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1. INTRODUCTION

This report describes the extensions of the computer program by Davidson
and Hedberg [l]; in order to get a full description of the program the
reader/user must have the original manual [l]. The program in [1l] is
applicable to three-dimensional cartesian geometries only. The three main
extensions that have been included in the current version of the program

are:

i) ability to handle three-dimensional cylindrical geometries as well

as carteslian geometries;

ii) ability to handle <cyclic boundary conditions in the

circumferential direction;

iii) the SIMPLEC (2] and the PISO algorithm [3] has bLeen included as
an option to the SIMPLE algorithm.

In [1l] the coefficients for each variable ¢ are calculated in CALCé;
these subroutines have not been changed. For the cylindrical option mnew
subroutines (CYLC¢) have been included where the coefficients are

calculated. The PISO algorithm is coded in CALCPP (CYLCPP).

When gridlines curve and/or diverge, curvature terms appear in the
momentum equations. These can be eliminated by projecting the velocity
vectors, 3nb (nb=neighbour), in the direction of the velocity being
solved for (va’ or vrp); as a consequence the curvature terms vanish.
Using this approach reduces the numerical errors associated with upwind
differencing in connection with polar grids (or, generally, curved

grids); these errors becomes especially severe near the origo of a polar

grid when the flow is across the grid. This has been recognised by
Galphin et al. [4].




This procedure has been coded in CYLCUP and CYLCVP, which are called when
CYLPRJ=_TRUE.




1.1 Program Flow Chart.

START

INIT

RESTRL O
UPDATE 4
PROPS /
PRINT —
if .CYLPOL, . if .NOT.CYLPOL.
+ 0> -
if .CYLPRJ. CYLCUP CALCU
elsa CYLCU if .PISO. CALCPP('U') « WALL
CALCV BLOCK]
if .PISO. CYLCPP('U') | [PROMOD WaLL | |if .PISO. CALCPP('V')
if .CYLPRJ. CYLCVP BLOCK] |CALCW . LISOLV
else CYLCV if .PISO. CALCPP('P')
CALCP
4 |if .p1s0. cviceR('v’) if .PISO. CALCPP('P')
cYLCW if. CYCLIC. cTDMA| |CALCT
if .PISO. CYLCPP('W') else, LISOLV CALCTE
CYLCP CALCED
if .PISO. GYLGPP('P’)
CYLCT i
CYLCTE L
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& PRINT
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2. EQUATIONS.

2.1 Continuity Equation.

The continuity equation has in eylindrical co-ordinates the form [5]:
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The continuity equation has thus the same form in cylindrical as in
cartesian co-ordinates (except that the radius r appears in the former
case); this means that the pressure correction equation (P'-equation)
also has the same form. Note that the radius r is inside the operator
d/8r; this is taken account for in the program through multiplication by

the appropriate face areas.

2.2 vr-Eguation.
The Vr-equation (velocity component in the radial direction) has in

cylindrical co-ordinates the form [5]:
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The underlined terms are included in the constant source term SC' Note
that the viscous compressible term has been neglected, i.e. it has been

s
assumed that Vev = 0 in the diffusion terms.

2.3 v v -Equation,
The v@-equatlon (velocity component in the circumferential direction) has

in cylindrical co-ordinates the form [5]:
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The underlined terms are included in the constant source term SC; the
Coriolis term 1is linearized using both SP and SC' The viscous

compressible term has been neglected.

2.4 vz-Equation.

The vz-equation (velocity component in the axial direction) has in

cylindrical co-ordinates the form [5]:
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The underlined terms are included in the constant source term SC. Again

the viscous compressible term has been neglected.

2.5 Projection of the Neighbour Velocities

It is well known that wupwind differencing gives rise to numerical
diffusion. For polar co-ordinates (or, generally curved grids) this
becomes especially serious when the flow is across the grid. Even if the
magnitude of the velocity component is well approximated by estimating
the face wvalue of vw (for example) with its node value, the direction of
vw is not. This was recognised by Galphin et al. [4], who suggested to
introduce a correction velocity, weighted with a factor w (0<w<l); the
value of w was zero if the flow was aligned with the grid, and w=1 if the

flow was across the polar grid.

