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NOMENCLATURE

Subscript (i,j,k,2) denotes covariant component; superscript (i,j,k,4£)
denotes contravariant component. In this Nomenclature all quantities are,

for convenience, given as covariant components.

a coefficient in the discretised equations
b source term
C#, Cle’c2e coefficients in the turbulence model
F, G geometric arrays (see Chapter 3)
B metric tensor
1]
=¥ .
g unit base vector
g determinant of gij
k turbulent kinetic energy
o 5
n normal vector
P pressure
p" pressure correction
Pk produktion term in the turbulence model
T temperature
vy ' velocity component




v projected velocity component

i

v; velocity correction

\Y volume

Xy cartesian co-ordinates

xi general contravariant co-ordinate; there exist no equivalent

covariant component

Greek Symbols

€ dissipation of turbulent kinetic energy
¢ general dependent variable

P density

T exchange coefficient

I dynamic viscosity

4 time

Subscripts

¢ general dependent variable
t turbulent
eff effective




1. INTRODUCTION

FLUX2D is a general purpose computer program for two-dimensional flow. It
is written in general non-orthogonal co-ordinates. FLUX2D uses the
covariant velocity components; this choice (rather than contravariant
components) makes the pressure-velocity coupling relatively easy to
handle at the expense of more complicated expressions for the convective

and diffusive fluxes.

The effects due to curvature and/or divergence/convergence of grid lines
are usualiy taken account for via source terms. In FLUX2D a novel proce-
dure of taking account for terms related to non-orthogonality and
curvature and/or divergence/convergence of grid lines. The mathematical
derivation of this procedure is described in [1]). When a velocity com-
ponent 1is solved at a point e (or n), the neighbouring velocities are
projected in the direction of the velocity component at the point e. Thus
we change the base vectors at the neighbouring points, which means that
the direction of the velocity components in the immediate mneighbourhood
of e 1is constant. This renders a simpler expression for the covariant
derivatives. The procedure of changing the base vectors affects only the
convected velocity. The convecting term (dot product of velocity and
area) is calculated without any change of the base vectors. The same is

true for the operator on the covariant velocity in the diffusion term.

In FLUX2D a novel procedure of taking account for terms related to non-
orthogonality and curvature and/or divergence/convergence of grid lines.
The mathematical derivation of this procedure is described in [1]. In [1)
FLUX2D is wused to calculate four laminar flows; the agreement between

calculated and analytical or experimental data is good.

The code has also been applied to two turbulent flows [2], with good

results.




2 _EQUATIONS

2.1 MOMENTUM EQUATIONS

The momentum equations for turbulent flow in general co-ordinates, using

covariant components can be written [1]

av,

i jk - .9
T ¢GRS Y g

ik
o (Bogs 8 Vi 50 % (2.1)

when the effective viscosity does not vary too much; i.e. the diffusive

terms

jk
g @ vj,i),k

have been neglected , which vanish due to continuity when the density and
the viscosity are constant. These terms are usually very small. The comma
notation is used for denoting covariant derivative. In [1] it was shown
that if a local co-ordinate system is used so that the direction of the
neighbouring wvelocities Vit (i=co-ordinate direction, nb=neighbour) are
kept the same as that of the velocity (vle or v2n) being solved for (see

Fig. 2.1), Egq. (2.1) can be integrated and rewritten so that

a av

-
i jk _i -
£ o dv + f g (pvivj- Heff 3Xj ) nde + { P nidA 0 (2.2)
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where A denotes the bounding area of the control volume V, and n is its

normal vector.

It 1is well known that upwind differencing gives rise to numerical diffu-
sion. For curved grids this becomes especially serious when the flow is
across the grid. Even if the magnitude of the velocity component is well

approximated by estimating the face value of vy (for example) with its

node value, the direction of vy is not. This was recognised by Galphin et

al. [3].

EN

Figure 2.1 vl-velocity control volume (dashed lines). The directions of
_— = —— _—

the Vien' V1w’ Vies and Viee 2T N(EN), WP, S(ES) and E(ff), respec-

tively. The arrows show the velocity vectors projected on PE, which are

! and v!

= s ] ’
neighbours of Vie [1.e. v Vi Ylas lee]'

leN’
In the present formulation the velocity components in the immediate
neighbourhood of the velocity component being solved for, all have the

- - 3 3 =
same direction (see Section 1 and [1]). The velocity vectors, v

nb
(nb=neighbour), is projected in the direction of the velocity component




at the control volume e being solved for. This means that all the neigh-

vinb’ of Vie have the same direction. In this way the problem of

bours,
estimating a face value of Vi having the in-correct direction is solved.
The same is true for the v2-equation. The procedure of projecting
velocities drastically reduces the numerical errors due to upwind dif-

ferencing associated with curved grids [4].

2.2 SCALAR EQUATIONS

The integrated differential transport equation for a scalar wvariable ¢

(i.e. T, k or €¢) can be written

jk 3
v + [ g (g & B g —23 ) mda + [ bydV = 0 £2.39

A ax \Y

<t
Q>|Cb
RS

where b¢ denotes the general source term, which contains terms which are
not of transient, convective or diffusive type. In case ¢=T the source

term bT=0.

2.3 k-¢ TURBULENCE MODEL

The standard k-e¢ turbulence model is implemented in FLUX2D [5]. The

source term b¢ for the k and e-equations take the fbllowing forms:

. T FE )
by = { (B, - pe) dV; b { (G, B G, pe) dv




where the produktion term, Pk’ is calculated (without projecting the

velocities) as

k
Pk-‘ ,ut( vy j+ Vi ) B

The Christoffel symbol can be written [6]

1 ke, 9By 9By 98y
T e L
axJ ax ax

The covariant components of the metric tensor gij are defined by [6]

| 811~ 8y~1i gyy=cosa

where o 1is the angle between the base vectors El and EZ' The con-

travariant components giJ are defined in Eq. (3.3)

The turbulent viscosity is calculated as

10




2
B~ pCpk /€

The constants in the turbulence model have been assigned their standard

values [5]: CM—O.OQ, C, =1.44, C, =1.92, o0,=1.0, 06*1.3

le 2¢ k

11




3. DETAILS OF THE DISCRETISATION

Equation (2.2) can now be discretised using the control wvolume formula-
tion described in [7]. For the vl-equation the discretised equation may

be written

apvle- zanbvlnb +b (3.1)

where the prime denotes velocity parallel to the vle—velocity. The Vo-
equation is discretised in the same way. The ae-coefficient in Eq. (3.1),
for instance, contains convective contribution such as (p;-z)e and dif-
fusive contribution such as (“effz-v)e [cf. Eq. (2.1)], where Ke is the
east face vector area of the control volume. The part of the diffusion
terms which contains the cross-derivative due to non-orthogonality has

been included in the source term, b.

To make it possible to solve the wvelocities wusing the usual TDM-

Algorithm, Eq. (3.1) is rewritten so that

apvle- Eanbvlnb+ & & bcurv

where the source term b now contains
curv

L zanb [ b ¥t




The scalar equations [Eq. (2.3)] are discretised in the same manner, ex-

cept that no curvature terms appear. We can write these equations as

a ép Ya b + b (5. 55

The equations are solved using the SIMPLEC-algorithm [7]). The four main
features are staggered grids for the velocities; formulation of the dif-
ference equations in implicict, conservative form, wusing hybrid
upwind/central differencing; rewriting of the continuity equation into an
equation for the pressure correction; and iterative solving of the equa-

tions using TDMA.

3.1 THE GRID

The grid must be generated by the user; the co-ordinates (xc, yc) of the
corners of each scalar control volume must then be given. The corners are
numbered so that ix=0 for the corners at the west (low x) boundary of the
computational domain, and ix=nx at the east boundary, see Fig. 3.1. The

scalar nodes (xp, yp) are taken to be in the centre of their control

volumes so that

xp(1x,1y)=0.25[xc(ix,iy) + xc(ix-l,iy) + xc(ix,iy-l) + xc(ix-l,iy—l)]

yp(ix.iy)-0.25[yc(ix,iy) + yc(ix—l,iy) + yc(ix,iy-l) + yc(ix-l,iy-l)]

The straight lines between the scalar nodes define the direction of the
-+
unit covariant base vectors &g - The scalar nodes outside the computa-

tional domain are defined so that the base vectors at the boundaries are

13




orthogonal. Consider, for example, a control volume at a south boundary,
see Fig. 3.2. The node S is placed so that the line SP is orthogonal to

the line (es)(en).

xp(ix,iy)
yc(lx,ny)
yc(ix,iy) '
B | (T I (iwen
. yp ix,1iy)
yc(ix,iy—l) =
yc(ix,O)
xc(O,iy) xc(ix-l,iy) xc(ix,iy) xc(nx,ly)

Figure 3.1 The grid. Solid lines: X and y, constant; dotted lines: x

and yp constant.

