
Large Eddy Simulation of
Flow and Heat Transfer in
a Pipe With Corrugated Walls

Daniel Lindroth

Department of Applied Mechanics
Division of Fluid Dynamics

Chalmers University of Technology
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Abstract

Large Eddy Simulation of the flow and heat transfer on the inside of
a pipe with corrugated walls has been conducted on a fluid with Prandtl
number Pr = 3.5, at Reynolds number Red = 104. The system’s friction
coefficient Cf , dimensionless pressure drop and Nusselt number Nu based on
the simulation are presented and compared to a straight pipe. Some basic
properties connected to the characteristics of the flow and thermal proper-
ties of the simulation are discussed. It is hypothised that the local loss in
performance is related to the accumulation of the periodic wall temperature
and that the increase in performance is related to the decreasing radius of
the corrugated pipe.
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Nomenclature

Upper-case Roman

Cf Friction coefficient
L Periodic pipe length
m Mass
Nu Nusselt number
Nustr Nusselt number for a straight pipe
Pr Prandtl number
P Periodic pressure
Q Heat rate
R Pipe radius
Reℓ Reynolds number based on scale ℓ
ReR Reynolds number based on the pipe radius
Reτ Reynolds number based on wall friction
S General source term
T Temperature

Lower-case Roman

cp Specific heat
e Internal energy
ℓ Length scale
p Global pressure field
q Constant heat flux
t Time parameter
vr Velocity in the radial direction
u Velocity in the streamwise direction
ub Bulk velocity
ui Velocity component in direction i
u+ Velocity wall coordinate
xi Spatial coordinate in direction i
y+ Radial wall coordinate

Upper-case Greek

∆p∗ Dimensionless pressure drop
∆x, ∆y, ∆z Streamwise, radial and spanwise mesh spacings
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Γ Generic function for material properties
Ω Volume

Lower-case Greek

β Pressure drop over the periodic length
δij Kroneckers delta symbol
η Kolmogorov length scale
ν Kinematic viscosity
ρ Density
σ Temperature difference over the periodic length
φ Generic transported scalar quantity
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Chapter 1

Introduction

This introduction gives a short background to the thesis followed by the
purpose and goal. Three research questions are then introduced and the
delimitations of the study are mentioned.

1.1 Background

Exchanging heat between fluids at different temperature through a sepa-
rating solid wall is an important process used in many engineering applica-
tions such as space heating, air-conditioning, production of power or recovery
of otherwise wasted heat to name a few. A more specific application is re-
lated to food processing where the need to effectively heat a fluid at a low
energy cost, in terms of controlling the system, is of paramount importance.

One type of irreducible configuration of a heat exchanger is to arrange a
counterparallel flow through concentric tubes. A schematic heat exchanger
using counterparallel flows is shown in figure 1.1. If the flow velocities are
large enough, the heat transfer mode of forced convection will dominate the
energy transport from the hot to the cold fluid. The shape of the thermal
boundary layer will then be a dominating factor in the efficiency of heat
transfer to the cold fluid [1]. Changing the geometry of the pipes introduces
modifications to the thermal boundary layer and opens the potential for a
more efficient heat transfer between the fluids.

Tetra Pak is a major actor in the line of packaging and food processing
technology. In their production there is machinery used for heat treatment
of food products. Heat exchanger technology is an important part and it is
in their interest to offer machinery of high quality concerning energy use and
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Corrugated Walls

Figure 1.1: Schematic over heat exchanger with counterparallel flow

efficiency in the intended application.

The company is researching new possibilities to be used in the next gen-
eration of heat treatment in food processing. As a step in this research,
there is an interest in a numerical investigation of the behavior of the heat
transfer to the inside of a heat exchanger of the type shown in figure 1.1,
with the addition of a corrugated geometry.

1.2 Purpose and goal

The purpose of the present study is to increase the knowledge regarding
the behavior of heat transfer in a heat exchanger with a corrugated wall. The
goal is to perform a numerical investigation of the heat transfer properties,
using Computational Fluid Dynamics, on the inside of a heat exchanger
with a specific corrugated geometry as depicted in figure 1.2, and compare
the result with the performance of a straight tube heat exchanger.

1.3 Research questions

The present study aims at answering the questions:

1. What is the quantified heat transfer, expressed in a Nusselt number,
between the separating wall and the interior of the corrugated heat
exchanger?

2. How large is the friction coefficient, i.e. in the interior of the heat
exchanger compared to a straight pipe?

2



Chapter 1. Introduction

X

Y

Z

Figure 1.2: Computational mesh for the inner side of a two pitch section,
corrugated heat exchanger

3. How does the geometry perform compared to a straight pipe geometry?

1.4 Delimitations

The present study is a numerical investigation and no experiments other
than simulations are performed. Further the study is deliberately limited to
a specific geometrical configuration only.
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Chapter 2

Governing Equations

In the first section of this chapter the basic equations governing the flow
and temperature are introduced. In the next section the concept of Large
Eddy Simulations is introduced and modifications to the basic equations are
discussed. Finally, in the last section, methods and modifications neces-
sary for geometries with periodic variations are treated. This treatment is
based on the article Fully Developed Flow and Heat Transfer in Ducts Having

Streamwise-Periodic Variations of Cross-Sectional Area by Patankar et. al.
[2].

2.1 Basic equations

Simulations of physical systems necessarily involves simplifications by in-
troduction of idealised abstractions in the form of models that aim at pre-
dicting the behavior of the systems. When modeling fluids basic assumptions
are made. Mass, momentum and energy are taken as conserved quantities
and the continuum hypothesis is assumed to hold; it is assumed that molec-
ular interactions in the fluid are of such large extent that fluctuations in the
physical properties of the fluid evens out sufficiently to be described by con-
tinuous fields [3], [4].