In the present work this problem is, in our opinion, solved in a more
-

general and straight forward way. The velocity  vectors, L
(nb=neighbour), is projected in the direction of the velocity component
at the control volume p being solved for. This means that all the
neighbours, vénb (prime denotes projected velocity), of v¢ , have the
same direction. In this way the problem of estimating a face value of v
having the in-correct direction is solved. The same is true for the e

equation.

Since all the v@-velocities in the immediate surrounding (i.e. its four

neighbours, v' , v/ | v’ | v' ) have the same direction as v all
pe ew’' “@s en ¢p

curvature terms in the vw-equation vanish; the same is, of course, true

for the vr-equation.




The procedure of projecting velocities and in this way getting rid of the
curvature terms, has previously succesfully been used by the authors
(6,7].

The effective (turbulent plus laminar) shear stress in a cartesian co-

ordinate system can be expressed as

au,  au,
T3 ,5.e86 Pegst % * 5% )

The second term is, for simplicity, neglected in the present formulation;
this term is usually very small, and it is identically =zero in the
momentum equations (when the density and the effective viscosity are

constant) due to continuity.

2.5.1 v¢-eguation
The momentum equation for v¢, when the second term in the formula for the

shear stress is neglected, has the form [5]
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The underlined terms (the curvature terms) vanish when the velocities are

projected.
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Figure 1. v@-control volume.
The neighbours of v , see Fig. 1, are projected in the direction of va,

whose direction is ¢p§ ﬁ?. The south and north neighbours (v¢s and v¢n)

need not to be changed since their direction coincide with that of v@p.
The west and east neighbours are calculated as [6,7]

-+ -+
= ° = - + i -
v ® You cos(e, ¢P) V.o sin(e, wp)
e -+ .
Vi =y e p = v¢w cos(@p-@w) i . SLn(@p-ww)

The discretised equation for v@p can be written

v v 4+ awv v
P ©p e ge WopwW n ¢n s s
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In order to be able to use TDMA, this equation is rewritten so that

av =av + a v + av + av +b+b
P ©p e pe W oW n en s s curve

where the last term contains the curvature effects, i.e.

b =a(v' -v )Y+a (v =-v )
curve e pe pe WS W oW

2:5.2 vr-equation

The momentum equation for Vo when the second term in the formula for the

shear stress is neglected, has the form [5]
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The underlined terms (the curvature terms) vanish when the velocities are

projected.

The neighbours of V.. see Fig. 2, are projected in the direction of vrp

whose direction is rpn SP. The south and north neighbours (vrs and vrn)
need not to be changed since their direction coincide with that of vrp'
The west and east neighbours are calculated as [6,7]
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Figure 2. v.-control volume.

The discretised equation for vrp can be written

av =av' +av' +avwv + av + b
P rp e re W orw n rn s rs

In order to be able to use TDMA, this equation is rewritten so that

av =av + av + a v + av + b + b
P rp e re W rw n rn s rs curve
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where the last term contains the curvature effects, i.e.

b =a (v -v_)Y+al(v.  -v_)
curve e re re W orw w

2.6 Scalar Equations
The wvariables P', P'', T, k and ¢ are here referred to as scalar

variables. These may all be written in the form:

€ B G ar(rp B + = —(pv ) + —(pv é)

r

dé L d_ ¢
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= %

B
mlm
2]

( eff 8z

Note that the radial co-ordinate r is inside the operator §/4r; this is
taken account for in the program through multiplication by the
appropriate face areas. The scalar equations have thus the same form in
cylindrical co-ordinates as in cartesian co-ordinates (except that the

radius r appears in the former case).

2.7 Generation Term in the k-¢ Model

The viscous dissipation term ¢ in the energy equation (with the second
viscosity A=0) is very similar to the generation term in the k-equation.
They have the form [1,5]
-— . t
¢ aij an/axj, G aij an/axj
where aij and a;j denote the wviscous and the turbulent stress,

respectively, and U and U denote the instantaneous and the time average
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. 3 3 t
1] contains the molecular viscosity and aij the

turbulent. We obtain (with A=0) [5]:

velocity, respectively. o

av av v av av av
2 1 2 2 1 2
C=p 2% G—2+ D% (D +Gc—L+-2)
ar deo r az de dz
av av v av v
D M G- S )
dz dr do or r

The production term in the k-equation is G; in the e-equation it is
€

ClGE.