This definition of the location of the scalar node S has the following

advantages:

i) when a flux across the boundary is to be prescribed or calculated,
only the derivative 6/6x2 is needed (i.e. the derivative 6/8x1 is not
needed as for the general case);

ii) the boundary condition for the vz—velocity becomes very simple: v =

2
v2= 0.

14




Figure 3.2 Control volume at a south boundary of the calculation domain.
Circles denote scalar nodes; crosses denote corners of control volume.

See Fig. 3.3 for grid nomenclature.

3.1.1 Nomenclature for the grid

The grid is shown in Fig. 3.3. Single capital letters define scalar nodes
[E(ast), S(outh), etc.], and single small letters define faces of scalar
control volumes. When a location can not be referred to by a single
character, combinations of letters are used. The north-east corner of the
scalar control volume and the vl-control volume are referred to as 'en'’
and 'En’, respectively. The order in which the characters appear are:

first east-west and then north-south.

15




.WNN wNN NN eNN . ENN

WNn wNn Nn eNn ENn eeNn

. WWN wwN WN wN .N eN .EN eeN .EEN

WWn wWwn Wn wn n en En een EEn
WW wW W A P e E ee EE
WWs WWS Ws WS s es Es ees EEs

.WWS wwS WS wS 320 eS .ES eeS .EES

Ss eSs ESs

.SS .ESS

X
[
X

Figure 3.3. Grid nomenclature. The grid drawn orthogonal for clarity.

Dots denote scalar nodes.
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3.2 CONVECTION

The convection across a face of a scalar control volume is calculated as
(1]

pv ¢ A = pz #ndow pvj Ej' n A= pvigl Ej‘ naA (3.2)

3

where A denotes the face area. The scalar product of the unit vectors g.
-

and n is simply cosa, where a is the angle between the two vectors. The

contravariant components of gij are calculated as [1,6]
11 12 21 12 22 2
g =1/g; g "= -cosa/g; g =8 : & = 1/g; g=l-cos a (3.3)

where a denotes the angle between the two appropriate vectors [Ej and

‘ n in the case of Eq. (3.2)), and g is the determinant of the covariant

metric tensor 8is-

3,2.1 East Face

From Eq. (3.2) we obtain

= = 11 « 21 12
PuplViE " Bye mA) = p (8 By T VR B T VE B

17




The upwind density , pup
sonic flows [8]. The N velocity is needed at face e; we take v

, 1s used, which enables FLUX2D to handle tran-

to be
2e
the arithmetic mean value of the four neighbours closest to face e, i.e.

7 A

Vou~ 0-20Wap # Vop t Vo

2n)

In order to calculate the glJ-components in Eq. (3.3) two relevant direc-

tions (one xl and one x2-direction) must be defined. We use Fﬁ and

I .
(es)(en); the latter is taken as

(es) (en)=0.25[E(EN) + (ES)E + SP + PN]

-+ -+
The product (v - n)e can be written as

u le u 2e

where Fu and Gu contain all geometrical quantities, which FLUX2D calcu-

lates once and for all.

The convective flux through the east faces of the vy and v2—control
volumes is taken as the arithmetic mean value of the fluxes at face e and

ee, and at face e and eN, respectively.

3.2.2 North Face

From Eq. (3.2) we obtain

18




i 3 2 11 21 12
Pup Vgl Byt DAY BapltVgB ™ 81 % VB By * M B *

Again the wupwind density , pup' is used. The vq- velocity is needed at
face n; we take Yy £O be the arithmetic mean value of the four neigh-

bours closest to face n, i.e.

+ v, + Vv )

By~ D280% ot Yot Vgt Vg

In order to calculate the glJ-components in Eq. (3.3) two relevant direc-
tions (one x1 and one x2-direction) must be defined. We wuse PN  and

(wn)(en); the latter is taken as
(wn) (en)=0.25[N(EN) + PE + WP + (WN)N)

- -
The product (v -« n)n can be written as

v 1ln v 2n

where Fv and L contain all geometrical quantities, which FLUX2D calcu-

lates once and for all.

The convective flux through the north faces of the vy and vz-control

volumes is taken as the arithmetic mean value of the fluxes at face n and

En, and at face n and nn, respectively.

19




3.3 DIFFUSION

The diffusive flux across a face of a scalar control volume is calculated

as

(3.4)

The diffusive flux through the face consist of two parts: the flux due
to 8/3x1, and the flux due to 6/6x2 (cross-derivative term; this term

vanishes for orthogonal grids). The first part can be written [see Egq.

(3.4)]

S e 11 4 21
ey B ™ = (e = o 7" yle

This part is included in the ae-coefficient [see Egs. (3.1-2)). The

second part is given by

- - 12 =+ 22 3
[((T gg AM) * (818" + 8,8 ) ;;Z}e

This part is included in the source term.

The total diffusion can be written

a a
[A I‘eff(Fu w1 + Gu —_2)]e
dx ax

20




Note that the same geometrical factors are used for the convective and
for the diffusive fluxes; this is because vl& v, as well as 6/3xl& 6/8x2
are covariant components.

The diffusive flux through the east faces of the vy and vz-control
volumes is taken as the arithmetic mean value of the fluxes at face e and

ee, and at face e and eN, respectively.

3.3.2 North Face

The diffusive flux through the face consist of two parts: the flux due
to a/axz, and the flux due to a/axl (cross-derivative term; this term
vanishes for orthogonal grids). The first part can be written [see Eq.
(3.4)]

- e B0 o w 29, @
[((Cogp A » (818 + 8y8 ) )

ax n

This part is included in the an-coefficient [see Egqs. (3.1-2)]. The

second part is given by

11+ 21 9
+ 8,8 ) )
ax

Il pp & 04 @ Lgyg -

This part is included in the source term.

The total diffusion can be written

a d
(AT (F, —. + G_ —_)]
eff " v axl v 3}(2 n

21




Note that the same geometrical factors are used for the convective and

for the diffusive fluxes; this is because vl& v, as well as B/Bxl& 6/6x2

2

are covariant components.

The diffusive flux through the north faces of the vy and v2-control

volumes is taken as the arithmetic mean value of the fluxes at face n and

En, and at face n and nn, respectively.

3.4 CALCULATION OF THE NEIGHBOURS OF v " AND v

1 2n

The neighbour velocities, vinb' are obtained by calculating the velocity
-
vectors, p and then projecting them in the direction of the velocity

being solved for (vle or V2n)' We can write this procedure as
Viobm Van® Bre= 7 B B &% B0 - 3
1Inb- “nb’ 81e gj nb” €17 Y& Vi gj nb” &le
15 12 -+ 21 22 - -
[(g77vy +877vy) gy + (g77v) + 8"V, 8] b° B1e (3.5a)
Vigb™ Vab® Bogm (P B i Bpm (8 £ ¢
Inb "nb ©2n gj nb on~ ‘& Vg gj nb" 82n
11 12 -+ 21 22 -+ -+
= [ (g v, teg v2) g, + (g vyt g v2) g2}nb. Bon (3.5b)

The scalar products of the unit base vectors are defined by:

-

-+ -+ -+ —+ -+
B1° By~ cosai gyt gy= 1; gy gy= 1

22




'3

where o is the angle between él and EE'

3.4.1 West Neighbour of ¥y
In order to calculate Viw using Eq. (3.5a) we must first calculate glJ

and Vou' We proceed as in Section 3.2.1; we calculate Vo 35

W 0.25(v2n+ v25+ V2Ws+ V2Wn)

When calculating glj using Eq. (3.3) two directions (xl and x2) are

needed at w: WP and (;ETTG;) are taken. The latter is calculated as
— — — —_— s -
(ws) (wn) = 0.25[PN + SP + (WS)W + W(WN)] = g,

The neighbour velocity viw can be written

l F o
| V1w Fuwvlw * Guwv2w

where F and Guw contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.4.2 East Neighbour of vle