From these assumptions, a set of equations modeling change in internal en-
ergy and motion of the fluid can be formulated [5]. Further assumptions
about the nature of the fluid introduces the concept of incompressible fluids
as fluids where pressure variations have no significant effect on the density.
As a result the continuity equation for incompressible fluids, describing mass

5
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conservation, takes a particularly simple form

∂ui

∂xi

= 0, (2.1.1)

where ui is the velocity field and i is in the set {1, 2, 3}, repeated indices are
summed according to Einsteins summation convention. Together with the
assumption of constant viscosity, and neglecting all kinds of body forces, the
momentum equations can be formulated as

∂ui

∂t
+

∂uiuj

∂xj
= −

1

ρ

∂p

∂xj
+ ν

∂2ui

∂xj∂xj
, (2.1.2)

where ρ is the density, p is the pressure and ν is the kinematic viscosity. This
vector equation together with the continuity equation is called the Navier-
Stokes equations, here presented in conservative form [5]. Assuming constant
specific heat cp the relation between the energy e and the temperature T is
e = cpT . The energy equation is then written as

∂T

∂t
+

∂ujT

∂xj
=

ν

Pr

∂2T

∂xj∂xj
, (2.1.3)

where the Prandtl number Pr = cpν/ρk is introduced, k being the thermal
conductivity.

2.2 Large Eddy Simulations

In a turbulent flow the size of the smallest structures can be estimated,
with the use of dimensional analysis, to be of the Kolmogorov length η

η

ℓ
∼ Re

−3/4
ℓ , (2.2.1)

where ℓ is the largest length scale in the flow and Reℓ is the Reynolds number
based on ℓ [6]. To solve a discretised version of equations (2.1.1), (2.1.2) and
(2.1.3) it is then necessary to introduce a computational grid that is capable
of resolving structures on the scale of η. If the Reynolds number is high, the
computational cost is also high. There are methods to reduce the need of full
resolution by introducing models of the turbulent behaviour on the smallest
spatial scales.

One such method is the Large Eddy Simulation (abbreviated LES) method.
Here a spatial filtering operation that smoothens the turbulent behavior by

6



Chapter 2. Governing Equations

removing the smallest spatial scales is introduced. After filtering, the re-
sulting equations will contain a subgrid scale (abbreviated sgs) stress tensor.
This stress tensor describes how the removed scales interacts with the re-
solved scales. The tensor is not known a priori, since it is dependent on the
removed scales, so a model needs to be introduced for its behavior [7].

After filtering the system of equations (2.1.1), (2.1.2) and (2.1.3) it will take
the form

∂ūi

∂xi

= 0, (2.2.2)

∂ūi

∂t
+

∂ūiūj

∂xj
= −

1

ρ

∂p̄

∂xi
+

∂

∂xj

[

(ν + νt)
∂ūi

∂xj

]

, (2.2.3)

∂T̄

∂t
+

∂ūjT̄

∂xj

=
∂

∂xj

[(

ν

Pr
+

νt

Prt

)

∂T̄

∂xj

]

, (2.2.4)

where a bar denotes a quantity that has been spatially filtered and νt is an un-
known quantity connected to the sgs scales and must therefore be modelled.
This unknown quantity will be discussed in the section about the numerical
method.

2.3 Treatment of streamwise periodic varia-

tions

An internal flow is a flow that is contained within some solid surroundings.
This limits the development of boundary layers. For internal flow, in the x̂1

direction through a pipe with non-varying cross sectional area is called fully
developed when the conditions

∂ui

∂x1

= 0 (2.3.1)

are fulfilled and corresponds to flow far from the entrance region [8]. When
the cross sectional area varies this condition can no longer be fulfilled and
special attention is needed. Modeling flow in a pipe with variational cross
sectional area in a period of length L, and that is far from the entrance region,
can be done by assuming a periodic behavior in the streamwise direction,

ui(x1, x2, x3) = ui(x1 + L, x2, x3). (2.3.2)
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This replaces the criterion ∂ui/∂x1 = 0 for a fully developed flow in a straight
pipe. Fixing a position x′

1 and mapping the interval [x′

1, x
′

1 + L] in the x̂1

direction to the interval [0, L], with boundary conditions

ui(0, x2, x3) = ui(L, x2, x3) (2.3.3)

then provides a suitable computational domain. This domain will be called
a section.

There is a need to specially treat the pressure. For perpetual fluid mo-
tion in a certain direction there is necessarily a pressure gradient driving the
fluid. Hence the pressure must decrease when going from one section to the
next downstream. Since the sections are equivalent it is expected that the
pressure distributions in two different sections have the same shape. This
can be expressed as

p(x1, x2, x3) − p(x1 + L, x2, x3) = p(x1 + L, x2, x3) − p(x1 + 2L, x2, x3).
(2.3.4)

Now define β as the pressure drop over an interval [x1, x1 + L] divided by L

β =
p(x1, x2, x3) − p(x1 + L, x2, x3)

L
. (2.3.5)

The resulting pressure field can then be expressed as

p(x1, x2, x3) = −βx1 + P(x1, x2, x3) (2.3.6)

where −βx1 is the overall pressure drop driving the fluid, and P is a pressure
field responsible for local variations in the fluid flow. Inserted into (2.2.3)
this gives the governing momentum equations as

∂ūi

∂t
+

∂ūiūj

∂xj
=

1

ρ
βδ1j −

1

ρ

∂P̄

∂xj
+

∂

∂xj

[

(ν + νt)
∂ūi

∂xj

]

, (2.3.7)

where δ1j is the Kronecker delta with one index fixed.