2.8 SIMPLE, SIMPLEC and PISO

The following derivations are, for simplicity, carried out in one
dimension. Let the superscripts *, *% and *** denote intermediate field
values during the splitting process. Which of the three algorithms the

program uses is determined as:

if PISO=.TRUE. => PISO-algorithm is used.
if SIMPLE=.TRUE. => SIMPLE-algorithm is used.
if SIMPLE=.FALSE. and PISO=.FALSE. => SIMPLEC-algorithm is used.

SIMPLE

*
In SIMPLE (8] the pressure p 1is guessed or taken as the value calculated

%
at the last iteration. The u field is then obtained from the momentum

*k Kok
equation. The corrected velocity, u , and pressure, p , are expressed
* %
as old values (u , p ) plus corrections (u’, p’)
*x ok
u =u + u’ : (la)
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K% *
p =p + p’ (1b)

A pressure correction equation can be derived by the use of the‘ momentum

equation and the continuity equation (8]

aP- 7 aP

P sP (2a)

where superscript p denotes pressure correction equation; subscript nb

denotes neighbours; the source sP contains the continuity error; and

c P ; - u
a= (pA)wa, Du Aw/ap’ etc. (2b)

where subscript w denotes west face and A denotes area, and superscript u

denotes u-equation. The velocity correction is given by
- i '
g™ Dy ( Py Pp)

*k K%
and the corrected fields u and p can thus be obtained from Eq. (1).

SIMPLE is a one stage correction algorithm.

SIMPLEC

SIMPLEC [2] is identical to SIMPLE, except that the Du in Eq. (2b) is

calculated as

Du— Aw/(a;— Zaib) (2¢)

At a first sight it may seem that the denominator is zero in the equation

above since

u u u
ap— Zanb - S
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and S; usually is zero. The a;-coefficient has, however, been wunder-

relaxated before it is used in Eq. (2¢).

No special subroutines are written for SIMPLEC, but it is coded in the

same subroutines as for SIMPLE.

PISO
PISO is a two stage correction algorithm [3]. The first correction is
carried out as in SIMPLE; after that a second pressure correction
equation 1is solved, and this second pressure correction, p'’, 1s used to

correct the velocity and pressure once more to obtain

dkk k%
u =u + u'’ (3a)

Tk k%
B Ep Rt (3b)

. . . %k Kk )

The discretized u-momentum equation for u  and u may be written as

u Rkk u k% *hk kkk u
au = a_.u. + - A+ S

P W Z nb nb (pw Pp ) W

u k%

u % K% *k u
apuw = z anbunb+ (p W pP ) Aw+ S

When the latter is subtracted from the former we obtain

Pk e u ' P e
Yy u ( Z anbunb+ (pW pP ) AW] (&)

An equation for the pressure correction P'' can be derived in the same
way as for SIMPLE [8]. By using the continuity equation and Eq. (3) we

get
Kok ok

Low™ - Low 1= [oCu+ uw' )] - [o(a™ 4 wrry]

*%

= Lout] - Leu't] o+ [puT) - [pu™] (5)

Equation (4) in Eq. (5) gives

16




P [ P N
P pP z 2nbPnb + Scont+ SZ (6)

a

where
*% *%
cont Lpu ]w' [pu e
1 L5 1 L5 R
S2 [ au Z anbunb]w- [ u Z anbunb]e
P P

Note that the coefficients in Eq. (2) and Eq. (6) are identical, which
means that the coefficients do not have to be calculated in CALCPP
(CYLCPP); they have already been calculated in CALCP (CYLCP) when p’' was
solved. The source terms SC and S have, however, to be calculated in

ont 2’
CALCPP (CYLCPP).

Experience has shown that it is better not to correct the
sk wk
u velocity field, but to use u'’ for correcting p only.