In order to calculate viee using Eq. (3.5a) we must first calculate glJ

and Ry We proceed as in Section 3.2.1; we calculate v as
ee 2ee

v. = 0.25(v

e 26En” V2EEs* V2Es* V2En’

23
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: . 1 2
When calculating gi using Eq. (3.3) two directions (x and x°) are

needed at ee: E(EE) and (ees)(een) are taken. The latter is calculated as

(ees)(een) = 0.25((EE) (EEN) + (ESS)(EE) + (ESIE + E(EM)) - §,__

The neighbour velocity Viee @D be written

v: =TF v + G v
lee ue lee ue 2ee

where Fue and Gue contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.4.3 South Neighbour of v

le

In order to calculate vieS using Eq. (3.5a) we must first calculate glJ

and Voes" We proceed as in Section 3.2.1; we calculate v

2¢8 35

Vo oa™ 0.25(v2 + v

Es+ v2ESs+ Vass 25)

When calculating glJ using Eq. (3.3) two directions (xl and x2) are

needed at eS: S(ES) and (eSs)(es) are taken. The latter is calculated as

(eSs)(es) = 0.25[(ES)E + (ESS)(ES) + (SS)S + SP] - EZeS

The neighbour velocity vies can be written

24




! -
g FusvleS ® GuSVZeS

where B and G _ contain all geometrical quantities and which FLUX2D
calculates once and for all.

3.4.4 North Neighbour of ¥ie

In order to calculate vieN using Eq. (3.5a) we must first calculate glJ

and VoeN We proceed as in Section 3.2.1; we calculate Voen 28

v = 0.25(v

2eN e

SEn VEnt on T oind

When calculating glJ using Eq. (3.3) two directions (xl and x2) are

_
needed at eN: N(EN) and (en)(eNn) are taken. The latter is calculated as

(en) (eNm) = 0.25[ (EN)(ENN) + E(EN) + PN + N(NN)] = gzeN

The neighbour velocity Vien €20 be written

VieN~ FunvleN % Gunv2eN

where F =~ and G = contain all geometrical quantities and which FLUX2D

calculates once and for all.

25




3.4.5 West Neighbour of v

2n : -
i
In order to calculate véWn using Eq. (3.5b) we must first calculate g J
and Viun® We proceed as in Section 3.2.2; we calculate Viwn 25
Viwn~ 0'25(v1wN+ Vlw+ Vlww+ VlwwN)

When calculating glJ using Eq. (3.3) two directions (xl and xz) are

— —_— .
needed at Wn: W(WN) and (wwn)(wn) are taken. The latter is calculated as

Gowm) () = 0.25((WION + WP + (WHW + (W) (D] = g,

The neighbour velocity véWn can be written

V2\Jn“= Fvwlen + vav2Wn

where Fvw and va'contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.4.6 East Neighbour of v

1En

2n .
In order to calculate véEn using Eq. (3.5b) we must first calculate glJ
and ViEn® We proceed as in Section 3.2.2; we calculate Vign &S
Voo = 0.25(v1eeN+ Vieet Viet VleN)

26




When calculating gij using Eq. (3.3) two directions (x1 and x2) are

needed at En: E(EN) and (en)(een) are taken. The latter is calculated as

(emy(een) - 0.25[ (EN)(EEN) + E(EE) + PE + N(E)) = gy,
The neighbour velocity VéEn can be written

véEn- Fvelen + Gvev2En

where Fve and Gve contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.4.7 South Neighbour of Mo
In order to calculate vés using Eq. (3.5b) we must first calculate glJ

and Vig® We proceed as in Section 3.2.2; we calculate Vi @S

V= 0.25(vy + Yy ot Viuet V1)

When calculating giJ using Eq. (3.3) two directions (x1 and x2) are

— ———
needed at s: SP and (ws)(es) are taken. The latter is calculated as

(ws)(es) = 0.25[PE + S(ES) + (WS)S + WB] = g, _

The neighbour velocity vis can be written

27




v! = F + G

v v
2s vs ls vs 2s

where FVS and Gvs contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.4.8 North Neighbour of v

2n e
In order to calculate VéNn using Eq. (3.5b) we must first calculate glJ
and ViNn We proceed as in Section 3.2.2; we calculate Ving &S
V™ 2250 ot Viewt Viun® Vi

When calculating glJ using Eq. (3.3) two directions (xl and x2) are

needed at Nn: N(NN) and (wNn)(eNn) are taken. The latter is calculated as

(wNn) (eNn) = 0.25[(NN)(ENN) + N(EN) + (WN)N + (WNN)(NN)] = _éan

The neighbour velocity véNn can be written

+ G

V2Nn- Fvnlen vnVQNn

where Fvn and Gvn contain all geometrical quantities and which FLUX2D

calculates once and for all.

28
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3.5 DIFFUSION DUE TO CROSS-DERIVATIVES

The diffusion flux of a scalar variable, ¢, across the east face of its

control volume is given by (see Section Fnidea L)

22, 8

-+ -+ 12 -+
[Tege A1) - (g8 + 88 ) " 5 e

The values of ¢ at the east corners of the control volume, ¢ < and ¢

are needed in order to calculate the derivative 6¢/8x2. The wvalue ¢en is

taken as
YT 0-25(¢EN + ¢p ¢P + ¢N)

The remaining corner values, ¢es’ ¢ws and ¢wn‘ are calculating in the

same way.

The diffusion flux of momentum across the east face of the control volume

due to the cross-derivatives in the vl-equation, for example, is given by
(see Section 3.3.1)

2 v T

—+ -+ 1 -+
[hgge A1) * (B8 + By ) —5 g

In order to calculate the derivative (3v1/6x2)E we need the vi-velocities

at the east corners of the v.-control volume, i.e. v and v . When
1 1En 1Es

the derivative at the west face, (avl/axz)P, is to be calculated we need

Vin and Vig: The four projected velocities (Vinb) at the corners are also

29




used when the diffusive flux of momentum across the south and north faces

of the vl-control volume, due to the cross-derivatives, are calculated.

Azt ', v! and v! are needed in order to
2eN’ e’ 2w 2wN

calculate the corresponding fluxes of momentum in the v

The projected wvelocities v

-equation,
5 =88

3,.5.1 North-east Neighbour of v

le

In order to calculate viEn using Eq. (3.5a) we must first calculate g

and ViEn" We proceed as in Section 3.2.1; we calculate v

ij

1En -

v = 0.25(v v e+v + v

1En 1eat” Ypadt Yt Yy

When calculating g:LJ using Eq. (3.3) two directions (xl and x2) are

—_— e
needed at En: E(EN) and (en)(een) are taken. The latter is calculated as

(en) (een) = 0.25[ (EN) (EEN) + E(EE) + PE + N(EN)] = ElEn

The neighbour velocity viEn can be written

trg = B +
V1En uenvlen Guenv2en

where F and G contain all geometrical quantities and which FLUX2D
uen uen

calculates once and for all.
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3.5.2 South-east Neighbour of v

le . .
In order to calculate viEs using Eq. (3.5a) we must first calculate glJ
and ViEs We proceed as in Section 3.2.1; we calculate Vigs @S
les== 0'25(vlee+ VleeS+ V1eS+ vle)

When calculating glJ using Eq. (3.3) two directions (x1 and x2) are

needed at Es: (ES)E and (es)(ees) are taken. The latter is calculated as

(es) (ees) = 0.25[E(EE) + (ES)(EES) + S(ES) + PE] = glES

The neighbour wvelocity viEs can be written

' -
ViEs Fuesles + GueSVZEs

where Fues and Gues contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.5.3 South-west Neighbour of v

le

In order to calculate vis using Eq. (3.5a) we must first calculate glJ

and Wi We proceed as in Section 3.2.1; we calculate v, as

1ls

Wy = 0.25(vle+ v + v

leS 1wS+ %

lw)
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j : : 1 2
When calculating giJ using Eq. (3.3) two directions (x~ and x") are

needed at s: SP and (ws)(es) are taken. The latter is calculated as
(ws)(es) = 0.25[PE + S(ES) + (WS)S + WP] = gls

The neighbour velocity Vis can be written

1s~ I?mrsvls + Guwsv23

where F and G contain all geometrical quantities and which FLUX2D
uws uws

calculates once and for all.

