion of the layers which are
in contact with free stream, the free shear layers tend to roll up into discrete, swirling vortices.
At a sufficiently high Reynolds number and due to wake instability mechanisms, the vortical
region downstream of the body emanates into the phenomenon of vortex shedding characterized
by an unsteady periodic flow situation in which the separated vortices are “shed” alternately
from the upper and lower side of the body. A non-dimensional shedding frequency is called the
Strouhal number, in this context defined as St = fsd/U.,. The near-wake flow unsteadiness
gives rise to fluctuating drag and lift forces which can stress the body by making it vibrate.
Cylinder vibration can, among other things, (i) increase the vortex strength, (ii) increase the
spanwise wake correlation and (iii) force the shedding frequency to match the vibration frequency
(lock-in or synchronization)[6]. In addition, the associated fluctuating pressures is a source of
acoustical emission.

The first mathematical treatment of of vortex shedding was, in 1911, given by von Kdarmdan in
[22] and the staggered vortex configuration (in a moving frame of reference) is usually referred
to as the von Karmdan vortex street. Vortex streets are formed in the wakes of bluff bodies over a
wide range of Reynolds numbers, from approximately 50 to 10 and even higher [19]. In an ideal
free stream flow situation, vortex shedding commences at some specific critical Reynolds number,
Re., which is solely dependent on the cross section geometry and flow incidence. For instance,
for the circular cylinder in cross flow [35], where flow incidence is irrelevant, Re. is about 47.
For the square cylinder at zero incidence, i.e. with one side surface facing the oncoming flow, the
investigations of Kelkar & Patankar [23] and Sohankar et al. [59] indicate that Re. is between
50 and 55. Critical values in other cylinder flow situations can be found in Jackson [21]. Quite
recently, the commencement of the vortex shedding process has successfully been described as
a self-excited limit-cycle oscillation of the wake, in which the critical onset value is reached
through a supercritical Hopf bifurcation of the steady wake [52]. Recent advances in stability
theory and related experiments have shown that the vortex shedding formation is a result of a
global absolute instability [31, 57] in which the characteristics of the flow at Reynolds number
close to but higher than Re. can be described by a single Stuart-Landau equation. Although
significant progress has recently been achieved, see e.g. Williamson [69] for a review, a complete
description of the shedding process at higher Re is still lacking. Nevertheless, by increasing
the Reynolds number from the onset value it is indicated that there are associated increases
in non-dimensional vortex strength (suitably defined), Strouhal number and fluctuating force



coefficients [56]. In the laminar régime, which usually persists up to Reynolds numbers of about
200, the vortex shedding is characterized by a very well-defined frequency. As Re increases
still higher, the vortices become less and less “regular”; in other words, for successively higher
Reynolds numbers, the effects of flow three-dimensionality and turbulence become more and
more pronounced.

2 Motivation

From an engineering point of view and for several reasons, it is necessary to extensively study
flow-induced vibration from sharp-edged rectangular cross-sectional cylinders. First, with the
use of high-strength materials, structures are more slender and more susceptible to vibration.
The development of modern materials and construction techniques has resulted in the emer-
gence of a a new generation of structures that are often, remarkably flexible, low in damping,
and light in weight. Such structures generally exhibit an increased susceptibility to the action
of fluid flow. Accordingly, it has become necessary to develop tools enabling the designer to
estimate flow-induced effects with a higher degree of refinement than was previously required.
It is the task of the engineer to ensure that the performance of structures subjected to the
action of fluid flow will be adequate during their anticipated life from the standpoint of both
structural safety and serviceability. To achieve this end, the designer needs information re-
garding (1) the flow environment, (2) the relation between that environment and the forces it
induces on the structure, and (3) the behavior of the structure under the action of these forces
[12]. Second, in many cases, high-velocity fluid flowing through the components of devices is
required, e.g. in advanced nuclear power reactors, and this may cause detrimental vibrations.
Third, the dynamic interaction between the structure and the fluid is one of the most fascinating
problems in engineering mechanics. The prediction of amplitudes and dominating frequencies
related to flow-induced sound and vibration is of great importance in structural design. In
addition, the study of bluff-body wakes and its associated fluid forces and wake frequencies
can be motivated from a purely fundamental basis. Fourth, regardless of the disadvantages of
sharp-edged rectangular cross-sectional shapes, particularly their susceptibility to flow-induced
vibration, frequently these non-ideal rectangular geometries are employed in the design of struc-
tures. This is because the fluid dynamic considerations are often only one aspect of the design
process and may play a subsidiary role to other aspects such as economics, ease of construction
or structural requirements. Structures that typically have rectangular or near-rectangular cross
section, include architectural features on buildings, the buildings themselves, beams, fences and
occasionally stays and supports in internal flow geometries.

Further, situations may arise in which the designer need to choose the rectangular cross-sectional
member with incidence relative to the mean flow direction. In such cases, knowledge of the mean
and fluctuating flow-induced loading as well as expected near wake frequencies is useful e.g. in
determining whether the structure may experience vortex-induced vibrations [6]. In addition,
a structure vibrating in a plunging mode experiences a time-dependent effective change in the
angle of incidence and the associated changes in forces and moments might initiate the instability
phenomenon usually referred to as galloping, see e.g. [37, 48]. If the vibrations are severe enough
especially when the oncoming flow is at an angle of attack relative to the body, they may lead
to structural failure. Thus, investigations on the effect of incidence are strongly motivated.

In addition, of interest to engineers are not only the integral parameters such as Strouhal number,
drag and lift coefficient but also the local dynamic loading of a bluff body placed in a fluid stream.

Except perhaps for the circular cross section, detailed knowledge on the unsteady flow field



around cylinders is rather limited owing to the considerable effort involved in taking unsteady
measurements and calculations in such flows. Consequently, there is a considerable gap of
knowledge concerning the effects of flow incidence at various Reynolds number and for different
cross section geometries. For rectangular cylinders in cross flow and by means of numerical
simulation, one objective of the present research is to partially fill out this gap. Another objective
is aimed towards a better understanding of the vortex shedding phenomenon.

3 Problem Under Consideration

The problem under consideration is depicted in Fig. 3. A fixed two-dimensional rectangular
cylinder with a side ratio B/A, where B is the longest side of the cylinder, is exposed, at some
angle of incidence «, to a constant free stream velocity U,,. Incompressible viscous flow with
constant fluid properties is assumed. Unless otherwise stated, all dimensions are scaled with the
projected width of the cylinder in the streamwise direction, d = A cosa+ Bsin a (0° < a < 90°).
The scaling with d also applies to Reynolds and Strouhal numbers. The vertical distance between
upper and lower walls, H, defines the solid blockage of the confined flow (blockage parameter
f = d/H). Velocities are scaled with U,, and physical times with d/U,,. Forces and moments
acting on the cylinder are scaled with d and the dynamic pressure of the upstream flow pUZ /2.
Pressure coefficients are defined as C}, = 2(p — pao ) /pUZ,, where po, is the static pressure of the
upstream flow. Calculated pitching moments are referred to the geometrical center with positive
values in the anti-clockwise direction. Other quantities are defined in the nomenclature list.

4 Review

When considering vortex shedding flow around cylinders, a large amount of experimental and
numerical studies have been carried out for the circular cross section, i.e. flow around circular
cylinders. Cylinders at other cross sections have received much less attention. Nevertheless, in
recent years, quite a number of investigations (mostly numerical) have considered rectangular
cylinders in cross flow. However, except perhaps for the experimental studies on the square
section, the effects of flow incidence have not been extensively covered.

In the following a short review on significant numerical and experimental results on flow around
sharp-edged cylinders is given.

4.1 Experimental

At high Reynolds numbers, a large number of experimental investigations on the flow around
rectangular cylinders have been performed, see [24] for a review. However, there are only a few
such investigations at low to moderate Re, i.e. Re < 10%. The rectangular cylinder in cross flow
did not became prevalent until the mid 1960:s and early 1970:s [67, 33, 4]

A large amount of experimental data has been gathered at angles of incidence o = 0° and/or
a = 90°, i.e. with one side of cylinder facing the flow. In such investigations the results usually
are presented with h/d as a parameter. Fig. 1 displays, at Re > 10°, a compilation of Strouhal
numbers and mean drag coefficients vs. h/d. As shown in Fig. 1b a maximum occurs at
around h/d = 0.6, also see e.g. [33, 4, 35, 46, 9, 2]. Probably, this phenomenon is related to an
interaction between the separated shear layers and the downstream part of the body, see e.g.
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Figure 1: Strouhal number (a) and mean drag coefficient (b) vs. h/d.