The PISO is coded in CALCPP (CYLCPP); this subroutine is called for when
the logical variable PISO=.TRUE. The subroutine CALCPP (CYLCPP) is called
for after CALCU (CYLCU), CALCV (CYLCV) and CALCW (CYLCW) in order to
store the coefficients for these variables in local arrays; the
subroutine is finally called for after CALCP (CYLCP) in order to

calculate p'’' and to correct pressure.

It should be noted that when using the PISO-algorithm, considerable extra
storage is required in terms of local arrays in CALCPP (CYLCPP), namely
30 ITxJTxKT arrays (these are dimencioned in the COMMON-file PISCOM.FOR).
The subroutines CALCPP & CYLCPP have therefore been made inactive by
placing a C (comment line) in the first position of each line, in order
to reduce storage requirements. Users who want to use the PISO algorithm
must therefore delete the C's in the first position of all lines, and

recompile the code. The user must, of course, also set PISO=.TRUE.

17




2.9 Cyclic Boundary Conditions

In many applications the flow is cyclic in the circumferential direction,
i.e., it repeats itself every nth degree. By using the cyclic option (for
cylindrical co-ordinates) this periodicity is taken advantage of in the
program, by solving for n degrees in the x-direction only. The special
solution algorithm is called CTDMA (Cyclic TIri Diagonal Matrix

Algorithm).

Figure 3. Configuration where cyclic boundary conditions are used.

For a  configuration with cyclic boundary conditions in  the
circumferential direction (see Fig. 3), we obtain a discretised equation

system as follows:

bydy coéy “8yfy1.1 " 9
8850t Bydy - cidi =
“°y1-1%2 “ayr-1Pn1-2tPyr-1fNT-1 T Yot
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wesT
C?Notgyihat the_gaet (i.e. right) neighbour of ¢2 is éNI-l' and that the
,éﬁéh (i.e. left) neighbour of ¢NI-1 is ¢2. The U-velocity is normally
solved for from I=3 to I=NI-1 [l]. When cyclic boundary conditions are

used U is solved for from I=2 to I=NI-1 since the velocity at the

boundary must be calculated; note that U2= UNI'

On matrix form we get

b, -c, Hy ) d;
"4y by -9y 2 = | oy
-al bl -Ci ¢1 dl
1.2 Pn1-2 "ONI-2 $N1-2 dy1-2
“eNI-1 “Ber.1 Cnre1 PN1-1 Syr-i

Due to the appearance of the corner elements a, and Cyr.1 Ve can not use

the standard TDM algorithm as in [1].

19




We start by eliminating the a’'s. Using Gauss elimination we obtain

By -¢ & 2 )
By -4 %y 2 = 7
ﬂl "¢y K ¢1 73
Py1-2 “Sn1-2 $NI-2 TNI-2
S Byi-1 PNI-1 TNI-1
where
B,= b, (7a)
*1:1°1
.= b, - ——=— (7b)
LR dig
ay= a, (8a)
al-l ai
g (8b)
i Bia
b =D _ °n1-3 °N1-2 (9)
NI-2~ "NI-2 g
03
NI-3 *Wi=2
Bl 8 T g M UL (10)
NI-2~ SNI-2 B g
S a
NI-2%NI-1
Brr = by o - et (11)
NI-1~ °NI-1 N
c does not change

NI-1

Vo= d2 (12a)

(12b)

20




Note that the coefficients in Eqs. (7), (8) and (1l2) are the same as for

the TDM algorithm. Elimination of the c¢’s from our matrix system gives

B, -8y 2 2
B4 -8, 4 = 16,
ﬂl -si ¢i Gl
Py1-2 “Sn1-2 PNI-2 OyN1-2
"SR Py1-1 $NI-1 CN1-1
where
S c:
S.= o+ —;Ll" (13)
L i+1
G141 ©1
G it e (14a)
* i+l
Cy1-2~ "y1-2° SN1-17 "NI-1 (14b)
From the matrix we can write
B 2 S . x6Y, 1=9.3 NI-2 fi5a)
17 g, iyt B ARBE ~ g

From Eq. (15) we get an expression for ¢2 and from the matrix we obtain
an expression for éNI-l so that
PR e+ & Bl '} 5 L

NI-1  Pyr.if3 = 5%y

(15b)

The solution procedure can now be summarized as:
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a) Calculate the matrix elements a, B8 and S from Eqs. (7-11).