A similar treatment works for the temperature, with the difference that the
temperature is expected to rise downstream if there is a constant wall heat
flux into the fluid. This gives the condition

T (x1 + L, x2, x3) − T (x1, x2, x3) = T (x1 + 2L, x2, x3) − T (x1 + L, x2, x3).
(2.3.8)

8



Chapter 2. Governing Equations

Defining σ as

σ =
T (x1 + L, x2, x3) − T (x1, x2, x3)

L
(2.3.9)

enables the separation into

T (x1, x2, x3) = σx1 + T ′(x1, x2, x3) (2.3.10)

where T ′ is the periodic part. Sigma may be determined by the expression

σ =
Q

ṁcpL
(2.3.11)

where Q is the rate of added heat, ṁ is the mass flow and cp is the specific
heat [1]. This together with (2.2.4) finally gives the energy equation in a
periodic setting as

∂T̄ ′

∂t
+

∂ūjT̄
′

∂xj
= −σū1 +

∂

∂xj

[(

ν

Pr
+

νt

Prt

)

∂T̄ ′

∂xj

]

. (2.3.12)

9
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Chapter 3

Numerical Method

The first section gives an overview of the Finite Volume Method used in
the present study.

3.1 The Finite Volume Method

The equations (2.3.7) and (2.3.12) all take the form of a general scalar
transport equation [6]

∂ρφ

∂t
+

∂ρujφ

∂xj

=
∂

∂xj

[

Γ
∂φ

∂xj

]

+ S, (3.1.1)

φ being the scalar quantity that is transported, Γ is a function describing
material properties and S is a source term. Let this equation be defined on a
bounded domain Ω with a structured meshing consisting of control volumes
with one centered node called P . The structure of the control volumes is
shown in figure 3.1. The control volumes are numbered by {i, j, k} in a
right handed system, and the faces are labeled with lower case letters e(ast),
w(est), n(orth), s(outh), h(igh) and l(ow).

This labeling is also used for neighbouring nodes using capital letters E,
W, N, S, H and L. Multiply the transport equation with a testfunction ϕI

that is constant over a control volume I in the mesh, called ΩI and zero
elsewhere. Integration over the time interval ∆t = t2 − t1 and Ω gives

∫ t2

t1

∫

ΩI

(

∂ρφ

∂t
+

∂ρujφ

∂xj

)

dΩdt =

∫ t2

t1

∫

ΩI

(

∂

∂xj

[

Γ
∂φ

∂xj

]

+ S

)

dΩdt (3.1.2)

where the testfunction limits the spatial integration to the specific cell ΩI .
There are two divergences in this equation. Using the divergence theorem

11
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Figure 3.1: Structure of the control volumes

results in
∫ t2

t1

∫

ΩI

∂ρφ

∂t
dΩdt +

∫ t2

t1

∫

∂Ωi

ρujφn̂jdsdt =

∫ t2

t1

∫

∂ΩI

Γ
∂φ

∂xj

n̂jdsdt

+

∫ t2

t1

∫

Ωi

SdΩdt (3.1.3)

where n̂j is the outbound normal to the cell and ds is the surface element.
The surface integrals are of the form

∫

∂Ω

Λjn̂jds. (3.1.4)

To evaluate them a discretisation is introduced. The value of Λ is then
represented by a single value over the whole face, denote this value as [Λ]e
for the value at the east face, [Λ]n for the north one etc. Let Ae be the area of
the east face and so on for the other faces. Then the integral is approximated

12



Chapter 3. Numerical Method

as
∫

∂Ω

Λjn̂jds = [Λ]e Ae + [Λ]w Aw + [Λ]n An + [Λ]s As + [Λ]h Ah + [Λ]l Al

≡
∑

k

[Λ]kAk (3.1.5)

where k ∈ {e, w, n, s, h, l}. Now equation (3.1.3) can be written as

∫ t2

t1

∫

ΩI

∂ρφ

∂t
dΩdt +

∫ t2

t1

∑

k

[ρujn̂
(k)
j φ]kAkdt =

∫ t2

t1

∑

k

[

Γ
∂φ

∂xj
n̂

(k)
j

]

k

Akdt

+

∫ t2

t1

S̄dt

(3.1.6)

where n̂
(k)
j is the outbound normal to surface k and S̄ is some approximation

of the volume integral over the source. Assume that

[ρujn̂
(k)
j φ]k = [ρujn̂

(k)
j ]kφk (3.1.7)

is a valid separation for the terms in the first sum and

[

Γ
∂φ

∂xj
n̂

(k)
j

]

k

= Γk

[

∂φ

∂xj
n̂

(k)
j

]

k

(3.1.8)

for the second. The terms in the first sum describes convective fluxes of
quantity φ over the faces and the terms in the second sum describe diffusive
transport over the faces. Note that φk can be determined by interpolation
from appropriate node values. In the case of linear interpolation

φe = feφE + (1 − fe)φP , (3.1.9)

where fe is an interpolating factor determined from the geometry, gives the
value of φ on the east face of node P . Using the assumption about separation
the discretised equation

∫

ΩI

[
∫ t2

t1

∂ρφ

∂t
dt

]

dΩ +

∫ t2

t1

∑

k

[ρujn̂
(k)
j ]kφkAkdt =

∫ t2

t1

∑

k

Γk

[

∂φ

∂xj
n̂

(k)
j

]

k

Akdt

+

∫ t2

t1

S̄dt.

(3.1.10)
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can be written and is an equation over one specific control volume. To pro-
ceed it is necessary to introduce discretisation schemes to treat the different
terms involving differentiation and to handle the time integration. These
schemes produces algebraic relations between node values, both spatial and
temporal, and then couple different control volumes into one sparse algebraic
equation system. Ignoring time at the moment, to discretise expressions like
(3.1.7) and (3.1.8) a scheme expressing a relation between the node P of the
control volume and neighbouring nodes is introduced. This scheme describes
contribution due to convection and diffusion over the cell faces. To evaluate
integrals in time it is important to consider at what times the discretised
quantities involved are taken. Time integration is of the form

∫ t2

t1

φP dt. (3.1.11)

A general approach, introducing a parameter θ ∈ [0, 1], can be formulated as

∫ t2

t1

φPdt =
(

θφ
(2)
P + (1 − θ)φ

(1)
P

)

∆t, (3.1.12)

where the superscript denotes a value at time t1 or t2 [6]. Choosing θ = 0
gives an approximation that only depends on a previously calculated value,
this approach is called explicit. θ = 1 gives an approximation dependent on
an unknown value at time t2. This approach is called fully implicit. θ = 1/2
gives an approximation with a mix between an unknown value at time t2 and
a known value at t1 both with a weight of 1/2. This is called the Crank-
Nicolson scheme and has the adavantage of beeing of second order accuracy
in time [6].