[43, 39]. As shown in Fig. 1la, in turbulent flow there is also a jump behavior in the Strouhal
number which occurs in between h/d =2 and h/d = 3.

Mean and fluctuating pressure fields acting on a quadratic cylinder (B/A=1) in both uniform
and turbulent flows, were in 1975 presented by Lee [25] (Re = 1.8 x 10°) He observed that when
the cylinder was rotated with respect to the flow, the vortex formation region moved downstream
causing the drag to decrease. A minimum value of the drag was reached at an angle of incidence
of about 15°. Further rotation of the cylinder produced a gradual increase in the drag as the
vortex formation region moved upstream after the flow had reattached to the side walls. He also
observed that the Strouhal number increased to a maximum at the angle at which the mean
drag was minimum.

Bearman & Trueman [4] considered rectangular cylinders with projected side ratios from h/d =
0.2 to 1.2 (Re = 2 x 10* to Re = 7 x 10*). Detailed measurements on base pressures, mean
drag and shedding frequency as well as flow visualizations were presented. The existence of a
maximum in drag at an intermediate value in h/d, as previously found in 1968 by Nakaguchi et
al. [33], was confirmed. At the critical side ratio h/d = 0.62 the maximum drag coefficient was
found to be 2.94, see Fig. 1b.

One of the most extensive investigation was carried out by Okajima [40] (1982). He determined
Strouhal number of rectangular cylinders at zero incidence with side ratio 1 to 4 in the range
of Reynolds number between 70 to 2 x 10%. He found a certain range of Reynolds number for
cylinders with side ratio 2 and 3 where flow pattern abruptly changes with a sudden discontinuity
in Strouhal number. For Reynolds number below this region, the flow separated at the leading
edges reattaches on either the upper or the lower surface during a period of vortex shedding
while, for Reynolds number beyond it, the flow fully detaches itself from the cylinder.

Extending the experimental studies by Vickery (1966), Lee (1975), Okajima (1982) to lower
values of the Reynolds, Hasan [20] (1989) conducted an experimental investigation of the flow
past a fixed square cylinder at different angles of incidence in the range of Reynolds number
from 6720 to 43000. He observed that the value of the Strouhal number, based on the projected
width of the cylinder, increased upon increasing the angle of incidence, reached a maximum at
22.5° and then decreased with further increase in the angle of incidence. The maximum value of
the Strouhal number was about 15% higher than those reported by Vickery and Lee. However,
the trend of the Strouhal number was the same. Hasan explained this trend by the fact that
the flow reattached at the leeward upper corner of the square cylinder at an angle of incidence
of about 22.5°. This would reduce the wake width as compared to case when the flow did not



reattach. The reduced wake width would give rise to a closer longitudinal spacing of the shed
vortices, which was equivalent to an increase in the frequency of vortex shedding. This would
also explain the decrease of the Strouhal number value as the angle of incidence increased from
22.5° to 45°.

Knisely [24] (1990) has a more complete review on experimental results. He experimentally
determine Strouhal numbers for a family of rectangular cylinders with side ratios ranging from
.04 to 1 and with angles of attack 0° to 90°. Tests were conducted both in a water channel with
Reynolds numbers between 7.2 x 102 and 3.1 x 10* and in a wind tunnel with Reynolds numbers
between 8.8 x 10% and 8.1 x 10%, based on the projected cross stream dimension and mean
velocity. He explain that the Strouhal number, except for the thinest plate have qualitatively
similar behavior with changing angle of attack. The general tendency is a rapid rise in the
Strouhal number occurs at relatively small angles of attack. This rapid rise is associated with
reattachment of the separated shear layer. The angle of attack where reattachment and, hence,
the rapid rise in Strouhal number occurs is dependent on the side ratio. After the sudden
rise, the Strouhal number levels off with a further increase in angle of attack. As the angle
of attack approaches 90°, there is a sudden decline in the value of the Strouhal number, again
associated with shear layer-corner interaction (i.e. detachment). For the thinnest plate, the
Strouhal number was found to be essentially independent of the angle of attack over a wide
range of angles.

Norberg [34] (1993) studied the flow around and pressure forces on fixed rectangular cylinders
at angles of attack 0° — 90°. Investigated body side ratios were B/A = 1 — 5 and Reynolds
numbers ranged from about 400 to 3 x 10* (pressure measurements from about Re = 3 x 10?).
Multiple wake frequencies were registered at low angles of incidence, within certain Reynolds
number ranges, and at side ratios B/A = 2 — 3. The flow showed a large influence of both angle
of attack and side ratio due to e.g reattachment and shear layer/edge interactions. Also some
calculations of quasi-steady galloping response in the plunging mode for the square cylinder were
presented.

Zaki et al. [70] (1994) studied flow around a fixed and freely rotatable square cylinder in the
range of Reynolds number from 1000 to 10,000 and variation of shedding frequency with cylinder
orientation for the fixed cylinder. They observed that the rotatable cylinder show four distinct
regimes of motion: a stable position where the cylinder side surfaces are parallel to the flow,
periodic oscillations about this position, rotation with reversal of direction, and autorotation.

Along the same line but for different afterbody shape of bluff bodies Luo et al. [28] (1994)
investigated the effects of the afterbody shape and angle of incidence on the structure of the flow
past a prismatic body. They used four cross-sectional shapes with identical upstream facing side,
a square, two trapeziums, and a triangle, in wind tunnel and water tunnel. They concluded that
the differences in the afterbody shape will affect the structure of the flow and, hence, both the
magnitude and frequency of the aerodynamic loading on the prismatic body. Their experiments
showed that no cross-sectional shape is absolutely stable to galloping oscillation because a shape
that is a stable to galloping oscillation at a certain mean angle of incidence may become unstable
at a different mean angle of incidence.

Further data on rectangular cross section cylinders can be found in papers by Nakaguchi et
al. [33](1968), Parkinson [49] (1971), Bearman & Trueman [4] (1972), Bearman & Trueman [3]
(1972), Novak [36] (1974), Novak [37] (1974), Rockwell [54] (1977), Otsuki et al. [45] (1978),
Washizu et al. [68] (1978), Ohya et al. [39] (1980), Grant & Barnes [18] (1981), Okajima [40]
(1982), Modi & Slater [30] (1983) Bokaian & Geoola [8, 7] (1982, 1983), Obasaju [38] (1983)
and Parker & Welsh [47] (1983).



In all these studies the Reynolds numbers are relatively high, ranging from about Re = 10° to
Re = 10°. At Reynolds numbers relevant to this study, i.e. Re < 250, the only experimental
results available in the open literature seems to be Okajima [40, 43], Davis & Moore [14] (1982)
and Okajima [42] (1995).

4.2 Numerical

One of the most important problem which the earlier numerical researchers suffered from was
limitation of computational speed and data storage capacity which were restricted to employ
fairly coarse numerical grids in calculations. This led to spatial oscillations in flow pattern and
inaccuracy in results. Because of the rapid advancements design of powerful computers, this
situation has changed in recent years. It is now possible to attempt simulating realistic unsteady
flows by numerical methods.

The great advantage of a numerical simulation is the availability of details on all aspects of the
flow for every stage of the flow development. In particular, in an experiment study in comparison
to a numerical study, it is difficult to follow all of the details of transition flow form an initially
quasi-steady flow to the final periodic vortex-shedding flow.

An early computer simulation at low Reynolds number was reported by Fromm & Harlow
[17](1963). They study the development of a vortex street behind a plate which has impulsively
accelerated to constant speed in a channel of finite width; the Reynolds-number range investi-
gated was 15 < Re < 6000, but a few results appeared in their paper. This simulation, although
a major achievement at that time, was flawed by the use of central differencing at large cell
Reynolds numbers.