3.5.4 North-west Neighbour of v

le ..
In order to calculate Vin using Eq. (3.5a) we must first calculate glj

and vln' We proceed as in Section 3.2.1; we calculate Vi, @8

Yy 0.25(v + v e+ v

1eNt V1 wi ¥

1 le)

When calculating giJ using Eq. (3.3) two directions (x1 and xz) are

needed at n: PN and (wn)(en) are taken. The latter is calculated as
(vn)(en) = 0.25(N(EN) + PE + WP + (WN)N] = gln

The neighbour velocity vin can be written
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Vlnﬁ Fuwnvln + Guwnv2n

where F and Guwn contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.5.5 North-east Neighbour of v

2n i
In order to calculate véeN using Eq. (3.5b) we must first calculate glJ
and Vo oN® We proceed as in Section 3.2.2; we calculate Voen 25
VoeN™ O'25(V2ENn+ YoEn" You' VZNn)

When calculating glJ using Eq. (3.3) two directions (xl and x2) are

needed at eN: N(EN) and (en)(eNn) are taken. The latter is calculated as

(en) (eNn) = 0.25[(EN) (ENN) + E(EN) + PN + N(NN)] = E2eN

The neighbour velocity véeN can be written

VoeN FvenvleN i GvenVZeN

where Fven and Gv - contain all geometrical quantities and which FLUX2D

calculates once and for all.

33




|

3.5.6 South-east Neighbour of v

2n

In order to calculate vée using Eq. (3.5b) we must first calculate glJ

and v2e' We proceed as in Section 3.2.2; we calculate v as

2e

VZe- 0.25(v2En+ V2ES+ v25+ V2n)

When calculating glJ using Eq. (3.3) two directions (xl and x2) are

needed at e: PF and (es)(en) are taken. The latter is calculated as

— —_— — —_— -

(es)(en) = 0.25[E(EN) + (ES)E + SP + N] = g,

e

The neighbour velocity vée can be written

" -
2e Fvesvle * GvesVZe

where Fves and Gves contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.5.7 South-west Neighbour of v

2n e
In order to calculate véw using Eq. (3.5b) we must first calculate glJ
and Vou We proceed as in Section 3.2.2: we calculate Vo 85

Vo 0.25(v2n+ Vgt T & W

2 2Ws 2Wn)
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When calculating glJ using Eq. (3.3) two directions (xl and x2) are

needed at w: WP and (ws) (wn) are taken. The latter is calculated as
(ws)(wn) = 0.25[PN + SP + (WS)W + W(WN)] = Ezw
The neighbour velocity véw can be written

! -
v2w Fvwsvlw * vasv2w

where F and G contain all geometrical quantities and which FLUX2D
VWS vWs

calculates once and for all.

3.5.8 North-west Neighbour of v

2n

In order to calculate véwN using Eq. (3.5b) we must first calculate glJ

and VouN" We proceed as in Section 3.2.2; we calculate VouN &S

VouN™ 0.25(V2Nn+ v n+ Vo + V )

2 2Wn 2WNn

When calculating glJ using Eq. (3.3) two directions (xl and x2) are

needed at wN: (WN)N and (wn)(wNn) are taken. The latter is calculated as

() (Wn) = 0.25(N(NN) + PN + WQa) + (W) (W] = g,

The neighbour velocity véwN can be written
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Voull™ Fvum 1wl ¥ Syvwn'own

where F and G contain all geometrical quantities and which FLUX2D

calculates once and for all.

3.6 THE PRESSURE CORRECTION EQUATION

The SIMPLEC algorithm [9] is implemented in FLUX2D. SIMPLEC (as well
SIMPLE

as
[7]) is a one stage correction algorithm. The continuity equation

is turned into an equation for the pressure correction. Velocities and

pressure are expressed as old values (*) plus a correction )y 1.e,

*+ 5 1 A *+ | I *+ "
¥ VT Vgm Nk Vop g R p

and the velocity corrections and the pressure correction are related as

v! = const. 2p” ; Vi = const. o
1 1 2 2
ax ax

*
The momentum equations are first solved using old pressure (p ); the
pressure correction equation is then solved, and the obtained pressure

correction is used to correct velocities and pressure.

The discretisation of the pressure correction equation is now described.

The mass flux through the east face of the control volume is given by
(see Section 3.2.1)

TN s
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* n - * " * n
T Bg * e pupAeEFu(v1e+ vle) * Gu(v2e+ v2e)]

*
P " "
By pupAe(Fuvle * GuVZe

The relation between Vie' v%e and the pressure correction, p", is given
by [7,9]
Ae
g™ T——vl‘“ (pp - Pp) = Due(PP - Pp) (3. 6a)
ae ) Zanb
Ae
| T SIS P "o " - "o "
v2e vy v2 (pes pen) Dve(pes pen) (3.:6b)
ae ) zanb

The superscripts vy and v, refer to which momentum equation the coeffi-

cients ae and anb belong. It may seem that the denominators in Eq. (3.6)

are zero, since, generally

aﬁ' ) aib - Si

and Sg normally is zero for the momentum equations. The denominators in

v v
Eq. (3.6) are, however, not zero because the coefficient a and a, have

been under-relaxated before they are used in Eq. (3.6).

We obtain now the following expression for m
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| 1: *
i} = n - " " - "
i s T IpupAe[FuDue(pP Pp) # G D (g Bog))
i
I
‘l In the same way the relation between vin, v%n and p" is given by
A
VY = ————— (pl_ - L) =D (P! - PL)
1n vy vy wn en un " “wn en
n T Eanb
An
v5n= Vs v, (p% ) pN) - Dvn(pP i pN)
a“ - Zanb

so that

*
07 M + pupAn{FvDun(pwn- pen) + Gvan(pP ) pN)}

The correction expressions for m, and m_ are obtained in the same way.

The pressure equation can now be derived from the continuity equation as

apPp = ay Py + ap Pp + ag Pg * ag Pyt b + by,

where
11 %E" pup Ae Fu Due; e pup (Ae Fu Due)ix~1;

&N~ pup An Gv Dvn; - pup (An Gv Dvn)iy-l;

' b=mn -m +m -om o sV/6t;
ap= ap + a, + ay + ag; =m -m +m -m + (pP - pP) /6t;
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bNO— [NO=Non-Orthogonality]=

"o " _ "o "
pup(AeGuDve)ix-l(pWS pwn) pupAeGuDve(pes pen)
noo_ " - [ LI n
+ pup(AanDun)iy—l(pws pes) pupAanDun(pwn pen)
In the current version of FLUX2D the source term b is included in

NO
the code but it is made inactive, since it has been found that it does

not increase the convergence rate; in some cases even the reverse.

3.7 CYCLIC BOUNDARY CONDITIONS

In many applications the flow is cyclic in one direction, i.e. it
repeats itself every Lth meter, where L is the length of the calcula-
tion domain. By using the cyclic option this periodicity 1is taken
advantage of in FLUX2D, by solving for L meters in the x-direction
only. The special solution algorithm 1is called CTDMA (Cyclic Iri
Diagonal Matrix Algorithm).

R B B B B B =
| | | | | |
o gdy Kyl g s il Wds

Figure 3.4. Configuration where cyclic boundary conditions are used.
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For a configuration with cyclic boundary conditions in the x- direc-

tion (see Fig. 3.4), we obtain a discretised equation system as

follows:
bié;- c1%, g e =
waylly Byl = Ciled = Gy (282
-Cnx¢l -anx¢nx-l+bnx¢nx B dnx

Note that the west neighbour of ¢l is ¢nx’ and that the east neighbour
of ¢nx is ¢l. The vl-velocity is normally solved for from ix=l to
ix=nx-1. When cyclic boundary conditions are used vy is solved for

from ix=1 to ix=nx since the velocity at the boundary must be calcu-

lated; note that (vy)y= (V{) .-

With a matrix formulation we get

-;) - - =~ - e L.
3 "y ey ¢y 1
Hy By =& 2 =19
8y By -8y ¢y 9
-anx-l bnx-l -Cnx-l ¢nx-l nx-1
-C -a b ¢
nx nx nx nx nx
L o L p= b -

Due to the appearance of the corner elements a; and ¢ x We can not use
: the standard TDM algorithm.