3.2 The computational mesh

When solving an algebraic system the order of complexity gives an esti-
mate on the relative computational time [9]. For a serial solution method
the number of computational cells sets a limit on how fast the system can
be solved. Hence there is lot to gain if the number of cells can be reduced.
A possibility to reduce the number of cells is if there are symmetries in the
problem that can be used to reduce the size of the domain. In the case of
fully developed flow in a pipe there are two such symmetries, one in the
streamwise direction and one in the azimuthal direction. Another possibility
to control the number of computational cells is to stretch the mesh so that it
has a high density where there is a need of higher resolution in the solution

14



Chapter 3. Numerical Method

and low density where required resolution is lower [6].

The case of symmetry in the streamwise direction has been touched upon
in section 2.3. This symmetry opens the possibility to decrease the com-
putational domain in the streamwise direction by controlling the periodic
boundary condition in the streamwise direction by cutting of, and recircu-
lating the computed flow after a certain length. The azimuthal symmetry
can be used to reduce the computational domain by only consider a pie cut
of the pipe and identify the computed flows at the azimuthal boundaries.
As long as the influence in the azimuthal direction doesn’t self interfere a
smaller angle of the pie cut can be considered.

Using these conditions a computational mesh type like the one in figure
3.2 can be used. Here the domain is a 90◦ pie cut through a straight pipe
with x as the streamwise direction. The curved solid pipe wall and the other
surfaces consists of cyclic boundaries. The mesh is stretched from the solid
wall toward the centerline to gain a higher resolution near the inner wall,
where better resolution is needed [6]. Figures 3.3 and 3.4 (page 17) depicts
a cut through the x-y plane respectively a cut at the y-z plane boundary in
the same computational mesh.

Figures 3.5 (page 18), 3.6 and 3.7 (page 21) show a computational mesh
with corrugations.

The mesh in the case of a straight pipe is coded directly into the solver.
In the case of a corrugated pipe the mesh is constructed with the help of the
code G3DMESH. Notice that the computational meshes are constructed as
boundary fitted coordinates so that they follows the boundaries as smoothly
as possible.

3.3 Boundary conditions

At the solid wall no-slip boundary conditions are used for the velocity
so all velocity components are set to zero at the wall. For the temperature
equation a constant heat in-flux is prescribed.

At the centerline symmetry boundary conditions are used, the radial velocity
component are set to zero and all other quantities, including the tempera-
ture, are set to have zero flux over the centerline.
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X

Y

Z

Figure 3.2: Computational mesh for a straight pipe

At cyclic boundaries the computational values are identified with the cor-
responding cyclic boundary producing an interlacing that freely transports
between the connected boundaries.

3.4 LES and the WALE model

The present work use LES-filtered equations that are described in section
2.2. As model for the sgs stress tensor the WALE model (abbreviation for
Wall-Adapting Local Eddy-viscosity) is used [10]. In this model the con-
nection between the resolved scales and the subgrid scales is modelled by a

16
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Figure 3.3: Computational mesh of straight pipe, cut through the x-y plane
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Figure 3.4: Computational mesh of straight pipe, inlet y-z plane
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X
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Z

Figure 3.5: Computational mesh for a corrugated pipe

turbulent Eddy-viscosity νt according to

νt = ∆2
s

(Sd
ijS

d
ij)

3/2

(S̄ijS̄ij)5/2 + (Sd
ijS

d
ij)

5/4
(3.4.1)

where

∆s = CwV 1/3, (3.4.2)

Cw is a numerical constant, V is the cell volume,

Sd
ij =

1

2

[

(

∂ūi

∂xj

)2

+

(

∂ūj

∂xi

)2
]

−
1

3
δij

(

∂ūk

∂xk

)2

(3.4.3)

and finally

S̄ij =
1

2

(

∂ūi

∂xj

+
∂ūj

∂xi

)

(3.4.4)
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is the ordinary stress tensor based in the resolved scales. This expression
for the turbulent viscosity can now be used in equation 2.3.7 and 2.3.12 that
finally closes the equation system.

3.5 The β and σ parameters

The β parameter introduced in section 2.3 acts as a source driving the
fluid. This parameter can be set to a fixed value that multiplied by the vol-
ume balances the wall shear stress when the flow becomes fully developed.
In the case of a straight pipe it is possible to prescribe β = 2 so that the
total wall shear stress equals one. This is done for the straight pipe in the
present study. There is also the possibility to continuosly adapt the value of
β to achieve a prescribed mean flow. This is done in the case of a corrugated
pipe to achieve a mean flow of one.

The σ parameter acts as a heat sink in the energy equation. It is deter-
mined so that it extracts the same amount of energy that the constant wall
heat flux deposits per unit time into the system. This is necessary since
the temperature is recycled in the computational system through the cyclic
boundary in the streamwise direction. In reality, the temperature is advected
further downstream when it leaves the domain.

3.6 The Finite Volume solver

To solve equations like (3.1.10) one usually uses a solver of some type,
typically written in a fast compiled language such as Fortran or C/C++. The
present study uses an implementation of the CALC-BFC solver [11], writ-
ten in Fortran and developed at the division of Fluid Dynamics, Chalmers
University of Technology. The code is capable of handling incompressible
unsteady turbulent recirculating flows together with the energy equation.
The code uses structured grids with Boundary Fitted Coordinates (BFC),
suitable for geometries where boundaries varies in a nonlinear fashion. All
computational variables are stored collocated in a central node of each con-
trol volume in a global Cartesian coordinate system.