NI-2

b) Calculate the matrix elements vy, S and G from Eqs. (12-14).°

¢) Calculate ¢ from Eq. (15b).

NI-1

d) Calculate the rest of the ¢’'s from Eq. (1l5a)

When NI is smaller than 5 the algorithm described above has to be
modified; rather than modifying the algorithm, this is not applied when
NI is smaller than 5. The cyclic boundary condtions are automatically
taken account for when the CTDMA-subroutine sweeps in the two other

directions.
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3. TEST CASES

3.1 Test Case 1: Abrupt Expansion in a Circular Pipe.

The axi-symmetric flow after an abrupt expansion in a circular pipe has
been calculated, see Fig. 3. A recirculating region appears after the
expansion, and the flow subsequently re-attaches to the wall. The flow is
calculated for two different Reynolds numbers: Re=100 (laminar) and
Re=4000 (turbulent).

! r 'R W,
1 —_— A FL

TR, Ty e E T R e

Figure 3. Configuration.

The inlet velocity profile is set as a parabolic profile for the laminar
case, and according to the 1/7-th-power law for the turbulent case. The
subroutine WALL has been used to impose standard wall-functions at the
walls, and to impose zero gradient boundary conditions at the symmetry
plaﬁes (VALUE.LE.-100.) At the outlet the exit velocity was calculated
from mass balance, and zero streamwise gradient was imposed on the rest

of the wvariables.

There exist experimental data on the location of the re-attachment point,
- [9]. For the laminar case the calculations yield zre/H-10.7 (H-Rz-
Rl)’ which should be compared with the experimental value of 10+0.15. The

corresponding figures for the turbulent case are 9.25 and 9.5x0.3. The
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agreement between calculations and experiments for the laminar case is
not very good; it should be mentioned that the calculations are rather
sensitive to how the inlet velocity profile is prescribed. If a profile
according to the 1/7-th-power law is prescribed for the laminar case also

it gives zre/H-Y.

The laminar case was also calculated using the SIMPLEC and the PISO-
algorithms. The following relaxation parameters were used for SIMPLE and

PISO (they may not be optimal):
SIMPLE: 0.5 on the velocities and 0.8 on the pressure;
SIMPLEC: 0.8 on the velocities and 1.0 on the pressure.
PISO: 0.7 on the velocities and 1.0 on the pressure.

One of the advantages with SIMPLEC and PISO is that these algorithms are
more stable than SIMPLE, so that less under-relaxation can be used [2,3]
compared to SIMPLE; the disadvantage for PISO is that more CPU time is
required per iteration, and that PISO needs very much extra core storage
(see Section 2.8). SIMPLE converged on 123 iterations, SIMPLEC on 64 and
PISO converged on 70 iterations; the corresponding required CPU time was:
90, 90, and 47 seconds. The SIMPLEC proves thus, for this particular
case, to be the best algorithm.

A third case (laminar) has been calculated in which a swirl velocity was

precribed at the inlet. The W-velocity was set to constant velocity

(corresponding to Re=100), and U was set as

U =0.1x/R W,

24




Since the case still is axi-symmetric, the case is 'two-dimensional; the
difference from the two former cases is that in this case U0. The cyclic

option thus has to be used. .

No experimental data exist for this case.
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3.2 Test Case 2; Rotating Couette Flow

The flow is driven by the outer cylinder (R2-2), which rotates steadily

with wz-l., while the inner cylinder (Rl-l) is stationary, see ‘Fig. 5.

A
K
5

y ‘=.

s
“

Figure 5. Configuration.