Along the same lines, a more detailed study was performed by Davis and Moore [14] (1982).
They employed a finite volume method and simulated two-dimensional time-dependent flows over
rectangles in infinite domains. The numerical method used was a multi-dimensional version of
the one-dimensional QUICKEST scheme proposed by Leonard [26] (1979). Average and RMS
values of the lift and drag coefficients, as well as Strouhal number values, were computed for a
square cylinder at three different angles of incidence over Reynolds number from 100 to 2800.
Computed Strouhal numbers compare well with those obtained from a wind-tunnel test for
Reynolds numbers below 1000. The difference were less than 10% in general.

Davis et al. [15] (1984) extended the numerical scheme of Davis & Moore (1982) to include the
effects of confining walls. They concluded that the presence of walls leads to significant changes
in the flow characteristics including increased drag coefficient and Strouhal number.

Nagano et al. [32] (1982) employed a discrete vortex method to extend the range of computations
to higher Reynolds number ( from 1 x 10* to 1 x 10°) and aspect ratio ranging from .5 to 2. The
results are about 10% higher than those obtained experimentally by Otsuki et al. [45] (1974).
Their numerical results showed that the vortex shedding is locked to the vibration of the cylinder
for a square cylinder in forced transverse vibration in the range of .9 to 1.04. Similar numerical
results are also reported by Belotserkovsky et al. [5] (1993).

Along the same line Franke et al. [16] (1990) carried out a numerical calculations of laminar
vortex-shedding flows past square cylinder Re < 300. The calculations were performed by
solving the unsteady 2D Navier-Stokes with a finite volume method incorporating the third-
order-accurate discretization scheme QUICK. They mentioned that their results show good
agreement for the lower Reynolds numbers at which fully laminar flow can be expected. They
explained that for this geometry, numerical problems are more severe owing to the extreme



velocity gradients prevailing at the sharp corners of the square cylinder. This may be responsible
for the fact that numerical and experimental results do not compare satisfactorily in all details.
They also explained that one problem common to most numerical studies of vortex-shedding
flow past cylinders is the presence of numerical diffusion, which effectively reduces the Reynolds
number and may even prohibit the self-excitation of vortex shedding. A trustworthy numerical
method should be able to predict the occurrence of periodic vortex shedding by itself.

By the finite difference method, flow around cylinders with rectangular cross sections of various
width-to-height ratios of .4 to 8 have been computed in the range of Reynolds numbers from 100
to 1200 by Okajima et al. [43] (1990). They explain that the component with a high Strouhal
frequency is induced by the vortices separated from the trailing edges and that the flow Strouhal
component is due to the oscillation of flow over the side surfaces accompanied by the movement
of separation bubbles. A summary of their results is presented below.

1. At Reynolds number beyond 500, the flow around the cylinder with side ratio 2 becomes fully
separated from the leading edges, while for the cylinder with the side ratio 2.8 and Re = 1200, a
separated shear layer tends alternately to reattach onto cylinder surfaces to form the unsteady
separation bubble. Two kinds of Strouhal components appear in the flow around the cylinder
with side ratio 6 at Reynolds number 800.

2. It is shown that the critical side ratio of a rectangular cross section for which Strouhal number
abruptly changes is about 2.8 or 6 at the Reynolds numbers of 500 to 1200.

3. For side ratio 6 at Reynolds number over 500, two Strouhal number are found to exist, one
induced by the fluctuation of the unsteady separation bubble with the lower Strouhal number
and the other by the vortices formed behind cylinder with higher Strouhal number.

4. The simulated results of the behavior of the vortices and separation bubble indicate that the
Reynolds of about 400-500, where base pressure coefficient has a minimum, is the critical region
in which the separation bubble fluctuates synchronizing with the motions of the wake in the
case of cylinder with the side ratio over 6.

Tamura & Kuwahara [62] (1990) investigated the aerodynamics behavior of a cylinder in a uni-
form flow at high Reynolds number. They obtained the numerical solution for the unsteady flow
by formulating the 2-D and 3-D incompressible Navier-Stokes equations in a generalized coor-
dinate system. No turbulence models was incorporated and the third-order upwind scheme for
the convection terms was adopted in their numerical procedure. In the case of 3-D computation,
the periodic boundary condition was employed in the spanwise direction. Computational exam-
ples were the square cylinder with length-to-diameter ratios of 0 (2D), 1, 1.3 and 4. Through
the comparison between 2-D and 3-D computational results, they clarified the 3-D effects on
the aerodynamic properties of a square cylinder, such as the main and fluctuating aerodynamic
forces and Strouhal numbers properties of a square cylinder. They explained that according
to the computational results by Tamura et al. [61] (1988), even if a sufficiently large number
of grid points are employed, there exist intrinsic disagreements between the two dimensional
computational results and the experimental data. In particular, these discrepancies are conspic-
uous in the flow details around a bluff body at high Reynolds numbers. It can be attributed to
the fact that 2-D turbulence has characteristics fundamentally different form those of the 3-D
situations in the decay process. Consequently, they showed that 3-1) flow structures have appre-
ciable effects on the aerodynamic forces acting on the body. It may be difficult to predict the
aerodynamic behavior accurately if one relies on the two dimensional flow calculations at high
Reynolds number. Then, they concluded that the flow patterns obtained by 2-1) Navier Stokes
equations have significant differences from that by the 3-D, even for the case of 2-D problems.
Especially in the near wake, 3-1) structures gradually emerge by the vortex instability. These



flow characteristics have appreciable effects on the aerodynamic behavior. The computational
results have revealed that 3-D structures decrease the averaged drag value and the lift amplitude.
Hence the 3-D computational result of the cylinder with the long-length periodicity is closer to
the experimental value, which is obtained by using the long span cylinder, than the 2-D results.

Along the above line, Tamura et al. [63] (1990) has questioned the reliability of 2D-calculations in
turbulent flow. They applied the direct finite difference technique of the incompressible Navier-
Stokes equations to unsteady flows around a rectangular cylinder and a circular cylinder. For
high Reynolds number flows, the third-order upwind scheme was employed for convective terms
without turbulence modeling. Two-dimensional structures in the wake were concluded to result
in peculiar aerodynamics, and three-dimensional structures of wake flows was significant even
for the two-dimensional problems concerned with a cylinder-type structure. They concluded
that numerical predictions of the aerodynamics characteristics concerning the time-averaged
as well as the unsteady data are essentially different between the two- and three-dimensional
simulations. The two-dimensionally computed values of aerodynamic forces as a cylinder usually
tend to indicate a conservative estimate for the structural design because of the very strong two-
dimensional vortices.

Okajima [41] (1990) has calculated flows around rectangular cylinders in the range of low
Reynolds numbers of 150 to 800 at zero incidence by a finite difference method and flows at
high Reynolds numbers by a discrete vortex method to gain a better insight into the detailed
flow characteristics. His results simulated by finite difference method successfully indicate the
existence of the critical range of Reynolds number where the value of Strouhal number changes,
accompanied with a drastic change of flow pattern. At high Reynolds numbers, he has com-
puted flows around rectangular cylinders with different side ratios from .6 to 8 by discrete vortex
method and succeed to capture the phenomenon that the value of Strouhal number abruptly
changes when the side ratio of a model is 2.8 or 6, which are the critical values.

A little different but along the same line, it is seen the work of Arnal et al. [1] (1990). They
investigated the characteristics of the flow around a bluff body of square cross-section in contact
with a solid wall boundary numerically using a finite difference procedure. Previous studies have
shown qualitatively the strong influence of solid-wall boundaries on the vortex shedding process
and the formation of the vortex street downstream. In their study three cases were investigated
which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow
past a rib on a sliding wall. Values of Reynolds number studied ranged from 100 to 2000, where
the Reynolds number is based on the rib height and bulk stream velocity. Comparisons between
the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing
effect on the recirculation region behind the rib. Results show the onset of unsteadiness at
a lower Reynolds number for the sliding-wall case (50 < Re < 100) than for the fixed-wall
case (Re > 100). A careful examination of the vortex shedding process reveals similarities
between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Re
(Re > 250) the sliding-wall results show that the rib periodically sheds vortices of alternating
circulation in much the same manner as the rib in a freestream. The vortices are distributed
asymmetrically downstream of the rib and are not of equal strength as in the freestream case.
However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher
Reynolds number, as observed in the freestream and fixed-wall cases. Thus, while the moving
wall causes the flow past the rib to become unsteady at a lower Reynolds number than the fixed-
wall case, it also acts to stabilize or "lock-in” the vortex shedding frequency. This is attributed
to additional source of positive vorticity immediately downstream of the rib on the sliding wall.