We start by eliminating the a's. Using Gauss elimination we obtain
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=g " 41 M
‘82 'C2 ‘&12 ¢2 = ‘12
Py ey ! 1 b !
ﬁnx-l _Snx-l ¢nx-1 Tnx-1
;Cnx Brise 4 ‘¢nx J b7nx ,l
where
0y
By= b~ (3,7b)
E L g
o s | (3.8a)
%1-1 %
= B (3.8b)
i-1
c a
nx-2 nx-1
ﬂm-l- bnx-l = ﬁ (3.9)
nx-2
s o a
3 - + _nx-1 nx-1 (3.10)
nx-1 nx-1 B
nx-2
Snx-lanx
B =b - —m 8.11)
nx nx 'an-l
c__ does not change
nx
7= 9 e (3.12a)
73T 9t ;hl - (3.12b)
i-1
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Note that the coefficients in Egs. (3.7), (3.8) and (3.12) are the
same as for the TDM algorithm. Elimination of the c¢'s from our matrix

system gives

= q < - =] L=~
A "8y 21 1
B, -S, ¢, = |6y
ﬁl hsi ¢1 G1
ﬁnx—l nx-1 ¢nx—1 an-l
;cnx ﬁnx J b¢nx ] L nx
where
S. c.
5= at —E—*—L—l (3.13)
i+l
G, [N
Gy= 7;+ 1—?—1 (3.14a)
i+l
G 1™ Yool Sy Yo (3.14b)

From the matrix we can write

4!
¢i— Ei(si¢nx + Gi)’ i=1,2,...,nx-1 (3.15a)

From Eq. (3.15a) we get an expression for ¢l and from the matrix we

obtain an expression for ¢nx so that

lcnx+ anﬁl
¢ = (3.15b)
R ﬁnxﬁlv Slcnx
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The solution procedure can now be summarized as:

a) Calculate the matrix elements «, f and Sn

o from Eqs. (3.7-11).

b) Calculate the matrix elements vy, S and G from Eqs. (3.12-14).

c) Calculate ¢nx from Eq. (3.15b).

d) Calculate the rest of the ¢'s from Eq. (3.15a)

When nx is smaller than 3 the algorithm described above has to be
modified; rather than modifying the algorithm, this is not applied
when nx is smaller than 3. The cyclic boundary conditions are
automatically taken account for when the CTDMA-subroutine sweeps in

the other direction.

In subroutine CTDMA ¢O is set to ¢nx’ and ¢ ¢1. In subroutine

nx+1"
CALC the convection through the west boundary is set equal to that

through the east boundary, i.e. the same is done

m . =m . )
w,ix=1 e, ix=nx
for the diffusion.

Special care must be taken by the user to ensure that the grid lines
between ix=0 and ix=1 have the same direction as those between ix=nx
and ix=nx+l. For some types of grids this is automatically fulfilled,
for others not. Remember that the scalar nodes outside the calculation
domain (e.g. ix=0 and i=nx+l) are placed so that the base vectors are

orthogonal at the boundaries (see Section 3.1).
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4. STRUCTURE OF FLUX2D

4.1 PROGRAM FLOW CHART

MAIN

START e

INIT
[CALC("CONV')

' CALCU

[cALC (*coNv')

RESTR]— & CALCV ——{PROMOD}——{WALL
CALC (' CONV')

& CALCP | if cycLIc fcTDMA |
CALC( ' CONV') else [L1soLy
CALCT
PROD_K

{prOPS} > CALCTE
CALCED

(BRINT| N & {PROPS]

{CALC (' DIFF')]

ERRINY . 4
T

{0PDATH

s
—
=

RIN

s
h %
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4.2 DESCRIPTION OF THE SUBROUTINES IN FLUX2D

MAIN.

The problem is set up. The grid is specified, relaxation parameters,
number of sweeps, constants of the turbulence model, fluid

properties, etc., are given.

INIT.

All geometric quantities are calculated and stored in 2D-arrays.

RESTRI.

Fields from a previous calculation is read from file INDATA.DAT,

which are used as initial fields in the current execution.

UPDATE .

This subroutine is <called (in transient executions) at the end of

each time step when dependent variables are to be wupdated (i.e.

U0=U, V0=V, etc.)

ITERA.
This subroutine 1is not shown in the flow chart. It contains the

steady (or at each time step) iteration loop, from where all CALC¢-
subroutines, PROPS, PROD_K, UPDATE, and PRINT are called

CALC.

The convection and diffusion for the east and north faces of the
scalar control volumes are calculated and stored in 2D-arrays.
MODCON and MODDIF are called so that the user can modify the convec-

tion and diffusion.
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CALC¢.
The coefficients (AE, AW, etc.) are calculated, MOD$é 1is called,

relaxation 1is introduced and, finally, LISOLV (or CTDMA) is called,.

In CALCP velocities and pressure are corrected.

PROD K.

The produktion term, Ek (see Section 2.3), is calculated.

PROMOD.

This subroutine contains nine entries (ENTRY MOD¢, MODCON and
MODDIF), where boundary conditions are set by the user.

LISOLV.
This subroutine is used if CYCLIC=.FALSE. The linearised field equa-

tions are solved using TDMA sweeping in both Xy and x2-direction.

i CTDMA .
} This subroutine is used if CYCLIC=.TRUE. The linearised field equa-

tions are solved using CTDMA sweeping in Xy and TDMA in Xy

; direction.

PROPS.

Fluid properties such as turbulent viscosity are calculated; if, for
instance, the density depends on any variable (T for example), the
user should introduce appropriate coding in this subroutine (or in
MODPRO) .

WALL.

Boundary conditions, according to conventional wall-functions [210]

- o dohea i
T =

for the wvariables Vi Voo T, k and ¢, are set in this subroutine.
WALL should normally be called from PROMOD. It is also possible to
prescribe zero gradient boundary conditions with this subroutine.
I The arguments in the CALL WALL statement are:

PHI=name of dependent variable, i.e. U, V, T, TE, or EP
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FACE=side of the cell(s) which faces the boundary, i.e. WEST,
EAST, SOUTH or NORTH

IXSTRT, IXEND, IYSTRT, IYEND=the nodes (note: scalar
nodes) which are near the boundary of the region for which the
boundary condition is to be applied. Note: the nodes IXSTRT,
IXEND, etc. are in the region.

VALUE: If VALUE.LE.-100. =zero gradient boundary condition is
applied (not for normal velocity component at outlets), other-
wise boundary conditions according to the wall functions. For
the variable T VALUE=wall temperature; if VALUE.LE.-100.
adiabatic wall is prescribed.

The FORTRAN types of the arguments are: PHI and FACE are CHARACTER

variables, VALUE is REAL and the rest are INTEGER variables.
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5. TEST CASES

5.1 ROTATING COUETTE FLOW

This case is easily solved using a conventional polar co-ordinate sys-
tem. We wish, however, to show that the formulation presented in this
paper may be used for such calculations. The outer cylinder rotates
(w—wz) and the inner cylinder is stationary (see Fig. 5.1). This is a
one-dimensional problem for which there exists an analytical solution

[11] (using Rl- wy= 1, R2-2; see Fig. 5.1)

v=0; p=g ol r’- 1/f° - 4 In(n)];

(5:1)

vws % (r-1/r)

where r and ¢ denote the radial and the circumferential co-ordinate,
respectively. The analytical solution is used when prescribing bound-

ary conditions at the boundaries.

The flow is, despite being one-dimensional (3/8¢=0), solved two-
dimensionally, in order to check how well the calculated flow field
satisfies the condition 38/8¢=0.

The calculated v¢-ve10city and the pressure are compared with the

analytical solution in Fig. 5.2, for three different angles, namely

¢=10°, 45° and 80°. The agreement is very good.

A 28 x 28-node polar grid was used and the required CPU time for ob-

taining a converged solution was three minutes on a VAX 785 machine
with an FPA.
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Figure 5.1. Configuration.

140 ¢ 1.00
C - 0 10°
0.75 F F 0450
E Wy B 3 e
0.50 | -
Ve/Vy,2 - — _0.50 |
- 0 450 p2-p1 -
$iadd [:_ +80° 0.25 -
- -'"514(5.1 :
0.00 .lllIlJlllll_ll L1 1 L ]lllllllllllll
0.00 0.25 0.50 0.75 1.00 0-03.00 00 G50 wems LD
o ‘ =Ry
R2-Ry

Ra=Ry

Figure 5.2. Comparison of calculated results and the analytical solu-

tions [Eq. (5.1)]. a) vw-velocity scaled with the velocity of the

outer cylinder. b) Pressure scaled with the pressure difference be-

tween the outer and the inner cylinder.
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5.2 FLOW THROUGH TUBES WITH CONSTRICTIONS

The laminar flow in constricted tubes has an important application in
arterial stenoses in the human body. Young and Tsai [12] have carried
out experimental investigation on this type of flow, where they deter-

mined the positions of the separation and re-attachment points after

the constriction, see Fig. 5.3,

The configuration is axi-symmetric and is thus two-dimensional. Since
the code is written for two-dimensional plane configurations, special
care must be taken to account for the divergence of the grid lines in

the r-¢ plane. This procedure is explained in Appendix B.