The flow 1is laminar

and axi-symmetric. There exists an analytical

solution [10]

U - % {r-1/%); Ve Gy pow % el 2 l/r2 - 4 1n(r)]

We have wused this case to test the cyclic option in the program. The

boundary conditions at the outer cylinder are U=2, V=0 (se above), and at
the inner cylinder both velocities are zero. The boundary conditions at

the inlet and the outlet are automatically handled by the cyclic boundary
conditions.
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The calculated results are compared with the analytical solution (printed
out in the OUTDAT-file), and the agreement is very good (within one

percent).

3.3 Test Case 3: Uniform Flow Across a Polar Grid

This test case has been chosen in order to estimate how much better
results we obtain if the curvature effects are included by projecting the

velocities (see Section 2.5), rather than using curvature source terms.

Figure 6. Configuration with grid.
The configuration with the grid is shown in Fig. 6. Since we want to
estimate the errors for wupwind differencing, the viscosity is set to

zero. The boundary conditions are:

v = U cosa, v = -U sina
r ®

27




which also, together with p=0, is the exact solution.

the standard treatment of

The flow has been calculated both using
curvature terms (CYLPRJ=.FALSE.; Case 3a), and using the procedure of
projecting velocities (CYLPRJ=.TRUE.; Case 3b).

are

The maximal error in the velocities (se data-listings in OUTDAT.DAT)
8.5% and 0.5% of U for Case 3a and 3b, respectively. In Fig. 7 the
contours of the pressure are presented. The results for Case 3b is again

much better that for Case 3a.

of 1isobars. Numbers denote pressure

Figure 7. Contours
dynamic pressure, pU2/2. a) Case 3a. b) Case 3b.
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A(I)

ALFA(I)

AE, AH, AL,

AN, AS
AW(I,J,K)

AP(I,J,K)

APO(I,J,K)

AREAEW,

AREAHL,

AREAN

AREAS

B, C(I)

Ccl, c2

CAPPA

CD

CE, CH,CL

4. FORTRAN SYMBOLS

coefficient of recurrence formula

coefficient of recurrence formula

coefficients of convective/diffusive flux through east,

high, low, north, south and west wall of control volume

sum of coefficients AE, AW, AN, AS, AH, AL and APO and

source SP

coefficient for old time step

area of control volume faces east & west, high & low, north,

and south

coefficients of recurrence formula

constants of turbulence model (=1.44 and 1.92)

von Karman's constant (=0.435)

constant of turbulence model (=1.0)

coefficient of convective flux through east, high and low

wall of control volume
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CMU

CMUCD

CN

CP

CPO

CS, CW

CYCLIC

CYLPOL

CYLPRJ

including

D(I)

DEN,
DENO(I,J,K)

DENSIT

DENU, DENV,
DENW

constant of turbulence model (=0.09)

constant of turbulence model (=CMU*CD)

coefficient of convective flux through north wall of control

volume

maximum of zero and net outflow (SMP) from control volume

=CP

coefficient of convective flux through south and west wall

of control volume

logical wvariable to control whether cyclic boundary

conditions are to be applied or not

logical variable to control whether cylindrical co-ordinates

are to be used or not
logical wvariable which to control whether the procedure of
curvature effects by projecting velocity vectors are to be

used or not (see Section 2.5)

coefficient of recurrence formula

density of fluid at current and old timestep

constant density of fluid set in INIT

density for U, V, and W control volume

30




DFE, DFH,
DFL, DFN,
DFS, DFW

DU(I,J,K)

DUDX, DUDY
DUDZ

DUDXM, DUDYM

DUDZM

DUDXP, DUDYP
DUDZP

DV(I,J,K)
DVDX, DVDY
DVDZ

DVDXM, DVDYM
DVDZM

DVDXP, DVDYP
DVDZP

DW(I,J,K)

DWDX, DWDY

coefficient of diffusive flux through east, high, low,

north, south and west wall of control volume

coefficient of velocity-correction term for U velocity

du/ox, 8U/8y and dU/dz at control volume

au/éx, dU/3y and dU/3z at negative (i.e. west, south or low)

control volume face

au/dx, 48U/8y and 38U/dz at positive (i.e. east, north or

high) control volume face

coefficient of velocity-correction term for V velocity

av/dx, 8V/3y and dV/dz at control volume

av/dx, 8V/3y and dV/3z at negative (i.e. west, south or low)

control volume face

8v/dx, dV/dy and 9V/3z at positive (i.e. east, mnorth or

high) control volume face

coefficient of velocity-correction term for W velocity
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DWDZ dW/dx, O8W/dy and dW/dz at control volume