The slightly different problem of flow stability has been approached by Kelkar & Patankar
[23] (1992) to determine the Reynolds number at which flow around square cylinders at angles
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of 0° becomes unsteady. They analyzed stability of the steady flow to small two-dimensional
perturbations by computing the evolution of these perturbations. Then, an analysis of various
time-stepping techniques was carried out to select the most appropriate technique for predicting
the growth of the perturbations and hence the stability of the flow. Finally the critical Reynolds
number was determined from the growth rate of the perturbations and computations were then
made for periodic unsteady flow at a Reynolds number above the critical value.

Okajima et al. [44] (1992) have used a finite volume method to compute laminar flows around
bluff bodies with a rectangular cross-section of various width-to-height ratios from .2 to 10.
They used a cross-sections with a round leading edge or a square trailing edge at Reynolds
number of (1,4,7) x 10%. Turbulent flows were also computed using a standard k — ¢ turbulence
model. Computed results were compared with experimental data at a Reynolds number of 103
and clearly showed the effects of the shape of the bluff body on the aerodynamic characteristics.
They could successfully simulate some interesting phenomena whereby the flow pattern changes
critically when the side ratio is about 2.1 and 6; that was, a fully separated flow, an alternately
reattached one and a stationarity reattached one. The results also revealed interactions between
the wake and separation bubbles. There are, however, significant discrepancies between the
results from the k£ — ¢ turbulence model and experiments.

The paper of Rodi [55] (1993) reviewed calculations performed to-date of vortex shedding flow
past long cylinders at high Reynolds numbers where the effect of stochastic turbulent fluctua-
tions superimposed on the 2D periodic shedding motion needs to be simulated. The experiences
gathered with various statistical turbulence models ranging from algebraic eddy-viscosity mod-
els to Reynolds-stress equation models were summarized and discussed, and calculations were
confronted with large-eddy simulations whenever possible, and a comparative discussion on the
various calculation methods was given.

Zaki et al. [70] (1994) employed a finite-difference method for solving flow around a fixed-cylinder
with cylinder orientation for Reynolds numbers up to 250. Most of the numerical results, which
are appeared in paper of Zaki et al. relate to Reynolds number up to 50. Only variation of
Strouhal number for zero angle of incidence with Reynolds number up to 250 is found in their

paper.

The slightly different problem but in the same line is the work of Li & Humphrey [27] (1995).
They studied the unsteady, two-dimensional flow and heat transfer due to a square obstruction
located asymmetrically between the parallel sliding walls of a channel with length-to-height ratio
6.44. Laminar, constant property flow was assumed for the obstruction configurations in which
the blockage ratio was .192, the nearest-wall distances are 0.2, 0.5 and 1, the orientation angles
were 0%, 10°, and 20° and Reynolds numbers were Re=100, 500, and 1000. They concluded that
relative to a freestream flow or the flow in the channel with fixed walls, at the same Reynolds
number, the sliding wall condition increases the drag experienced by a cylinder for all the values
of orientation angles and the nearest-wall distances.

In previous work of Sohankar et al. [59], for the square cylinder at zero incidence, influence of
time step, distribution of grid points, size of cells adjacent to the body, upstream and downstream
extents of calculation domain and blockage were thoroughly investigated (Re = 100). Influence
of Reynolds number (Re = 45 — 250) at blockage 8 = 5% was also presented. It was found
that the results strongly depend on time step, grid, cell size, domain size, solid blockage and
discretization scheme.
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Ref. Re B/A | af] | B(%) | Xa | Xu | Method

Davis & Moore [14] 100-2800 1 0-15 | 83 | 4.5 9.5 FD
Davis & Moore [14] 250, 1000 1.7 10,90 | 83 | 45 | 9.5 FD
Franke et al. [16] < 300 1 0 83 | 4.5 | 145 [\Y%
Okajima et al. [43] 100-1200 1-8 10,90 - - - FD
Okajima [42] 150-800 1-8 | 0,90 - - - FD
Arnal et al. [1] 100, 500, 1000 | 1 0 - - - FD
Patankar [23] 100 1 0 14 4 9 1Y
Zaki et al. [70] < 250 1 0-45 - - - FD
Sohankar et al. [59] 40-250 1 0 2-7 | 7-18 | 10-56 FV

Table 1: Comparison between employed numerical parameters for different researchers

5 Numerical Procedures

The flow is assumed to be two-dimensional, unsteady, incompressible and viscous. An incom-
pressible SIMPLEC finite volume code, CALC-BFC (Boundary Fitted Coordinates), is used
employing non-staggered grid arrangement for calculating the flow around a body by solving
the continuity and the Navier-Stokes equations. The scheme is implicit in time, and a Crank-
Nicolson scheme which is of second order has been used. The convective terms are discretized
using either the third-order QUICK differencing scheme [26] or the second-order scheme of van
Leer [65, 66]. The diffusive terms are discretized using central differencing, which is of second
order accuracy. More details of the code and equations are described in the following.

6 Equations

6.1 General Transport Equation

The general transport equation in Cartesian coordinates for a variable ® reads:

dpd D 0 (L 0N o
or + or. (pUn®) = a <Fq> 8Tm) + S (1)

=& . .
where S~ denotes the source per unit volume for the variable ®. Define a flux vector .J,,
containing convection and diffusion as follows:

0d

Integration over a typical control volume with volume V' and surface A, using the Gauss’ law

yields:

()] _
@ﬂw+/JdA:/S%V (3)
v or A v
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Figure 2: Grid nomenclature. The grid is drawn using Cartesian coordinates for clarity. Bold
lines construct a typical control volume.

6.2 Mean Flow Equations

The incompressible continuity equation and the unsteady momentum equation read

oU;
8UZ' 0 TN 8]) 82U7;
Por a0, Ui = =50 T M50 aa, (5)

7 The Code

7.1 Basics

In this section, the finite volume computer program CALC-BFC (Boundary Fitted Coordinates)
for three-dimensional complex geometries is presented. The code is described in [13], and its
main features are given below for convenience. The program uses Cartesian velocity components,
as have been used by e.g. Shyy et al. [58] and Braaten and Shyy [10]. In most finite volume
programs, staggered grids for the velocities have been used [23]. In the present work collocated
variables are used, which means that velocities are stored at the same place as all scalar variables
such as p, k,e. This concept suggested by Rhie and Chow [53] has been used, for example, by
Burns and Wilkes [11], Peric et al. [51], Miller and Schmidt [29].

Equation 3 is discretized using standard control volume formulation as described in Patankar
[50]. The integration of Eq. 3 over a control volume (See Fig. 2) gives:

J-A),+JT-A),+T-A) +T-A), =5%V

Note that the positive signs on the terms containing contributions from west and south surfaces
will be negative because these scalar products in themselves are negative.
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The discretized equation will be of the form:

aP(pP = Zaan)nb + Sg (6)

where

ap:Zanb—Sg

The coefficients a,; contain contributions due both to convection and diffusion, and the source
terms S& and S§ contain the remaining terms.

7.2 Convection

The convection which is the first part of the flux vector J, is the scalar product of the velocity
vector and the area vector multiplied by the density. For an east face it gives:

m = PU A= Pe (UeAex + ‘/eAey)

and since the Cartesian areas A, A, are stored in the program, the calculation of the convective
contributions to J is straightforward. Special care must, however, be taken to avoid non-physical
oscillations when the velocities are interpolated from their storage location at the cell center to
the control volume faces. Rhie and Chow [53] solved this problem.

Calculation of the velocities at control volume faces is described below. For simplicity, Cartesian
coordinates are used. When the pressure gradient is added to the momentum equation, standard
linear interpolation is used, i.e.

(@) — Pe — Pu
dz /) p |we|

where

Pe = fxpE + (1 - fr) pp

When calculating the velocity at the east face, for example, the pressure gradient is subtracted
so that

- e Pw 5 /
U# — prp - —(Pe = Pu) O
[wel (ap)
- e~ HMe 5‘/
Ut = Uy — (PEe — Pe)

e (Ee)| (ap) g
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where ap is the discretized coefficient in the U-momentum equations (see Eq. 6). The U-velocity
at the east face of the control volume is now calculated as:

(pr —pp) OV

U.= fUE+ (1 - f)UE - PE] (a0)

The advantage of the last expression is obvious: now the pressure gradient is calculated using
the adjacent nodes of face e. This prevents non-physical oscillations in the pressure field.