To handle the velocity-pressure coupling the solver uses a fractional step
algorithm [12]. The algorithm involves solving a Poisson equation and this
is done using multigrid technique.
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3.7 Discretisation schemes

In the present study, the central differencing scheme is used to discretise
the momentum equations and the hybrid scheme is used to disktretise the
energy equation. The Crank-Nicolson scheme is used for time discretisation
[6].

3.8 The simulation methology

A simulation is conducted in the following steps.

1. The computational mesh is created and all parameters are set.

2. From a suitable start guess the system is iterated until the flow is fully
developed and the flow characteristics are then saved.

3. With the saved flow a new run is started and iterated for 10.000
timesteps under fully developed conditions.

4. The flow characteristics are sampled for another 10.000 timesteps where
the characteristics are averaged over the azimuthal direction and time.
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Figure 3.6: Computational mesh of corrugated pipe with reduced number of
cells, cut through the x-y plane
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Figure 3.7: Computational mesh of a corrugated pipe, inlet y-z plane

21



Large Eddy Simulation of Flow and Heat Transfer in a Pipe With

Corrugated Walls

22



Chapter 4

Results

4.1 Simulation of a straight pipe

To verificate the code and for comparison with the corrugated geometry,
a simulation case of a straight pipe with a fluid of Prandtl number 3.5 and
density ρ = 1 was set up. The specific heat was set to cp = 1 and a constant
heat flux of q = 10−3 was set at the wall. The driving force in the simulation
was set so that a wall friction of one whould be accomplished in average, this
corresponds to setting a β=2 as a driving force. The Reynolds number was
chosen as Reτ = 395, based on the wall friction. The computational domain
was set to a radius of R = 1 and a length l = 3.2. The grid was exponen-
tially stretched in the radial direction from the wall towards the center with
a stretching factor of 1.07. In the radial direction 80 cells was used and the
near wall cell was set to a width of ∆y+ = 0.12. The number of cells in the
azimuthal direction was set so that the azimuthal spacing along the pipe wall
was ∆z+ = 9.7 with a uniformally spaced grid.

Figure 4.1 shows convergence of the Nusselt number for increasing the com-
putational domain together with two empiric correlation functions with the
calculated bulk velocity as input. It can be seen that the change in Nusselt
number between a domain of 180◦ and 360◦ is negligable, hence a computa-
tional grid of 180◦ is reasonable. It is here noted that the resulting Nusselt
number for the straight pipe is 〈Nustr〉 = 76.9. The resulting velocity profile
for a simulation with a domain of 180◦ is shown in figures 4.2 and 4.3 in or-
dinary and wall coordinates respectively. The mean velocity is calculated to
be ub = 18.0. The profile compares well to the log law u+ = ln y+/0.41 + 5.5
and the behavior in the viscous sublayer is close to u+ = y+.
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Figure 4.1: Convergence of Nusselt number for domain of 90◦, 180◦ and 360◦

(red circles) together with Gnielinski (blue stars) and Dittus-Boelter (green
squares) correlations
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Figure 4.2: Velocity profile for the straight pipe

Defining a dimensionless pressure drop as ∆p∗ = β/ρu2
b , gives in the straight

pipe case ∆p∗1 = 6.18 × 10−3.

Figure 4.4 shows the temperature profile up until some distance from the
wall. Figure 4.5 shows both the viscous heat flux −ν/Pr× ∂〈T 〉/∂y and the
turbulent heat flux −〈v′

rT
′〉 in the radial direction.
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Figure 4.3: Blue solid line shows the velocity profile in wall coordinates.
� : u+ = y+; ∗ : u+ = ln y+/0.41 + 5.5
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Figure 4.5: Viscous heat transfer (red solid) and turbulent heat transfer
(green dashed) in the radial direction for a straight pipe
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4.2 Simulation of the corrugated pipe

For the simulation of the corrugated pipe a computational domain with
dimensions shown in figure 4.6 are used. The domain contains two full cor-
rugations with one full corrugation centered in the domain ranging from
x = 0.35 to x = 1.1 peak to peak. The number of computational cells are
chosen as nx = 80, nr = 80 and nϕ = 128 in the streamwise, radial and
azimuthal directions respectively This results in a total of 819200 computa-
tional cells. This choice gives the same size of the cells at the wall in the
radial and azimuthal direction as in the case of the straight pipe.

In the present simulation a target bulk velocity of ub = 1 is chosen. To
achieve this a continuous change of the β-parameter is made to adapt the
driving force towards the target bulk velocity. For the present simulation the
mean value of this parameter was β̄ = 1.34 × 10−2. The Reynolds number
is chosen as ReR = 104 with lengthscale R = 1 corresponding to the pipe
radius. The density is assumed to be ρ = 1 so that the kinematic viscosity
is expressed as ν = Re−1

d = 10−4. Further the specific heat is assumed to be
cp = 1 and the Prandtl number is set to Pr = 3.5. The constant heat flux
condition at the wall is sett to q = 10−3.

The present simulation was initiated from a prior velocity field with a bulk
velocity of at least precission ub = 1.0 ± 0.05. The simulation was made by
initiating a constant temperature field and further evolving the Navier-Stokes
and energy equation system for 10.000 time steps. Time series of the veloc-
ities, temperature and combinations of these quantities where then sampled
during the evolution of another 10.000 time steps.
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Figure 4.6: a) Dimensions of the computational domain in the slice z = 0 b)
Dimensions of the computational domain in the slice x = 0
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Figure 4.7: Averaged velocity streamlines near the upper wall
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Figure 4.8: Periodic mean wall pressure over a corrugation. The thick grey
line shows the corrugation profile

4.3 Flow field characterisation

Since both the bulk velocity and density is chosen as 1, the dimensionless
pressure drop ∆p∗2 is equal to the resulting β parameter, β̄ = 1.34 × 10−2.
Comparing to the straight pipe case the pressure drop then increases with a
factor ∆p∗2/∆p∗1 = 2.2.