DWDXM, DWDYM
DWDZM dW/dx, dW/dy and dW/3z at negative (i.e. west, south or low)

control volume face

DWDXP, DWDYP
DWDZP dW/8x, 0oW/dy and 4W/3z at positive (i.e. east, north or

high) control volume face

DXEP(I) =X(I+1)-X(I)
DXEPU(I) =XU(I+1)-XU(I)
DXPW(I) =X(L)-RX(T~1)
DXPWU(I) =XU(I)-XU(I-1)
DYNP(J) =Y(J+1)-Y(J)
DYNPV (J) =YV (J+1)-YV(J)
DYPS (J) =Y(J)-Y(J-1)
DYPSV(J)=  =YV(J)-YV(J-1)
DZHP (K) =Z(K+1)-Z(K)
DZHPW(K) =ZW (K+1) - ZW(K)
DZPL(K) =Z(K)-Z(K-1)
DZPLW (K) =ZW(K) -ZW(K-1)
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ED, EDO(I,J,K)

ELOG

FITER

GAMM, GAMP
GAME, GAMHX,
GAML, GAMN,
GAMS, GAMW
GAMH(I,J,K)
GE,GH,GL
GN,GS,GW
GEN(I,J,K)
GP

GREAT

HEDD

HEDK

HEDM

HEDP

energy dissipation rate, ¢, at current and old timestep
constant used in the log-low of the wall
first iteration

viscosity at negative (i.e. west, south or low) and positive

(i.e. east, north or high) control volume face

coefficients of diffusion for scalar variables at east,

high, low, north, south and west wall

coefficient of diffusion for temperature

mass flux through east, high, low, north, south and west
wall of cell

generation of turbulence by shear from mean flow

mass flux at location of velocity

a very large value (i.e. 1020)

heading ’'Energy Dissipation’

heading ’'Turbulent Energy’

heading 'Viscosity'

heading 'Pressure’
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HEDR heading 'Density’

HEDT heading 'Temperature'’

HEDU heading 'U-Velocity'’

HEDV heading 'V-Velocity’

HEDW heading 'W-Velocity'

IMON I-index of monitoring location

INCALD, INCALK
INCALP, INCALT
INCALU, INCALV

INCALW logical parameter for solution of €, k, P', T, U, V, W-
equation

INDMON monitoring output each INDMON iteration

INFIL character variable (default: INDATA) which contains the name

of the restart file
INDPRI intermediate output of variable fields each INDPRI iteration

INDPRT intermediate output of variable fields each INDPRT time step

(transient runs)

IPREF I-index of location where pressure is fixed if IPREF>0; if
IPREF<0 the pressure is not fixed

INPRO logical variable for updating of fluid properties

IT I-index of maximum dimension of dependent variable
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ITSTEP
JMON

JPREF

JT
KMON

KPREF

KT

MAXIT

NI
NIM1
NITER
NJ
NJIM1
NK
NKM1

NSWPD, NSWPK

time step index
J-index of monitoring location

J-index of location where pressure is fixed if JPREF>0; if

JPREF<0 the pressure is not fixed
J-index of maximum dimension of dependent variable
K-index of monitoring location

J-index of location where pressure is fixed if KPREF>0; if

KPREF<0 the pressure is not fixed
K-index of maximum dimension of dependent variable

maximum number of iterations to be completed in the current

run if iteration is not stopped by test on value of SORCE
maximum value of I-index for the calculation domain
=NI-1

number of iterations completed

maximum value of J-index for the calculation domain
=NJ-1

maximum value of K-index for the calculation domain

=NK-1
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NSWPP ,NSWPT

NSWPU,NSWPV

NSWPW

P{I..J;K)

PFUN

BT .8

PISO

PLANE

PP(1,J,K)

