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Abstract
The transition of the laminar boundary layer to turbulence in the free stream is
of major importance in turbomachinery flows. Transition in the boundary layer
has a big impact on flow parameters such as skin friction coefficient and shape
factor thereby affecting the design and development process. It is known that the
boundary-layer transition is affected by properties of the free-stream turbulence such
as its anisotropy, length scale and its intensity. In the present thesis a Large-Eddy
Simulation (LES) has been performed of a zero pressure gradient flat-plate boundary
layer undergoing transition to turbulence under free-stream turbulence at a level of
6%. In the current work the bypass transition is defined as a superposition of the Bla-
sius layer with freestream continuous isotropic turbulence at an initial intensity level
of 6%. An effort is made to capture the length and position of boundary layer tran-
sition over the flat plate and a subsequent comparison of the skin friction coefficient
and shape factor were made with the experimental data. A finite volume method
based in-house solver in Fortran, namely CALC-LES, is used for performing the
simulations. The solver of CALC-LES is based on a geometric multigrid algorithm
to solve the pressure (poisson) equation. Three different subgrid scale (SGS) mod-
els are used for performing comparative studies – the Smargorinsky-Lilly model, the
Wall-adapting local eddy-viscosity (WALE) model and the Scale-similarity model.
The experimental data for the skin friction coefficient and shape factor were used as
a basis to ascertain whether the present simulation manages to capture transition.
The present simulations fail to capture the transition appropriately in the boundary
layer over the flat plate. The dimensionless coefficients, namely the skin friction
coefficient and the shape factor are not in the exact accordance with the experi-
mental data. The mesh independence study showed that the stream-wise resolution
hardly played any role in the transition. The study of the resolved Reynolds stress
components in the boundary layer revealed that the stream-wise stress component
decreased in magnitude significantly, but it doesn’t get distributed into the other
components. As a result transition is not observed. Upon further inspection of the
turbulent kinetic energy peak showed that probably the stream-wise streaks grow,
but either they were not big enough to trigger transition or there was no continuous
forcing provided by the free-stream turbulence to trigger transition. It is not known
what aspect of the current LES simulations are at fault but in the light of the gen-
eral level of agreement obtained, we conclude that,the the simulation qualitatively
mimics the real boundary layer even though precise quantitative agreement is not
found for all variables.

Keywords: CFD, LES, boundary layer transition, bypass, FST, flat plate .
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Nomenclature

Abbreviations
DNS Direct Numerical Solution
FST Free-stream Turbulence
LES Large Eddy Simulations
LKE Laminar Kinetic Energy
MG Multi-grid
NS Navier-Stokes
PPE Pressure Poisson Equation
RANS Reynolds-averaged Navier-Stokes equations
rms Root mean square
SGS Sub-grid scale
TKE Turbulent Kinetic Energy
WALE Wall adapting local eddy-viscosity model
Greek Symbols
∆̄ Grid filter-width
δij Kronecker-delta
κ von Kármán constant
ν Kinematic viscosity
νr Residual/SGS eddy-viscosity
ρ Density
τr Residual/SGS stress tensor
Roman Symbols
Cs Smagorinsky coefficient
Cw WALE coefficient
I Turbulent Intensity
lsmg Smagorinsky lengthscale
Lt Integral length scale
lwale WALE lengthscale
Pr Molecular Prandtl Number
Sij Strain-rate tensor, Sij = 1

2( ∂vi

∂xj
+ ∂vj

∂xi
)

Uo Inlet Velocity
v Velocity
V Volume
Subscripts
(.)i Einstein-notation
Superscripts
(.) Spatial Grid-filtering
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1
Introduction

The present study is concerned with the flow over a flat plate a flat plate sub-
ject to free-stream turbulence. The bypass transition studied is that specified in
the ERCOFTAC test case T3 [31], in which a free-stream turbulence level of 6%
is superimposed on a parallel flow of Uo = 9.6m/s. The behaviour and properties
of fluid flows are important in many different technical applications of today’s in-
dustrial world. One of the most relevant characteristics of a fluid is the flow state
in which it is moving i.e. laminar, turbulent or the transitional state in between.
The laminar flow is a well predictable, structured and layered flow, which usually
exercises significantly less frictional resistance to solid bodies and much lower mixing
rates than the chaotic, swirly and fluctuating state of fluid in turbulent motion. Un-
derstanding and predicting both turbulent and laminar flow is crucial in a variety of
technical applications, e.g. flows in boundary layers on aircraft wings, around cars,
intermittent flows around turbine blades, and flows in chemical reactors or com-
bustion engines. The evolution of an initially laminar flow into a fully developed
turbulent flow is called laminar-turbulent transition. There are several approaches
of promoting the downstream flow to bypass transition to turbulence such as blow-
ing and suction at the wall, passing wakes, trip wire, roughness element, oblique
waves or body forces.