The outer radial boundary (see Fig. 5.3) is given by

R [ X
R™ 1- R (1 + cos(;—)] for lxlsxo
o o o

R
EO- 1 for ]x|>x0

where x = 4R and §=2R /3.
(o] [e] o

At the inlet, the cartesian velocity components are set as

- r2
u=2u (1 - )
R2
o
v =20

where u is the mean velocity. At the wall vy and v, are set to zero.

Zero streamwise gradient is imposed for both vy and v, at the outlet.
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Figure 5.3. Configuration (not to scale) and the grid
drawn) .

(schematically

Pt

VS
T

Figure 5.4. Calculated velocity vectors. Re=100. The configuration 1is

drawn not to scale.
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The flow was calculated for two different Reynolds numbers. The calcu-
lated velocity vectors for Re=100 are shown in Fig. 5.4. The results
are compared with experimental data in Table 1; the calculated results

by Karki [8], Deshpande et al. [13] and Rastogi [l4] are also shown.

Table 1. Point of Separation and Re-attachment.

; Source of data Re=50 Re=100
it
xS/xo' xR/xo xS/xo’ xR/xo
i
; Karki [8] 0.35, 2.1 .35, u.h

(calculations)

i

{: Deshpande et al. [13] 0.35, 2.1 0.35, 4.2
(calculations)

g Rastogi [14] : 0.35, 3.8

(calculations)

Present calculations 0.35, 2.07 0.3, 375

e i R e

Experiments [12] 0.37;, 2.2 0.37, 4.0

SR PR e

The predicted x-coordinate of the re-attachment point is, as can be
seen from Table 1, somewhat too low. The re-attachment point was,
however, difficult to visualize, since the thickness of the separated
region became exceedingly thin near the re-attachment point [12]. A

72 x 38-node grid (see Fig. 5.3) was used with denser spacing in the
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y-direction mnear the wall. The location of the exit was varied be-
tween 6.5xO to 14x0 for Re=100, and between 5xO and leo for Re=50;

this variation did not, however, influence the calculated results.

The CPU-time required for a converged solution was approximately a

half an hour on a VAX-785 machine with an FPA.

5.3 FLOWS BETWEEN NON-PARALLEL PLANE WALLS

The Jeffery-Hamel flow is another laminar case where the exact solu-

tion is known [15].

In our test we have studied the diverging channel flow, Fig. 5.5,
where the total angle, 2a, between the walls is 60 degrees. We Thave

studied the effect of grid size and the effect of varying Reynolds

number .

The flow is purely radial, so the radial velocity can be written as

_ _vF(®)
r r :

where F(®) 1is the dimensionless velocity profile. It can be calcu-

lated from:

F(8) = Re, - 6(m2 k2 snz(me,k))

0
where
Re .= F(0) = vror/u (vr

0
stream line, 6 = 0);

0 is the velocity along the axial

the operator, sn, stands for the Jacobian elliptic function,
m=[ (1+Re/2)/ (14K 1%,
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the elliptic-modulus, k, can be determined from the

trancendental equation

14k2

: - snZ(ma, k)
3k%[142/Re

0}

The trancendental equation was solved by a regula-falsi method,
evaluating the Jacobian elliptic function by employing the subroutine

of Umstaetter [16].

The velocities at the inlet ( A-B in Fig. 5.5a ) and the outlet ( E-F
in Fig. 5.5a ) were prescribed according to the exact solution. At
the wall vy and v, were set to zero.

The flow field was calculated for three Reynolds numbers, 20 ,37.6
and 150. These numbers were chosen because of the difference in the
character of the flow. For each Reynolds number two different meshes
were used, 10 x 10 and 20 x 20. At Reo = 20 the velocities are always
positive (zero at the wall). At Re0-37.6 the derivative at the wall
is close to zero, and at Re0-150 there is an inflow in the channel.
The corresponding values of the elliptic-modulus k are 0.710646,
0.683006 and 0.903324 respectively. The same test was reported by

Parameswaran [17] but for other Reynolds numbers and angles.

The results are shown in Figs. 5.6-5.8. The conclusion is that a 10 x
10 grid is enough to resolve the flow field for these cases. None of
these cases required more than seven CPU-minutes, on a VAX 750 with

an FPA, for a converged solution.
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Figure 5.5. a) Configuration. The lines A-B, C-D and E-D intersect
the symmetry line at r = 1, r = 1.3 and r = 1.5, respectively.

b) Grid 10 x 10 (one side of the symmetry line).
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B A

U/ Upmgy

0.0 0.2 0.4 0.8 0.8 1.0

Figure 5.6. Velocity distribution for Re = 20 . n is the non-
dimensional coordinate, perpendicular from the symmetry line to point

D in Fig. 5.5a. Markers: * 10 x 10 , A 20 x 20

U/ Umax

Figure 5.7. Velocity distribution for Re = 37.6 . n is the non-
dimensional coordinate, perpendicular from the symmetry line to point

D in Fig. 5.5a. Markers: * 10 x 10 , A 20 x 20
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U/ Umex
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0.0 -

Figure 5.8. Velocity distribution for Re = 150 . n is the mon-
dimensional coordinate, perpendicular from the symmetry line to point

D in Fig. 5.5a. Markers: ¥ 10 x 10 , A 20 x 20
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APPENDIX A: BOUNDARY CONDITIONS

A.l1 WALL BOUNDARY CONDITIONS

If the mesh is arbitrarily chosen at the boundary, the expressions
for the variables become very complicated. These expressions can be
greatly simplified if the direction of the base vectors are or-
thogonal at the boundary. One direction is along the boundary, 1i.e.
along the control-volume surface. The other direction is the direc-
tion between the two scalar points located on each side of the
boundary (see Fig. 3.2). If the point outside the boundary is the
mirror image of the point inside the boundary, then we have a right
angle between these base vectors. This is taken care of in subroutine
INIT where the the coordinates of the scalar points are calculated
from the <cell corner coordinates. Note that this does not mean that

the mesh has to be orthogonal at the boundary.
A.1.1 WALL BOUNDARY CONDITIONS FOR THE MOMENTUM EQUATIONS

The boundary condition is introduced by giving an estimate of the

term,

. av
jk i
{ g (pvivj- peff;;j ) n,dA (A.1)

which appears in Eq. (2.2). Here A is the surface of the control
volume which coincides with the boundary. If we have mno convection

through the wall the, (A.1l) is reduced to,

av

P LS _1
{ N ndA . (A.2)
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A.1.1.1 LAMINAR CASE

We now take an example of what this term will amount to at a "south"
boundary when the flow is laminar. Equation (A.2) can be interpreted

as

-Ap-r’l'ev -=-Ap(n1_é +n2E)-(Q—‘gl+—a—-g2)v =
1 1 2 1 2 1
ax ax
{n1 - 0 , n2 = 1 in this casel
-+ -1 4 -+ =2 3
- -Ap (g * 8 — +t8& "8 5) Vy
ax ax
The final result, after observing that
- -1 - -2 22
By "B =0ig * B TE -1
is
avl
-Ap——z. (A.3)
ax

The easiest way to calculate this term in the discretised equation is
to project the velocity of the wall in the Vi direction. Thus we
avoid to calculate the Christoffel symbol. The derivative is then the
difference between VvV, and the projected velocity of the wall divided
by the perpendicular distance from the wall to the Vi location. If
the wall is not moving the derivative is simply vi divided by the
distance to the wall. For a symmetry condition, which is the same as
a slip condition, the term drops out all together 1i.e. AS(IX,1)

should be set to zero.
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A.1.1.2 TURBULENT CASE USING LAW OF THE WALL FOR THE VELOCITIES

The term -A pu Bvl/ax2 is the product of the boundary area and the
shear stress on the surface. In a turbulent case where we do not
resolve the flow field down to the viscous sublayer, but we introduce
a turbulent shear stress. Assuming that the log-law applies we can
write the shear stress as,

T = pUi

where p 1is the density and U_ is the friction velocity which can be

calculated from the expression:
1/4.1/2
U (C#CD) k

where k is the turbulent kinetic energy, and Clu and C_ are constants.