PRANDT, PRED
PRTE

RESOR

number of application of line iteration for ¢, k, P', T, U,

V and W-equation

pressure

constant of P-function for heat transfer at Walls
general representation for all dependent wvariables

logical variable to control whether the PISO-algorithm is to

be used or not (see Section 2.8)

2-character variable which controls in which plane the
fields are printed out; the fields can be printed in all
three planes, and PLANE can be set to XY, XZ, or YZ.
Default: XY

pressure-correction, P’ and P'’

turbulent  Prandtl number for  temperature, turbulent

dissipation and turbulent kinetic energy

residual source for individual control volume

RESORE, RESORK
RESORM,RESORT
RESORU, RESORV

RESORW

sum of residual sources within calculation domain for e, k,

P', T, U, V and W-equation
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RESTRT

SAVEM

SEW(I)

SEWU(I)

SMP

SHL(K)

SHLW(K)

SIMPLE

SMALL

SNS(J)

SNSV(J)

SORCE

SORMAX

SP,SU(I,J,K)

STEADY

logical wvariable which controls whether the initial field

are to be read from the file INDATA or not

logical variable which controls whether the fields are to be

stored on the file UTDATA or not
0.5%[DXEP(I)+DXPW(I)]
0.5%[DXEPU(I)+DXPWU(I) ]

nef outflow from control volume
0.5%(DZHP(K)+DZPL(K) ]
0.5%[DZHPW(K)+DZPLW(K) ]

logical variable to control if the SIMPLE-algorithm is to be

used or not (see Section 2.8)

a very small value (i.e. 1020)

0.5*%[DYNP(J)+DYPS(J)]

0.5%[DYNPV(J)+DYPSV(J)]

maximum of RESORM, RESORU, RESORV and RESORW

maximum acceptable value of SORCE for converged solution
coefficient b and C of linearized source treatment

logical variable which controls whether the calculation is a

steady one or not

37




T,
TO(L,J,K)

TE,
TEO(I,J,K)

TMULT

U,
Uo(I,J,K)

uM

UP

UPLUS

UR, URM,
URP

URFE, URFK
URFP,URFT
URFU, URFV
URFW

UTFIL

v,
VO(I,J,K)

temperature at current and old time step

turbulent kinetic energy at current and old time step

coefficient of wall shear expression

velocity in the x-direction at current and old time step
U-velocity at a negative (i.e. west, south or low) control
volume face
U-velocity at a positive (i.e. east, north or high) control

volume face

u*/Uparallel

vw/r in the control volume; at the negative (i.e. west,

south or low) control volume face; and at the positive (i.e.

east, north or high) control volume face

under-relaxation factor for ¢, k, P', T, U, V and W-equation

character variable (default: UTDATA) which contains the name

of the file where the fields are stored (when SAVEM=.TRUE.)

velocity in the y-direction at current and old time step
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VELPAR

VIS(I,J,K)

VISCOS

VISE,VISH

VISL,VISN

VISS,VISwW

VISOLD

VM

VP

VOL

VRM

W,
WO(I,J,K)

X(I)

XMOMIN

velocity parallel to the wall
effective viscosity (p+pt)
laminar viscosity (u)
effective

viscosity at midpoint of east, high, low, north,

south and west wall of cell

value of effective viscosity before under-relaxation

V-velocity at a negative (i.e. west, south or low) control
volume face
V-velocity at a positive (i.e. east, north or high) control

volume face

volume of control volume

A%

the wvelocity in the z-direction at the current and the old

time step
X co-ordinate of main cells; for the cylindrical option x
denotes the circumferential direction and x is then measured

in radians

momentum of fluid at inlet of flow domain
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Xp x-distance [=XP*(radius) for the cylindrical option] between

wall and adjacent grid node

XU(I) X co-ordinate at storage location of U

Y(J) y co-ordinate of main cells; for the cylindrical option ¥y

denotes the radial co-ordinate

¥p y-distance between wall and adjacent grid node
YV(J) y co-ordinate at storage location of V
Z(K) z co-ordinate of main cells; for the cylindrical option z

denote the axial co-ordinate
ZP z-distance between wall and adjacent grid node

ZW(K) z co-ordinate at storage location of W
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