In figure 4.7 the streamlines, averaged over the azimuthal direction and time,
are shown. Focusing on the central corrugation a flow separation can be
observed near x = 0.5 and later rattached near x = 0.8 creating a small re-
circulation bubble at the bottom of the corrucation. The resulting periodic

27



Large Eddy Simulation of Flow and Heat Transfer in a Pipe With

Corrugated Walls

mean pressure near the wall is shown in figure 4.8. It can be seen that near
the wall, the pressure is negative for negative slope of the corrugation and
possitive for possitive slope of the corrugation (seen in the normal direction
of the wall) with a maximal value near the reattachment point, which is close
to the point of maximal slope of the wall. The minimum is located in the
region where the corrugation slope is zero at the top of a corrugation. The
pressure changes sign at the bottom of a corrugation where the slope is zero.

Figure 4.9 shows the resulting friction coefficient over one corrugation and
the dashed line shows the friction coefficient for a straight pipe. The friction
coefficient is greater than the corresponding straight pipe up until x = 0.42
and after x = 0.87. The peak value is Cf,max = 0.022 which is 3.7 times the
value for a straight pipe. The coefficient becomes negative in the intervall
x = 0.5 to x = 0.8 in accordance with the recirculation.

The left plot in figure 4.10 shows the averaged velocity profiles of the u
component over the wall normal direction at different streamwise locations
outside the recirculation zone. The right plot shows the location related to
the corrugation profile. It is noticed that the velocity profiles have similar
behaviour near the wall. Figure 4.11 shows the same as figure 4.10 for the
region inside the recirculation zone. It can be seen that the velocity profiles
achieves small negative values near the wall of varying magnitudes. Smallest
negative magnitudes is found near the separation and reattachment points
with larger negative magnitudes in between.

The left plot in figure 4.12 and 4.13 shows turbulent intensity in the ra-
dial direction at four different locations outside the recirculation zone and
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Figure 4.9: Friction coefficient 〈Cf〉, dashed line shows straight pipe value
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inside the recirculation zone respectively. The right plots show the locations
of each line relative to the corrugation profile. It can be seen that the inten-
sity is highest in the region after the reattachment point and goes down to
about half that intensity inside the recirculation zone.

Figures 4.14 and 4.15 show a similar setting as in the previous plots for the
Reynolds shear stress 〈u′v′

r〉. The Reynold Stress changes behaviour near
the separation point where it changes sign close to the wall and accompanied
with a smaller magnitude. This seems to a small extent somewhat correlated
with the turbulent intensity.

Finally, in figure 4.16 the maximal RMS-values of the three velocity com-
ponents are shown as functions of the streamwise direction. It is seen that
the fluctuations in the components orthogonal to the streamwise direction
has a little bit higher fluctuation maxima in the part where the corrugation
”rises”, that is where the pipe radius decreases. This is where the streamvise
fluctuations has its fluctuation maxima more centered relative to the corru-
gation.
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Figure 4.10: Averaged velocity profiles 〈u〉 outside the recirculation zone at
locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.11: Averaged velocity profiles 〈u〉 inside the recirculation zone at
locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.12: Averaged turbulent intensity 〈v
′2
r 〉 outside the recirculation zone

at locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.13: Averaged turbulent intensity 〈v2
r〉 inside the recirculation zone

at locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.14: Averaged turbulent shear stress 〈u′v′

r〉 outside the recirculation
zone at locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.15: Averaged turbulent shear stress 〈u′v′

r〉 inside the recirculation
zone at locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.16: Max of 〈urms〉 (solid red), 〈vrms〉 (dashed green) and 〈wrms〉
(dotted and dashed blue) in the streamwise direction
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4.4 Thermal field and heat transfer charac-

terisation

Figure 4.17 shows the periodic wall temperature 〈T 〉 and the local Nus-
selt number 〈Nu〉 respectively over one corrugation. The average 〈Nu〉 over
one corrugation was 〈N̄u〉 = 95.3. comparing to the straight pipe case this
gives an increasing factor of 〈N̄u〉/〈Nustr〉 = 1.24. Energy accumulates with
a peaked temperature value in the intervall x = 0.4 and x = 0.8, the maxi-
mum is located at x = 0.57. It is also noted that the minimum is located at
x = 1.0. This can be compared to the local Nusselt number that drops below
the value of a straight pipe in the intervall x = 0.48 and x = 0.70 with a
minimum of 49 at x = 0.57 which is 0.64 times the value for a straight pipe.
It is also observed that the local Nusselt numbers increase well above the
value for a straight pipe up to a value of 137 at x = 1.0 close to the peak of
the corrugation. This corresponds to a value 1.8 times the value for a straight
pipe. This promotes a hypothesis that the accumulated heat is related with
the lower performance of the local Nusselt number and the alteration of the
Nusselt profile as a whole. Figure 4.18 shows the variation of the maximum
of the RMS temperature fluctuations in the streamwise direction and it is
seen that this function is somewhat aligned with the temperature peak.
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Figure 4.17: Averaged periodic wall temperature 〈T 〉 and Nusselt numbers
〈Nu〉, dashed lines corresponds to straight pipe, thicker gray line shows cor-
rugation profile

Looking at the temperature profiles for different locations streamwise, it can
be seen in figures 4.19 and 4.20 that different low values of the local Nus-
selt numbers correspond to a higher difference between wall temperature and
bulk temperature. This supports the idea that a disturbance of the thermal
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Figure 4.18: Max of 〈Trms〉 in the streamwise direction

boundary layer is connected with lower values of the local Nusselt numbers.