7.3 Diffusion

Diffusion is the second part of the flux vector J in Eq. 2, and it has the form:

D=(J-A) —TgA -V

diff —

For the east face, for instance, it gives in Cartesian coordinates (z,y)

0P 0P
—{IoA Vo), = — {1 (A, 22 + 4,22
(o voy, = - {rs (35 457}

and in curvilinear coordinates (&, 7)

—{A-V®}, = - {A - gigijg_g} - {|A|n ' gig”g_g} "

The covariant (= tangential) base vectors gy, g, correspond to the I,.J grid lines, respectively.
The metric tensor is involved because the components of the product A - g; and the derivative
0®/0¢; are both covariant, and the product of their (contravariant) base vectors is not equal to
zero or one (as in Cartesian coordinate systems) since they are non-orthogonal to one another.

The normal vector in Eq. 7 is equal to the cross product of gz and g3 (g3 = e, = (0,0, 1) since
it is a two-dimensional configuration), i.e.

n:g2xg35g1

which from g;g’ = 5{ gives

n-gy=0.

Equation (7) can now be written

yiL
- {AVd) =—<|A|n-gg""—

0P 0P
= —{lAfn.g (g”—+g”—>} :
{ 3 dn/le
The diffusive terms are discretized using central differencing, which is of second order accuracy

[50].
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7.4 Pressure Correction Equation
The discretized continuity equation in one dimension takes the form:

Tite — 1y, = 0 (8)

where m denotes the mass flux, which is calculated as

i =pA-U

In SIMPLEC [50], the mass flux is divided into one old value m* and one correction 1’ to the
old one, so that

m=m"*+

and the covariant velocity components are related to the pressure gradient as

oV 9p
ap 8:52

Vi= (9)
where ap comes from the discretized U;-equation (see Eq. 6). The mass flux correction at the
east face can now be obtained as:

i = (pA-U), = p. (AUl + A V)) = (pA V)

e

Using Eq. 9 gives

. 3V op' . 5Vp
/ . J — —_PAVY) =
m, = {pA ( ap %ng ) }e — < ap A P >e 0 (10)

where p' is the pressure correction. Equations 8 and 10 give

) %
<EA-Vp'> —(MA-V,’DI) +ml—ml =0
ap w ap e

This equation is a diffusion equation for the pressure correction p’.

8 Boundary Conditions

The inlet is placed some body heights upstream of the body, see Fig. 3, where U = 1, V =0
is prescribed. At the outlet, the U-velocity is calculated from global continuity together with a
zero gradient boundary condition for both U and V. No-slip conditions are prescribed at the
body surfaces (U =V = 0). At the upper and lower boundaries symmetry conditions simulating
a frictionless wall are used (V = % = 0). The second normal derivative for the pressure is set
to zero at all boundaries. The time-marching calculations are started with the fluid at rest, after

which the inlet velocity is increased to unity in two time units by a sine function.
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9 Results and Discussion

An extensive investigation of the influence of computation parameters such as time step, near-
and far-field resolution, distribution of grid nodes and domain sizes, as well as the influence of
physical parameters such as Reynolds number, cylinder side ratio and angle of incidence was
performed. In the fully saturated state, i.e. at physical times when memory effects of the
starting process are negligible, many useful physical quantities were computed, for example,
dominating wake frequency, mean and RMS values for various wall pressures, lift, drag and
moments, respectively. In addition, for some selected cases, sequences of flow patterns within
this saturated state are presented.

All sensitivity studies on the influence of numerical parameters (including blockage) were carried
out for the square cylinder, B/A = 1. Except for the influence of A, i.e. the far-field resolution,
some results of this separate investigation have previously been reported [59]. The cylinder then
was set at zero angle of incidence with Re = 100.

Except otherwise stated, the following numerical parameters (including blockage) were used:

At ) A X, | Xy B | Scheme
0.025 | 0.004 | 0.5 | 11.1 | 25.2 | 5% | QUICK

Below, the reasons for choosing this set of parameters are discussed.

9.1 Influence of Time Step

Obviously, the time step in the time-marching calculations of vortex shedding flow is an impor-
tant parameter. If too large values are chosen, the global and phase accuracy may be seriously
affected. When considering aspects of both accuracy and CPU-time, a non-dimensional time
step of At = 0.025 was found to be reasonable. This value was also chosen by Franke and
Rodi [16]. When decreasing the time step to 0.02 the effects were considered to be of minor
importance, especially so for the Strouhal number and the mean drag coefficients, see Table 2.
Please note that the number of time steps within one period of shedding is equal to (A#St)™!
which means that At = 0.025 in Table 2 corresponds to about 275 points per period.

Table 2 also pinpoints to the general observation that quantities which are directly related
to the dynamic flow situation, e.g. fluctuating lift and drag, generally are more sensitive to
variations in numerical parameters than global mean quantities such as Strouhal number and
mean drag. As validated further below, among the various quantities which were calculated,
the RMS lift coefficient probably is the best overall indicator. For example, when considering
Strouhal number and mean drag only, the case at A = 0.05 seems satisfactory. However, other
quantities such as the RMS lift reveal the significant inaccuracies involved at this time step.

9.2 Influence of Grid and Cell Size

Distribution of grid points in non-uniform grids, for example, by the hyperbolic tangent and
the hyperbolic sine functions, are discussed by Thompson et al. [64]. The hyperbolic sine gives
a more uniform distribution in the immediate vicinity of the minimum spacing, and thus has
less error in this region, but the hyperbolic tangent has the better overall distribution. The

17



At St Cp Cpp | Cpy | Cr Cpr | =Cpwn | =Cop | Cps L,

.050 | .144 | 1.438 | 1.393 | .728 | .117 | .0018 | 1.052 .649 | 1.040 | 2.72
.025 | .145 | 1.444 | 1.398 | .726 | .130 | .0019 | 1.063 .659 | 1.040 | 2.22
.020 | .146 | 1.448 | 1.402 | .726 | .132 | .0022 | 1.066 .661 | 1.040 | 2.20

Table 2: Effect of time step At for B/A =1, Re =100, « = 0° (A = 0.7).

A « grid St Cp Cr, Cp
0.5 0° 126 x 96 | 0.168 | 1.439 | 0.227 | 0.013
0.3 ] 0° | 177 x 122 | 0.144 | 1.543 | 0.520 | 0.028
0.2 ] 0° | 348 x 224 | 0.149 | 1.445 | 0.362 | 0.020
0.5 20° | 122x 90 | 0.196 | 1.761 | 0.664 | 0.159
0.3 ]20° | 18 x 135 | 0.196 | 1.796 | 0.707 | 0.175
0.5 | 45° | 120 x 88 | 0.205 | 1.944 | 0.729 | 0.100
0.3 | 45° | 182 x 133 | 0.204 | 2.022 | 0.790 | 0.083

Table 3: Effect of maximum cell size A for Re = 200, B/A =1, X; =26, X,, = 10 and 8 = 5%.

important point is that the spacing must not be allowed to change too rapidly in high gradient
regions. After some testing, it was decided to use the hyperbolic tangent with a non-uniform
grid extending 5 units upstream, downstream and sideways from the body. Beyond that the
grid distribution was made uniform with a constant cell size variable between 0.2 — 0.7 length

units (A).

For accurate calculations, the size of the cells adjacent to the cylinder should be sufficiently small.
Wall distances for the near-wall node (&) in between 0.001 and 0.005 units were investigated.
For most of the results in this paper, the value 0.004 was used. Decreasing it to 0.001 gave
negligible changes in the results. When decreasing § and at the same time keeping a smooth
distribution of nodes, the numbers of nodes must be increased.

We have also found that even if the cells far from the cylinder can be substantially larger
than those close to the cylinder, the size of the former cells should not be too large. We have
investigated the influence of grid and cell size in regions far from the cylinder for different angles
of incidence at Re = 200. The required size of cells far from the body depends on the angle of
incidence, as shown in Table 3. For A from 0.3 to 0.5 the greatest changes in values of Table 3
were found at zero incidence and appear in RMS lift. For example, this difference for the angles
of incidence 07, 20° and 45° are 150%, 6.5% and 8%, for RMS lift and -14%, 0%, 0%, for the
Strouhal number, respectively. We see that the results at @ = 0° are much more dependent on
the far field and distribution than at o > 20°. This may be because of increasing instability
with increasing angle of incidence.