D

This is programmed in subroutine WALL and can be activated by insert-

ing a call to this subroutine in subroutine PROMOD under the entries

MODU or MODV.
A.1.2 BOUNDARY CONDITIONS FOR SCALARS

The boundary condition is introduced by specifying the value of ¢, or

by giving an estimate of the term,

jk d¢
J e (v -T . =) nda
% j eff P e

This term can be estimated as desribed in A.1.1.1 if v is replaced

by ¢.

1




A prescribed value of the variable can be set by using source terms

(SP(IX,IY)--lOlOand SU(IX,IY)—IOlO*value), or simply by setting the

variable itself if it is located outside the computational domain
(IX,1Y=0 or IX=NX+1,IY=NY+l).

A.1.2.1 TURBULENT CASE USING THE LAW OF THE WALL FOR k & ¢

Assuming that the law of the wall applies, k and ¢ can be calculated
from the expressions:
2 1/2
k = U*/(C#CD)
3/4,3/2
€ (C#CD) k /(kn)
where &« is the von Karman constant and n is the distans to the wall

from the scalar point where k and ¢ is stored. U, is determined in a

iterative manner from the expression:
Uy~ ©|v]/1n(pEU,n/p)
where E is a constant which is related to the wall roughness.
This is programmed in subroutine WALL, where k and ¢ are specified by
using source terms, and can be activated by inserting a call to this

subroutine in subroutine PROMOD under the entries MODK and MODED

respectively.
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A.2 INFLOW BOUNDARY CONDITIONS

The inlet boundary condition is the easiest to specify. This is done
by giving a value to the variables in subroutine PROMOD. This is true
for wvariables that are stored outside the computational domain such
as U(0,I1Y), V(0,IY), TE(O0,IY), U(NX,IY), ED(NX+1,IY) and ED(IX,O0)
etc. If an inlet is to be specified in the middle of the computa-
tional domain, this has to be done by introducing source terms

(sP(1X,1Y)=-10"%and sU(IX, 1Y)=10""%value).

It might be worth noting that because the scalar point outside the
boundary is the mirror image of the scalar point inside the boundary,
the velocity components are parallel and orthogonal to the boundary
respectively. Therefore cartesian components can be used at the

boundaries.

A.3 OUTFLOW BOUNDARY CONDITIONS

The values of the variables at the outlet boundary are in general not
known. If they are known, the variables on and outside the boundary
can be set directly in PROMOD. However, assuming that no diffusion is
present at the outlet means that no values have to be specified for

scalar variables. This is due to the upwind treatment of variables.

The convection has to be specified at the outlet. The boundary condi-

tion is needed for the pressure-correction equation (see section 3.6)

only.

The usual boundary condition for Cartesian grids is that the gradient
of the exit velocity should vanish. If the grid is orthogonal at the

outlet this boundary conditions can be used. For the general case,
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however, the coresponding boundary condition is that the gradient of

-+ =+
veA should be zero.

Here is described how the convection at the outlet (east boundary)

can be specified. All the coding should be done in PROMOD under ENTRY
MODCON.

1. Sum up the total specified mass inflow, FLOWIN.
2. Calculate the total convection, as described in section 3.2, of
a cross section upstream the outlet, FLOWOUT.
3. The global mass imbalance is then: FLOWDIFF=FLOWIN-FLOWOUT.
(Tﬁe difference should be zero when global continuity is
satisfied.)
4. Next step is to distribute FLOWDIFF over the cells at the out-
let. This distribution can be done proportionally to the cells
surface facing the outlet, FLOWDIFF(IY).
5. Calculate the convection at the outlet as: CONVE(NX,1Y)=
CONVE(NX-1,IY)+FLOWDIFF(IY)
When the solution has converged, global continuity is satisfied and
FLOWDIFF 1is zero. This leads to that we have no change of convection
in the outflow direction. Thus we have no acceleration of flow, which

is our boundary condition.
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APPENDIX B: POLAR COORDINATE SYSTEM

The program is written for two-dimensional plane configurations. The
configuration in Section 5.2 is axi-symmetric; special treatment is
then required due to the divergence of the grid 1lines in the 1r-¢
plane. Co-ordinate directions 1 and 2 are defined in Fig. 5.3. For a

straight pipe these directions are denoted by x -and r, respectively.

The continuity equation in the two-dimensional plane co-ordinate sys-

tem and the axi-symmetric co-ordinate system have, respectively, the

forms
du av
ax * oy = ° (Bla)
i) 3
S a) # maley ) = (B1b)

The v-momentum equation for the two co-ordinate systems can be writ-

ten
& tav w Daouh w o 2 0B 5 V(& + &) (B2
ax 3y p 3x 2 8y 2
%;(ruvr) + %;(rvrvr)
- - -E 91;- + u[%(r :%) + ‘g‘f(r :VTr - v%} (B2b)




T

Equations (Blb, B2b) are obtained from Egs. (Bla, B2a) by an ap-
propriate multiplication of the latter by the radial co-ordinate T,

and by adding the diffusive source term

Figure Bl. A control volume in the r-¢ plane.

In axi-symmetric configurations the ¢-lines (lines of constant ¢, see
Fig. Bl) diverge, which gives rise to the additional diffusive source
term in Eq. (B2b). In our formulation this is taken care of as is
described in Section 2. The neighbouring velocity in the third co-
ordinate direption, (vé)ﬁ, of (v2)p [(VZ)PE (vz)hﬁ (v2)£= vr] is
taken as (see [1])
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- -+ j—+ - 2+ -+ -+ -+
Kl g = wy o (gr)p- (ngJ-)B- (By)p= (V7gy) 4o (By)p= (V, X),° xp=

vr cos(Ap) = (vé)h (B3)

where Agp denotes the angle between two adjacent ¢-lines (see Fig.

Bl). The third expression on the RHS was obtained because

-+ -+ - -+ 3
(g1)£- (g2 P xp- I 0; vi=0

—+ —+
The fourth expression on the RHS was given since 8o~ T, and because
: 2 .
the contravariant component v~ and the physical component v, are

equal in a cylindrical co-ordinate system.

The diffusion contribution which is obtained using (v;)£ and (v]':)h in
Eq. (B3) 1is 1indeed 1identical to the diffusion source term in Eq.
(B2b). Note that for a conventional cylindrical co-ordinate system
[as in Eq. (B2b)] the diffusion contribution in ¢-direction is zero
because (vr)p- (vr)ﬁ- (vr)h; in our formulation the diffusion is non-
zero since (vz)p¢ (v2)£- (v2)h'

In Eqs. (Bl)-(B3) and the discussion above, it has been assumed that
the x-lines are straight (i.e. an axi-symmetric configuration). When

they curve, as in the case in Section 5.2, additional terms appear;

they are derived as explained in [1] and above.




A(ix)

ALFA(ix)

AE, AN, AS

AW(ix,1iy)

AP(ix,1iy)

APO(ix,1y)

AREAE(ix,iy)

AREAN(ix,iy)

B, C(ix)
€1, 62
CAPPA
CD

CE

CMU

APPENDIX C: FORTRAN SYMBOLS

coefficient of recurrence formula

coefficient of recurrence formula

coefficients of convective/diffusive flux through east,
north, south and west wall of control volume

sum of coefficients AE, AW, AN, AS and APO and source SP
coefficient for old time step

area of east wall of scalar control volume projected on

.
the plane normal to PE

area of north wall of scalar control volume projected on

the plane normal to PN

coefficients of recurrence formula

constants of turbulence model (=1.44 and 1.92)
von Karman's constant (=0.435)

constant of turbulence model (=1.0)

coefficient of convective flux through east wall of

control volume

constant of turbulence model (=0.09)
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CMUCD

CN

CONVE (ix,1y)

CONVN(ix,iy)

CP

Cs, CW

CYCLIC

D(ix)

DEN,
DENO(ix,1iy)