The viscous heat transfer in the radial direction, defined as − ν
Pr

∂〈T 〉/∂y
is shown in figures 4.21 and 4.22. Once again the region outside the recircu-
lation behaves similar and the viscous heat transfer is quickly reduced from
the initial value of 10−3 at the wall. In the recirculated area this transfer
is maintained also a bit out from the wall. This is consistent with the ac-
cumulated heat, a ”higher hill” means a higher potential for thermal fluxes.
The corresponding turbulent fluxes −〈v′

rT
′〉, shown in figures 4.23 and 4.24,

shows qualitatively two different types of behaviour in the two types of zones.
In the zone outside the recirculation the turbulent flux works together with
the viscous flux, inforcing transport away from the wall in the proximity. In
the first half of the recirculation area the turbulent flux changes direction or
maintianes a value close to zero near the wall. The combined effect of these
two types of fluxes are shown in figures 4.25 and 4.26. It is shown that the
minimum of the local Nusselt numbers are accompanied with a behaviour
where the total flux in the radial direction quickly falls toward zero and even
changes sign. This happens arround the interval x =0.5-0.6. Figures 4.27
and 4.28 shows the viscous and turbulent flux over one corrugation and fo-
cused on the recirculation zone respectively. In the recirculation zone, the
heat transfer is disturbed by transport in the streamwise direction closer to
the wall. Figure 4.29 shows the magnitude of the viscous and turbulent heat
flux in the streamwise direction that is negative, transporting heat against
the streamwise direction. Figure 4.30 shows the corresponding magnitude
for the radial component for positive values, transporting heat towards the
wall. In effect it is seen that the viscous and turbulent transport is partly
isolating the earlier mentioned hot spot in the periodic mean temperature. It
is here hypothesised that the turbulent fluctuations in effect performes badly
in transporting heat away in the viscinity of the temperature hot spot. This
results in the geometry influencing the local Nusselt number, giving worse
performance then a straight pipe in the region x = 0.48 to x = 0.7 (figure
4.17 (right)). It is also noted from figure 4.29 that the heat flux goes against

35



Large Eddy Simulation of Flow and Heat Transfer in a Pipe With

Corrugated Walls

the streamwise direction up until close to x = 0.57 where both the periodic
wall temperature and the Nusselt numbers have extrema. On the other hand,
figures 4.31 and 4.32 shows magnitudes of the x-component of the viscous
and turbulent heat flux greater then 6 × 10−3 and the y-component of the
viscous and turbulent heat flux is less then 10−3. This indicates that heat
is transported past the recirculation zone at a high rate. Figure 4.32 also
shows a high transport rate at the wall after the recirculation zone where it is
also observed that the local Nusselt number performes better then a straight
pipe.
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Figure 4.19: Averaged periodic temperature profile 〈Twall − T 〉 outside the
recirculation zone at locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.20: Averaged periodic temperature profile 〈Twall − T 〉 inside the
recirculation zone at locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.21: Averaged viscous heat flux component − ν
Pr

∂〈T 〉/∂y outside the
recirculation zone at locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.22: Averaged viscous heat flux component − ν
Pr

∂〈T 〉/∂y inside the
recirculation zone at locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.23: Averaged turbulent heat flux component −〈v′

rT
′〉 outside the

recirculation zone at locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.24: Averaged turbulent heat flux component −〈v′

rT
′〉 inside the

recirculation zone at locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.25: Averaged total heat flux component − ν
Pr

∂〈T 〉/∂y − 〈v′

rT
′〉 out-

side the recirculation zone at locations x = 0.9, x = 1.0, x = 1.1, x = 1.2
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Figure 4.26: Averaged total heat flux component − ν
Pr

∂〈T 〉/∂y−〈v′

rT
′〉 inside

the recirculation zone at locations x = 0.5, x = 0.6, x = 0.7, x = 0.8
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Figure 4.27: Viscous and turbulent heat flux in each computational node
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Figure 4.28: Viscous and turbulent heat flux focusing on the recirculation
zone
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Figure 4.29: Negative values in the x-component of the viscous and turbulent
heat flux
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Figure 4.30: Positive values in the y-component of the viscous and turbulent
heat flux
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Figure 4.31: Values in the x-component of the viscous and turbulent heat
flux greater then 6 × 10−3
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Figure 4.32: Values in the y-component of the viscous and turbulent heat
flux less then −10−3
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Chapter 5

Summary and conclusion

In the present study a simulation of flow and heat transfer on the inner
side of a pipe with a corrugated geometric boundary has been conducted.
The simulation has been done on a fluid with a Prandtl number of 3.5,and a
density of 1.0 using a Large Eddy Simulation with conditions keeping a mean
flow ub = 1, fixing the Reynolds number as Red = 104 for the lengthscale of
R = 1 corresponding to the radius. A constant heat flux q = 10−3 is used at
the geometric boundary.

In this simulation the geometry gives rise to a small recirculation zone in
at the largest radius of the pipe. In connection to this recirculation the
friction coefficient dropps and becomes negative. On the other hand the de-
creasing radius feature of a corrugation increases the friction coefficient to a
value 3.7 times the value of a straight pipe. The dimensionless pressure drop
was 2.2 times greater then for a straight pipe.

The average over the resulting Nusselt number was 1.24 times the con-
stant value for a straight pipe. In connection to this recirculation the local
Nusselt number drops to values below the ones obtained for a straight pipe
with a minimum 0.64 times that for a straight pipe at x = 0.57. It is further
observed that the periodic wall temperature peaks in the recirculation zone
at x = 0.57 matching up the Nusselt extremum.