Please note that, as in the previous subsection, the RMS lift coefficient is much more sensitive
to the numerical resolution than the Strouhal number.
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Figure 3: Domain of calculation

Figure 4: The 115x92 non-uniform grid for B/A = 2 and o = 60°: a) Domain of calculation;
b) Near the cylinder surface.
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9.3 Influence of Courant (CFL) Number

This fundamental stability condition of most explicit schemes expresses that the distance cov-
ered during the time interval At, by convection speed U, should be lower than the minimum
distance between two mesh points (U At /Az < 1). This is called the convection Courant
number (CCFL) and this condition applies, generally, to explicit schemes for hyperbolic partial
differential equations. In other words, the numerical scheme defining the approximation at each
mesh point must be able to include all the physical information which influences the behavior of
the system at this point, or a particle of fluid should not travel more than one spatial step-size
in one time step.

Another form of CFL is called diffusion Courant number, DCFL (At /(Re Az? ) < 1), which
expresses how viscosity diffuses in the domain in comparison to the distance between two mesh
points. By calculating CCFL and DCFL in the z and y direction, we find that maxima values
of CCFL are about 8 (Re = 100). The maximum values of DCFL are 7.81 (Re = 200) and
are located near the body. It is important to know that the time discretization in our study is
implicit and high values of CFL do not influence on the stability of our scheme. The accuracy,
however, can be affected. The finer mesh and the finer time steps should be used in order to
keep CFL constant. This will be further studied in the near future.

9.4 Influence of Upstream Extent of Calculation Domain

The influence of the extent of the calculation domain upstream of the cylinder (X,) was inves-
tigated and some results are listed in Table 4 (square cylinder at zero incidence, Re = 100). It
should be stressed that when increasing the calculation domain from, for example, X, = 5 to
11, the two grids are identical from 5 upstream of the body and downstream. When creating
the grid with X,, = 11 from the grid with X, = 5, cells with constant Az = 0.7 are added (0n
downstream side Az = 0.5).

The grids were also created in the same way when investigating the influence of the calculation
downstream of the cylinder and the blockage effect below. As can be seen from Table 4 a value
of X, = 7.5 has a large effect on the calculated results. On the other hand, an increase from
X, = 11.1 to 18.3 only gave minor changes. Thus we can conclude that the extent of the
calculation domain upstream of the cylinder should be at least X, = 11. Fig. 5 shows the time
averaged pressure coefficient and U velocity along the centerline for different X,,. It can be seen
that if X, is larger than about 11, then the results are not affected if the distance is further
increased.

As shown in Table 4, with X,, from 7.5 to 11.1, the most significant changes in values are in the
RMS lift, stagnation pressure and frontal pressure coefficients which are decreased by 10, 3 and
3 percent, respectively. It is important to emphasize that the values of frictional lift and drag
are approximately constant for all values of X, and only the pressure forces change.

9.5 Influence of Downstream Extent of Calculation Domain

In Table 5 and Figs. 6 and 7 the influence of the downstream extent is depicted (square cylinder
at zero incidence, Re = 100). These results show that in order to obtain results independent of
the outlet, the extent of the calculation domain downstream of the cylinder must be as large as
X4 =30. A further increase to Xy = 56.3 did not produce any significant effects. It should be
stressed that when increasing the calculation domain from, for example, X; = 14.9 to 20, the
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X, St Cp Cpp | Cpy | Cr Cpr | =Cpap | =Cop | Chps L,

7.5 | .151 | 1.509 | 1.462 | .727 | .160 | .0026 | 1.139 720 | 1.055 | 2.08
11.1 | .150 | 1.486 | 1.439 | .705 | .145 | .0036 | 1.137 723 | 1.027 | 2.08
18.3 | .150 | 1.483 | 1.436 | .699 | .146 | .0037 | 1.138 725 | 1.021 | 2.06

Table 4: Effect of upstream extent for Re = 100, X; = 14.9, 6 = 7.1%, A = 0.7 and o« = 0°.

1.0

0.6

body

Figure 5: Mean pressure coefficient and velocity along the centerline for various location of inlet
boundary X, for B/A =1, a = 0° Re =100, X; = 14.9, 3 = 7.1%.
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Figure 6: Time averaged pressure coefficient along the centerline

two grids are identical from 14.9 units downstream of the body and further downstream. When
creating the grid with Xy = 20 from the grid with X; = 14.9, cells with a constant Az = 0.7
(downstream Az = 0.7) added. The most important changes in values of Table 5 are in the
lift coefficient, length of eddy and pressure base coefficient, where the changes are 54%, 13%
and 3%, respectively, when X, increases from 10.2 to 30.4. The majority of this differences
occur between X, = 10.2 and Xy = 14.9 where the corresponding changes are 10%, 5% and 1%
respectively. A scrutiny of the downstream ends in Figs. 6 and 7 gives better understanding
of these results. A change is seen at the end of each curve, which is caused by the influence
of the outlet boundary condition. When X is not sufficiently large, the global flow pattern
is affected thus causing changes in both pressure and velocity around the body. On the other
hand, if Xy is sufficiently large the upstream influence from the outlet is effectively dampened
out. In the present study, the commonly used boundary condition of zero streamwise gradients
is used. Other boundary conditions which allow for a smoother discharge of the vortex street
will be tested in the future.

9.6 Influence of Solid Blockage

The influence of solid blockage was investigated for the square cylinder at zero incidence (Re =
100). The blockage parameter was varied by changing the equal extent of the calculation domain
above and below the cylinder. In the present work the upper and lower boundaries are treated as
friction-free walls, i.e symmetry boundaries. The influence of blockage is presented in Tables 6
and 7 and Fig. 8. The QUICK scheme is unbounded and can give unphysical oscillations and

22



1.0

0.8}

0.6}

0.4}

B=7%

0.2}

0.0}

OV

10 20 30 40 50

Figure 7: Time averaged velocity along the centerline

Xy St Ch CDp Cp,f Cr Cpi —Cpﬂjb —Chpp Cps L,

10.2 | .150 | 1.503 | 1.454 | .703 | .082 | .0059 | 1.151 735 | 1.027 | 1.90
14.9 | .150 | 1.486 | 1.439 | .705 | .145 | .0036 | 1.137 723 | 1.027 | 2.08
20.0 | .148 | 1.478 | 1.433 | .706 | .135 | .0022 | 1.127 714 ) 1.027 | 2.20
30.4 | .149 | 1.483 | 1.436 | .706 | .129 | .0022 | 1.129 J15 | 1.027 | 2.18
56.3 | .149 | 1.483 | 1.436 | .706 | .129 | .0022 | 1.129 715 ) 1.027 | 2.18

Table 5: Effect of downstream extent for B/A =1, « = 0°, Re = 100, A = 0.7, 5 = 7.1%.

I’ St Cp CDP Cp,f Cr Cpi _Cp,tb —Cpb Cps L,
7.1 | .142 | 1.466 | 1.425 | .719 | .127 | .0023 | 1.106 697 | 1.026 | 2.34
5.0 | .139 | 1.423 | 1.382 | .729 | .130 | .0025 | 1.042 644 | 1.028 | 2.30
3.7 | .136 | 1.401 | 1.360 | .732 | .129 | .0029 | 1.006 613 | 1.033 | 2.32
2.0 | .135 | 1.390 | 1.348 | .742 | .122 | .0044 | 0.971 585 | 1.045 | 2.30

Table 6: Effect of blockage for B/A = 1, @« = 0°, Re = 100, X; = 22.65, X,, = 18.3, A = 0.7

(van Leer scheme).
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Figure 8: The effect of blockage ( = d/H) on Strouhal number for Re = 100, X; = 22.65,
X, =18.3, A = 0.7.