DENSIT

DENU, DENV
DFE1l, DFN2,
DFS2, DFW1

DFE2, DFN1,

constant of turbulence model (=CMU*CD)

coefficient of convective flux through mnorth wall of

control volume

convection flux through the east wall of scalar control

volume

convection flux through the north wall of scalar control

volume

maximum of zero and net outflow (SMP) from control volume

coefficient of convective flux through south and west

wall of control volume

logical variable to control whether cyclic boundary

conditions are to be applied or not

coefficient of recurrence formula

density of fluid at current and old time step

constant density of fluid set in INIT

density for U, and V control volume

coefficient of orthogonal diffusive flux through east,

north, south and west wall of control volume




DFS1, DFW2 coefficient of non-orthogonal diffusive flux through

east, north, south and west wall of control volume

DIFFEL(ix,iy)
orthogonal diffusion flux through the east wall of scalar

control volume

DIFFE2(ix,iy)
non-orthogonal diffusion flux through the east wall of

scalar control volume

DIFFN1(ix,iy)
non-orthogonal diffusion flux through the north wall of

scalar control volume

DIFFN2(ix,iy)
orthogonal diffusion flux through the north wall of

scalar control volume
DPE(ix,iy) distance between scalar node (ix,iy) and (ix+l,iy)
DPN(ix,iy) distance between scalar node (ix,iy) and (ix,iy+l)
DU(ix,iy) coefficient of velocity-correction term for U velocity
DV(ix,iy) coefficient of velocity-correction term for V velocity

ED, EDO(ix,iy)

energy dissipation rate, ¢, at current and old time step

EDCEN, EDCES,

EDCWN, EDCWS ¢ at north-east, south-east, north-west and south-west

corner of its control volume
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ELOG constant used in the log-law of the wall

FU, FUS, FUN,

FUW, FUE,

FV, FVS, FVN,

FVW, FVE,

FUEN, FUES,

FUWN, FUWS

FVEN, FVES,

FVWN, FVWS
geometrical arrays (see Chapter 3)

FITER first iteration

Gl1l, G122,

G21, G22 the covariant components of the metric tensor (gll, 819>
8y and 8y,)

G1X, Gly the cartesian components of the covariant base vector, El

G2X, G2Y the cartesian components of the covariant base vector, Ez

G2EX, G2EY the cartesian components of the covariant base vector, gz

at the east face of a scalar control volume

o
G1lNX, GINY the cartesian components of the covariant base vector, 8y

at the north face of a scalar control volume

GAM111, GAM122,
GAM211, GAM222(ix,iy)
the components of the Christoffel symbol {111]. { 1 }

2.2
2 2
(1) Loy

72




GAME, GAMN,
GAMS, GAMW coefficients of effective diffusion for scalar variables

at east, north, south and west wall
GAMH(ix,iy) coefficient of effective diffusion for temperature

GCON11l, GCON12,GCON21,

GCON22 (ix,iy)
)

1

the contravariant components of the metric tensor (g
12 21 22
g + & » 8 )

GEN(ix,1iy) generation of turbulence by shear from mean flow
20

GREAT a very large value (i.e. 1077)

GU, GUS, GUN,

GUW, GUE,
GV, GVS, GVN,
GVW, GVE,
GUEN, GUES,
GUWN, GUWS
GVEN, GVES,
GVWN, GVWS
geometrical arrays (see Chapter 3)
HEDD heading ‘Energy Dissipation’
HEDK heading 'Turbulent Energy’
HEDM heading 'Viscosity'
HEDP heading 'Pressure’
HEDR ‘heading ‘Density’
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HEDT heading 'Temperature’

HEDU heading 'U-Velocity’
HEDV heading 'V-Velocity’
IXMON ix-index of monitoring location

INCALD, INCALK
INCALP, INCALT
INCALU, INCALV

logical parameter for solution of ¢, k, P', T, U, V-
equation

INDMON monitoring output each INDMON iteration

INFIL character wvariable (default: INDATA) which contains the

name of the restart file

INDPRI intermediate output of wvariable fields each INDPRI
iteration
INDPRT intermediate output of variable fields each INDPRT time

step (transient runs)

IXPREF ix-index of location where pressure is fixed if IXPREF>0;
if IXPREF<0 the pressure is not fixed

INPRO logical variable for updating of fluid properties

IXT ix-index of maximum dimension of dependent variable

ITSTEP time step index




IYMON

IYPREF

YT

MAXIT

NUPR1

NX

NXM1

NITER

NYM1

NSWPD,NSWPK

NSWPP ,NSWPT

NSWPU,NSWPV

P(ix,iy)

PFUN

PHI(ix,iy)

iy-index of monitoring location

iy-index of location where pressure is fixed if IYPREF>0;

if IYPREF<0 the pressure is not fixed

iy-index of maximum dimension of dependent variable

maximum number of iterations to be completed in the
current run if iteration is not stopped by test on value

of SORCE

logical unit to which the OUTDAT.DAT-file is connected

maximum value of ix-index for the calculation domain

=NX-1

number of iterations completed

maximum value of iy-index for the calculation domain

=NY-1

number of application of line iteration for ¢, k, P', T,

U, V-equation

pressure

constant of P-function for heat transfer at walls

general representation for all dependent variables
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POROE(ix,iy) porosity for the east wall of scalar control volume; the

value 0 means that the wall is impermeable

PORON(ix,iy) porosity for the north wall of scalar control volume; the

value 0 means that the wall is impermeable

POROV(ix,iy) porosity for the volume of scalar control wvolume; the

value 0 means that the volume is zero

PP(ix,iy) pressure-correction, p"

PPCEN, PPCES,
PPCWN, PPCWS p" at north-east, south-east, north-west and south-west

corner of its control volume

PRANDT, PRED
PRTE turbulent Prandtl number for temperature, turbulent

dissipation and turbulent kinetic energy

REREFU, REREFV,
REREFM the residuals for U, V and PP are normalised with REREFU,
REREFV and REREFM, respectively

RESOR residual source for individual control wvolume

RESORE, RESORK
RESORM,RESORT
RESORU,RESORV

sum of residual sources within calculation domain for e,

k, P', T, U, V-equation

RESTRT logical variable which controls whether the initial field

are to be read from the file INDATA or not




SAVEM

SMALL

SORCE

SORMAX

SP,SU(ix,iy)

STEADY

T,
TO(ix,1iy)
TCEN, TCES,
TCWN, TCWS
TE,
TEO(ix,iy)

TECEN, TECES,

TECWN, TECWS

TMULT

U,
Uo(ix,1iy)

logical variable which controls whether the fields are to

be saved on the file UTDATA or not

20
a very small value (i.e. 1077)
maximum of RESORM, RESORU and RESORV
maximum acceptable value of SORCE for converged solution
coefficient b and C of linearized source treatment
logical variable which controls whether the calculation
is a steady one or not

temperature at current and old time step

T at north-east, south-east, north-west and south-west

corner of its control volume

turbulent kinetic energy at current and old time step

k at north-east, south-east, north-west and south-west

corner of its control volume

coefficient of wall shear expression

vl-velocity in the x-direction at current and old time

step
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UCON(ix,iy)

UCRT

UE, UN, US,
uw

UGEN, UCES,
UCWN, UCWS
UPLUS

URFE, URFK
URFP,URFT
URFU,URFV
UTFIL

v,
VOo(ix,iy)

VCON(ix,iy)

VCRT

VE, VN, VS,

3 1
the contravariant component, v, of the velocity vector

in the xl-direction

cartesian velocity component in the x-direction

east, north, south and west vi-velocity

vi-velocity at north-east, south-east, north-west and

south-west corner of its control volume

u*/Uparallel

under-relaxation factor for ¢, k, P', T, U, V-equation
character variable (default: UTDATA) which contains the

name of the file where the fields are stored (when

SAVEM=,TRUE.)

vz—velocity in the y-direction at current and old time

step

< 2 .
the contravariant component, v, of the wvelocity vector

: 2 5 <
in the %" -direction

cartesian velocity component in the y-direction

east, north, south and west vé-velocity




VCEN, VCES,

VCWN, VCWS vé-velocity at north-east, south-east, north-west and
south-west corner of its control volume

VELPAR velocity parallel to the wall

VIs(ix,iy) effective viscosity (p+pt)

VISCOS laminar viscosity (u)

VISOLD value of effective viscosity before under-relaxation

VOL(ix,1iy) volume of scalar control volume

XCRNR(ix,iy) X co-ordinate of north-east corner of scalar control

volume

XPOINT(ix, iy)

x co-ordinate of scalar control grid node

YCRNR(ix,iy) y co-ordinate of north-east corner of scalar control

volume

YPOINT (ix, iy)

y co-ordinate of scalar control grid node
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