Outside the recirculation zone the local Nusselt number instead increased
to a maximum value of 1.8 times the value for a straight pipe, this at x = 1.0.
In this region, after the reattachment point, an increase in the turbulent in-
tensity is found in connection to the rising Nusselt number.

A more detailed examination of the heat flux shows first that the viscous
part is affected a lot less then the turbulent part. It is found that this results
in large deviations in the total behaviour of the heat flux vector, related to
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the straight pipe case, when the geometry is altered. Especially four different
behaviours are observed.

1. The new geometry increases the heat transfer in the radial direction
away from the wall in the region of rising slope in the corrugation. This
occurs both for the near wall behaviour and some smaller distance away
from the wall (figure 4.32). In the same region the Nusselt number is
seen to increase.

2. In the recirculation zone the heat flux goes against the stream direction
near the wall up until x = 0.57 where the maximum in the periodic
temperature is observed (figure 4.29).

3. Some small distance from the wall right upstream of x = 0.57 the
radial component of the heat flux goes towards the wall or is close to
zero, blocking heat transfer in the radial direction toward the centerline
(figure 4.30).

4. Right below the recirculation zone, there is a large increase of the heat
flux in the streamwise direction, meeting up the transport away from
the wall.

Comparing with the straight pipe case it is concluded that the turbulent
fluctuations are mainly responsible for these changes in the heat transfer.
Although the transport locally gets worse than the case of a straight pipe
near the temperature peak, this is well compensated in the region where the
transport is better than the straight pipe case. It can be hypothised that
the better performance is related to the rising feature of the corrugation and
the increase in turbulence that is observed in this region and that the local
loss in performance is related to the formation of the accumulated increase
of the thermal energy. It should though be stressed that there is no definite
possiblity to evaluate this hypothesis from the present simulations. The
present simulation deals with a symmetric geometry in the two slopes of the
corrugation. Future investigations of a non-symmetric setting of the slopes
whould be interesting and could shed light on the definite answer to the effect
of the corrugation and the importance of the region of accumulated thermal
energy.
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Example of G3DMESH script file

The following script generates a computational mesh for a corrugated
domain with a 90 degree azimuthal extension.

!###################################################

!# Script for G3DMESH, corrugated mesh generation #

!###################################################

! File name

volsol=$version

!##############

!# Geometry #

!##############

1.5 =LENGTH

1. =HEIGHT

1.57079 =WIDTH

!##########################

!# Define number of nodes #

!##########################

81 =NI_P

81 =NJ_P

65 =NK_P

!#################################

! First wall node point distance #

!#################################

LENGTH NI_P 1. - / =DWALL1
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LENGTH NI_P 1. - / =DWALL2

0.1 =DWALL3

0.001 =DWALL4

WIDTH NK_P 1. - / =DWALL5

WIDTH NK_P 1. - / =DWALL6

!####################

! Define stretching #

!####################

1. CHS =H

!##############################

!# Start mesh generation here #

!##############################

!##########################################

!# Define the block structure of the grid #

!##########################################

DEFMSH

1

NI_P NJ_P NK_P

!---------------------------------------

!- First (and only) block created here -

!---------------------------------------

!#####

!# 1 #

!#####

CURV2

1 1 1 1 1 NI_P

1

0. 0. 0. DWALL1

1

LENGTH 0. 0. DWALL2

0.

!###############################

!# 2, corrugation defined here #
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!###############################

CURV1

1 1 NJ_P 1 1 NI_P

NI_P

0.0000000e+00 1.0000000e+00 0.0000000e+00

1.8750000e-02 9.9970920e-01 0.0000000e+00

[ ...

--- Parametrized corrugation coordinates goes here ---

... ]

1.4812500e+00 1.0000000e+00 0.0000000e+00

1.5000000e+00 1.0000000e+00 0.0000000e+00

1 NI_P DWALL1 DWALL2 0.

!#####

!# 3 #

!#####

CURV2

1 1 1 1 3 NJ_P

2

DWALL3

2

DWALL4

UNKNOWN

!#####

!# 4 #

!#####

CURV2

1 NI_P 1 1 3 NJ_P

2

DWALL3

2

DWALL4

UNKNOWN

!#####

!# 5 #
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!#####

FILLB

1 1 1 1 1 3 NI_P NJ_P

!#####

!# 6 #

!#####

COPYB

1 1 1 1 1 3 NI_P NJ_P

1 1 1 NK_P 1 3 NI_P NJ_P

!#####

!# 7 #

!#####

MOVEB

1 1 1 NK_P 1 3 NI_P NJ_P

0. 0. WIDTH

!#####

!# 8 #

!#####

CURV2

1 1 1 1 5 NK_P

2

DWALL5

2

DWALL6

0.

!#####

!# 9 #

!#####

CURV2

1 1 NJ_P 1 5 NK_P

2

DWALL5

2

DWALL6

0.

!######
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!# 10 #

!######

CURV2

1 NI_P 1 1 5 NK_P

2

DWALL5

2

DWALL6

0.

!######

!# 11 #

!######

CURV2

1 NI_P NJ_P 1 5 NK_P

2

DWALL5

2

DWALL6

0.

!######

!# 12 #

!######

FILLB

1 1 1 1 1 5 NI_P NK_P

!######

!# 13 #

!######

FILLB

1 1 1 1 3 5 NJ_P NK_P

!######

!# 14 #

!######

FILLB

1 1 NJ_P 1 1 5 NI_P NK_P

!######

!# 15 #
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!######

FILLB

1 NI_P 1 1 3 5 NJ_P NK_P

!################################################

!# 16, generate cylinder for nice visualization #

!################################################

CYLCAR

1 1 NI_P 1 NJ_P 1 NK_P

0. 0. WIDTH 90.

!-------------------------

!- First block ends here -

!-------------------------

!#####################

!# Check all volumes #

!#####################

CHECKV

1 1 NI_P 1 NJ_P 1 NK_P

SAVE

[$version].bin

STOP
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