06 St Cp CDp Cp,f Cr Cp —Cp,tb —Cpb Cps L,
7.1 | .149 | 1.481 | 1.435 | .706 | .129 | .0024 | 1.128 J14 ) 1.027 | 2.19
5.0 | .145 | 1.444 | 1.398 | .726 | .130 | .0019 | 1.063 659 | 1.040 | 2.22
4.0 | .144 | 1.434 | 1.388 | .740 | .133 | .0026 | 1.035 633 | 1.051 | 2.23
3.0 | .143 | 1.431 | 1.386 | .741 | .142 | .0020 | 1.020 619 | 1.060 | 2.23
2.5 | .142 | 1.432 | 1.386 | .755 | .147 | .0014 | 1.015 614 | 1.065 | 2.23

Table 7: Effect of blockage for B/A =1, « = 0°, Re =100, A = 0.7
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Figure 9: Location of sequence streamlines in Figs. 11 to 13 a) Re = 75 and 200, o = 0°; b)
Re =200, o = 30°, B/A =2

this actually occurred when the blockage was decreased to 2 percent. For this reason it was
decided to use the more stable, bounded van Leer scheme in some additional calculations at
low blockages. By comparing Tables 6 and 7 for Re = 100, the differences when using the two
schemes are seen. Due to less accuracy, the Van-Leer scheme predicted lower values than the
QUICK scheme. As can be seen from Tables 6 and 7, the results change even when using such
small blockage as 2 percent. What is a bit surprising is that when the blockage is decreased
from 3.7 percent to 2 percent, the lift coefficients change considerably. This may be due to
numerical problems which are more effective in QUICK scheme than van Leer scheme. In Fig.
8, the blockage effects on Strouhal number are depicted. As can be seen, by decreasing the
blockage (increasing height of domain) the Strouhal number decreases and we can expect that
this reaches asymptotically a constant value for both schemes when the blockage reaches zero.
As mentioned, the difference between the results for the two schemes is probably due to the
QUICK scheme being more accurate then the van Leer scheme. But the two schemes show the
same behavior for the blockage effect.

9.7 Flow Dynamics

Instantaneous streamlines, during half a period of vortex shedding in the fully developed state,
for the square cylinder at zero incidence and for Re = 75 and Re = 200 are shown in Figs. 11
and 12. Fig. 13 shows a similar sequence of flow patterns for Re = 200 (a = 30°). For a = 0°
the flow is symmetric and thus we only present the flow during half a period, see Figs. 9, 11
and 12. The streamlines in Figs. 11 - 13 are presented at time locations corresponding to the
lift coefficient, see Fig. 9.

In the flow around a rectangular cylinder, the sharp corners are natural points of separation. It
was found [59] that the separation points for the square cylinder at zero angle of incidence are
located at the rear corners for Reynolds number less then 125 (see Fig. 12). By increasing the
Reynolds number, the separation points move along the side surfaces from rear corner towards
the frontal corners, see Fig. 11. At a Reynolds number of about 125, a small back-flow region is
observed at the top and bottom of the body and this region is larger at higher Reynolds number.

As shown in Fig. 9a, the cases in Figs. 11 and 12 which are marked a, ¢ and e, respectively,
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corresponds to zero (increasing), maximum and zero (decreasing) lift (#'/7 = 0,0.25,0.5). For
the case in Fig. 13 the points at zero (decreasing), minimum, zero (increasing) and maximum
lift are marked a, b, ¢ and e, respectively, see Fig. 9b. Finally, in Figs. 11 - 13 the cases marked f
shows the time average streamlines in one period (7') of vortex shedding. At ¢'/T =0 (Re =75,
T = 7.5) there is a clockwise vortex in development at the upper base corner, being fed by the
separation at that very corner. As it grows, with increasing strength but being rather fixed
in position, the attachment point on the rear side is being pushed downwards, see Fig. 11a—
c. As the attachment point reaches the lower base corner, in between Fig. 11c and d, the lift
already has passed its maximum level and a new anti-clockwise vortex is about to be formed at
that very corner, which thereafter feeds its circulation. As this new vortex grows, see lig. 11d
and e, the old clockwise vortex is being pushed away and is eventually shed into the wake. In
general terms, the same trend occurs at Re = 200 (7" = 6.1) but the main difference between
these two time sequences is due to the fact that for Re = 200, separation occurs at the frontal
corners which causes reverse flow at the top and bottom of the body. In Fig. 13 streamlines
around a rectangular cylinder with side ratio B/A = 2 and o = 30° are shown for a Reynolds
number of 200, in one period of shedding. In the first figure, which corresponds to zero lift,
two vortices can be seen which are formed, at the windward lower corner and at leeward lower
corner, respectively. Both vortices have positive vorticity (anti-clockwise). In Fig. 13b, these
two vortices merge together to form a bigger vortex which is then shed in the wake, as is seen
in Fig. 13c. At the same time another vortex forms at the leeward upper corner which then
becomes bigger and rolls down on the leeward surface and finally is shed in the wake.

Fig. 10 shows the time history of drag, lift and moment for Re = 200, B/A = 2 and a = 60°.
As the time-marching process is started, the time history of forces and moment pass a transient
start-up process to the fully periodic stage. For example, this transition part for Fig. 10 is about
20 units of time. This transition part depends on the Reynolds number, the side ratio and the
angle of incidence. By increasing the Reynolds number, the angle of incidence and decreasing
the side ratio, the transition time sharply decreases as the instabilities of the flow increase. For
example, by increasing the Reynolds number from 100 to Re = 200 (B/A = 1, a = 0°) the
transition time is reduced by about 50 percent. By increasing the angle of incidence from 0°¢ to
45° (Re = 200, B/A = 4) the transition time is reduced by 15 percent and at a = 90° this time
is half of that at a = 0°.

9.8 Influence of Side Ratio

In Fig. 14 values of Cp, St and C: vs. projected side ratio h/d at Re = 100,200 (blockage
B = d/H = 5%) are shown together with experimental results as given by Okajima [40, 42].
Considering the experimental uncertainties, the possible effects of end conditions and the effects
due to numerical factors, the agreement seems satisfactory. Interestingly, there was no indi-
cation of a local maximum in the drag coefficient at some intermediate critical side ratio. In
turbulent flow, such a maximum occurs at around h/d = 0.6, see e.g. [33, 4, 35]. Probably, this
phenomenon is related to an interaction between the separated shear layers and the downstream
part of the body, see e.g. [43, 39]. Although not fully investigated at present, this type of
shear layer/edge interaction does not seem to occur in laminar vortex shedding flow. The vortex

shedding strength shows a drastic decrease with increasing h/d. For instance, at Re = 100, the
RMS lift coefficient at h/d = 2 is about 3 times lower than at h/d = 1.

The Strouhal number for Re = 100 decreases smoothly by side ratio but for Re = 200 it increases
rather abruptly at around h/d = 2. At h/d > 2 for Re = 200 the flow reattaches on the longest
side which not is the case at h/d < 2. In other words, for Re = 100 with different side ratios,
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Figure 11: Time sequence, (a) - (e), see Fig. 9, of streamlines for Re = 75 in half period of
vortex shedding, (f) Time average streamlines.
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Figure 13: Time sequence, (a) — (e), see Fig. 9, of streamlines for Re = 200, B/A = 2 and
a = 307 in one period of vortex shedding, (f) Time average streamlines.
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h/d | St Cp CDp Cpr| Cu | Cpr —Cpp | Chps L,
0.25 | .180 | 2.095 | 2.049 | .670 | .303 | .049 | 1.339 | 1.035 | 1.22
0.50 | .165 | 1.767 | 1.723 | .696 | .277 | .022 998 | 1.037 | 1.42
0.75 | .153 | 1.562 | 1.519 | .714 | .196 | .009 782 | 1.035 | 1.83
1.00 | .145 | 1.444 | 1.398 | .726 | .130 | .0019 | .623 | 1.048 | 2.22
2.00 | .132 | 1.300 | 1.220 | .740 | .044 | .0043 | .463 | 1.042 | 2.75
2.50 | .128 | 1.279 | 1.180 | .743 | .038 | .0041 | .419 | 1.042 | 2.77
3.00 | .125 | 1.275 | 1.152 | .746 | .0041 | .0040 | .389 | 1.043 | 2.75
4.00 | .121 | 1.286 | 1.116 | .748 | .0055 | .0038 | .349 | 1.043 | 2.72

Table 8: Effect of projected side ratio h/d for Re = 100

h/d St Cp CDp Cp,f Cpr Cpr —Cpp Cps L,

0.25 | .200 | 2.424 | 2.420 | .563 | .5b52 | .1465 | 1.930 | 1.018 | .79
0.50 | .191 | 2.004 | 2.020 | .588 | .619 | .0951 | 1.455 | 1.016 | .81

0.75 | .170 | 1.617 | 1.649 | .636 | .416 | .0366 | 1.006 | 1.020 | 1.27
1.00 | .165 | 1.424 | 1.464 | .662 | .240 | .0121 | .796 | 1.023 | 1.71
2.00 | .169 | 1.183 | 1.234 | .679 | .133 | .0066 | .543 | 1.025 | 1.79
3.00 | .158 | 1.082 | 1.125 | .690 | .203 | .0047 | .423 | 1.026 | 1.90
4.00 | .146 | 1.015 | 1.049 | .700 | .110 | .0037 | .338 | 1.028 | 2.52

Table 9: Effect of projected side ratio h/d for Re = 200

separation points are located at the leeward corners, but at Re = 200, they are located at the
windward corners with back flow occurring at the side surface. Up to h/d = 1 this back flow
covers the whole surface but by increasing the side ratio the attachment points appear at the
side surfaces which cause a jump in the value of the Strouhal number, as seen in Fig. 14. A
compilation of various quantities at different projected side ratios and at Re = 100,200 can be
found in Tables 8 and 9.

9.9 Influence of Angle of Incidence

At Re = 200, an extensive investigation of the influence of the angle of incidence from 0° to
90° and at side ratios B/A = 1,2,4 was performed. The results for Strouhal number, drag,
RMS drag, pressure drag, lift, pressure lift, RMS lift, moment, ratios of pressure drag to drag
stagnation pressure coefficients and Strouhal number are presented in Figs. 15 to 20

The variation of the time-averaged drag coefficient with the angle of incidence is shown in
Fig. 15. For side ratios 1 and 2, the drag coefficient has a minimum at around o = 6° and a
second minimum at around angles of incidence 84° (B/A = 1) and 70° (B/A = 2). At B/A =4,
however, the drag coefficient increases monotonically with increasing angle of incidence. The
behavior of Cp at B/A = 1 is different from side ratio 2 and 4, and this is because of symmetry
of the square cylinder. Because of this fact, the same trend (but in the opposite direction) occurs
between ov = 0° — 45° and o = 45° — 90° for all quantities (see Figs. 15 - 20). Fig. 15 shows that
for 0° < a < 45° an increase in side ratio gives an increase in C'p, whereas but vice versa for
a > 45°.
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At low angles of incidence and high angles of incidence (a > 80°) the pressure drag coefficients
are greater then the total drag coefficient, which means that the friction drag is negative (see
Fig. 16). This is due to a large back-flow regime along the sides. Between these two ranges
friction drag is positive and the maximum value is 16% of the total drag when B/A = 4 and
a = 30°. When B/A =2 and o = 30° and B/A = 1 and a = 45°, the friction drag decreases
to 12% and 11%, respectively.

In Figs. 17 and 18, the variation of the time-averaged lift and RMS lift coefficients with the
angle of incidence are shown. As is seen in Fig. 17, (', increases from zero to a maximum value
at angles of incidence 30° and 10°, for side ratios 2 and 4, respectively, and then decreases to
zero at o = 90°. Two peak values of C, for B/A = 1 are seen at 6° and 84°. The values of
C'r, sharply increase by increasing the side ratio, for instance, the peck value for B/A = 4 is
two times greater then for B/A = 2. The behavior of C';s with angle of incidence for different
side ratio is approximately the same as for C'p up to & = 45° but then it decreases with further
increase in a.

The time-averaged moment coefficients acting on the body due to pressure and friction forces
were calculated for different angles of incidence and side ratios and the results are depicted in
Fig. 19. The moments were computed with respect to the geometrical center of the body. The
variation of Cjs with angle of incidence for different side ratios does not show the same trend
as shown in Fig. 19. The peak values are located at @ = 10°,6° and 10° for side ratios 1, 2 and
4, respectively. For B/A = 2, it is seen another peak at o = 30°. The magnitude of Cys sharply
increases when the side ratio is increased.

Strouhal numbers versus angles of incidence for different side ratios are shown in Fig. 20. As
is seen in Fig. 20, Strouhal number does not vary smoothly at o < 20°. For higher angles
of incidence, however, the Strouhal number increases smoothly to a maximum value and then
decreases. The maximum value of Strouhal number occurs at o = 45°, 60° and 75° for B/A = 1,2
and 4, respectively.

Figs. 15 - 20 show that the behavior of all quantities at low angles of incidence (o < 20°) and
high angles of incidence (o > 70°) is different from that in the region between these two values.
This difference is stronger at low angle of incidences then at high angles of incidence. This is
probably due to the degree of reattachment and/or separation on each side of the cylinder in
the wake flow and to the fact that the interactions in the near-wake region will have a strong
influence on the shedding period.

It is found that the two separation points are fixed at the two corners which are located on
projected side, e.g. at zero incidence these points are fixed on the upper and lower windward
corners, and at an incidence of less than 45° they are fixed on the upper leeward and lower
windward corners. By changing the angle of incidence the width of the wake is changed and
this is one of the most important parameters which influences on the results. At low angles of
incidence, especially at high side ratios, the separated flow reattaches at the side surfaces in the
period of shedding, and a second set of vortices shed from the other corners in the wake flow.
The above comments can explain results for both low and high angles of incidence.

Conclusions

Numerical calculations of vortex shedding past a rectangular cylinder at incidence have been
reported For Re < 200, @ = 0° — 90° and B/A = 1,2,4. Apart from the physical parameters
investigated, i.e. Reynolds number, body side ratio, angle of incidence and blockage, it was found
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Figure 15: Drag coefficient vs angle of incidence for Re = 200, X,=10, X ;=25
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Figure 18: RMS lift vs. angle of incidence for Re = 200, X,=10, X ;=25
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that the results also were strongly dependent on various numerical parameters such as time step,
domain size and spatial resolution in both far and near field. Some of the discrepancies between
present results and those from previous numerical studies have to be attributed to differences
in the above mentioned numerical parameters.

By using the Strouhal number or drag coefficients as an indicator for comparison of the results,
some of these effects do not show up correctly. However, when using the RMS lift coefficient as
an indicator the strong sensitivity to various numerical parameters was demonstrated.

By increasing the projected side ratio there was a significant decrease in Strouhal number. For
instance, at Re = 100, when going from h/d = 0.25 to h/d = 4, there was a smooth 33% decrease
in Strouhal number. At Re = 200, the corresponding decrease was 27% but in this case a kink
at around h/d = 2 was observed and this is due to attachment of flow occurring on the sides
aligned with the flow.

It is concluded that the behavior of all quantities at low angles of incidence (approx. a < 20°)
and at high angles (approx. a > 70°) is significantly different from that in between these regions.
This is due to fundamentally different evolutions of flow features close to the cylinder.
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Nomenclature

A The shortest side of the cylinder

B The longest side of the cylinder

Cp  Total drag coefficient

Cpr RMS drag coefficient

Pressure drag coefficient

friction drag coefficient

C, Total lift coefficient

Cr, Pressure lift coefficient

Cr, ; friction lift coefficient

Cr RMS lift coefficient

Cwv Total moment coefficient

Cpp  Base pressure coefficient at centerline
Cps  Stagnation pressure coefficient

Cp,s  Surface averaged frontal side C),
Cp  Surface averaged top and bottom side C),

d Projected width in the streamwise direction (= A cosa + Bsin «)
fs Shedding frequency

h Projected length in the cross-stream direction (= Asin o+ B cos o)
H Height of computational domain

L, Time mean length of recirculating region

Re Reynolds number, Uy d/v
St Strouhal number, fsd/Us,
t Non-dimensional time (scaled with d/U)
U Streamwise velocity
Us,  Free stream velocity
|4 Cross stream velocity
X4 Extent of domain downstream of body
X Extent of domain upstream of body
@ Angle of incidence
I&; Blockage (= d/H)
1) Minimum cell size adjacent to the body
A Maximum cell size in far field
At Non-dimensional time step
Kinematic viscosity
Fluid density

T R
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