Transition in the boundary layer is of significant importance to practical ap-
plications such as aerodynamics of wings, turbomachinery etc. as the factors such
as heat transfer, skin friction drag on the surface affects the overall performance.
In order to understand or simulate complex geometries using LES, it is advisable
to first understand how to obtain transition in the boundary layer in the case of
a simple geometry such as a flat plate. If the transition can be obtained for the
simple geometry then a set of inlet and boundary conditions as well as transition
mechanisms can be determined and then applied to complex geometries. Numerous
studies on this mechanism have been carried out till date, both experimental and
numerical. Computationally, it is very difficult to capture the transition at high
free-stream turbulence (FST) levels as it is governed by non-linear interactions be-
tween boundary layer and FST disturbances and termed as bypass transition. In
the absence of a specific mathematical model capable of capturing the non-linear
growth mechanisms leading to transition and is difficult to contrive. One method to
develop understanding in this domain, the governing factors need to be evaluated
individually and understand their individual effects. The interaction of free-stream
turbulence with the other instability inducing factors in the boundary layer con-
tributes to the growth of the non-linear modes predominantly and transition is
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1. Introduction

observed in the presence of such high levels of free-stream turbulence, for flows with
Reynolds number (Re) even lower than the critical Re computed using the classical
linear stability theory. Many of the previous efforts were based on either direct
numerical simulations (DNS) or Large eddy simulations (LES), non-modal linear
stability analysis, linear and non-linear optimization techniques for largest energy
growth of instability modes etc..

1.1 Previous Work
The experiments for the ERCOFTAC T3B case [31] were conducted by Roach

and Brieley [28]. One of the earliest works on boundary layer transition using LES
includes the simulations on flat plate boundary layer by Voke and Yang [34]. They
observed transition on a very coarse mesh with resolution based on wall units as,
∆x+ ' 80, ∆z+ ' 14 and ∆y+ ' 1 at the wall to 80 beyond the boundary layer.
The wall units were computed based on friction velocity just after transition.

1.2 Why LES?
The RANS based modelling approaches are usually employed to simulate transi-

tional flows, due to their computational cost effectiveness. One method is to employ
a simple ‘point transition’ approach whereby a transition is forced between laminar
and turbulent computations at a point determined either by empirical correlations,
algebraic models, DNS or experimental data. Another method is to employ a three-
equation model based on the low-Reynolds k−ω model with an equation for the so
called laminar kinetic energy kL expressing the energy of stream-wise fluctuations in
pre-transitional region. A good overview of the early developments on these meth-
ods is given by Savill [30]. A shortcoming of using the RANS methods is that all
spectral effects are lost in the time averaging process. However, bypass transition is
supposed to be very sensitive to the spectral nature of the imposed FST. Therefore,
the RANS methods is not likely to reliably capture all factors that affect transition
for various combinations of FST intensity, Reynolds number and pressure gradients,
and are found to be very sensitive to initial conditions and boundary conditions.
In the LES approach, the smallest scales of motion are modelled, preserving the
spectral nature of the larger energy containing eddies. In this respect, it is better
than the RANS approach on the grounds of predicting transition more accurately.

1.3 Aim and Scope
The main aim of the present study is to capture transition based on FST dis-

turbances using artificial fluctuations. The onset and length of transition is not the
immediate concern in the present study. The main objective is to reproduce the
LES performed by Voke and Yang [34] to study the boundary layer transition over
a flat plate subject to FST and managed to capture transition using a coarse mesh.
The report can be divided broadly into four parts:

2



1. Introduction

• Explain the mechanisms and stages involved in bypass transition. - Chapter
2.

• Brief description of LES, the governing equations, SGS models to be used, and
the pressure poisson equation. - Chapter 3.

• Experimental setup flow conditions, computational domain setup, mesh prop-
erties, case setup, and boundary conditions. - Chapter 4.

• Results, discussion, conclusion and future work. – Chapter 5 and 6.

3



2
Boundary Layer Transition Theory

In the case of wall-bounded flows, the laminar-turbulent transition is very sen-
sitive to perturbations/external disturbances in initial conditions, boundary condi-
tions and surface (roughness) properties. These perturbations initiate the transition
of an initially laminar flow to a turbulent flow. The ability to control the transition
greatly increases engineering efficiency and performance such as aerodynamics and
turbomachinery.

The present study is focused around the investigation of laminar-turbulent tran-
sition in the boundary layer of the flow over a flat plate in a zero pressure gradient
condition. In the case of the flat plate, at the leading edge, the fluid particles close
to the wall are slowed down due to viscosity, the closest one coming to rest instanta-
neously (no-slip condition). Due to this there is a sudden increase in static pressure
at the edge. As the fluid moves further downstream, additional layers parallel to
the surface start getting affected due to viscosity. At a certain distance from the
wall in normal direction the velocity reaches the free-stream value. This distance
keeps increasing in the stream wise direction, as more and more layers of fluid start
getting affected by the wall (the boundary layer increases downstream). The type
of flow in the boundary layer near the leading edge is essentially laminar. After a
certain distance downstream however, the flow in the boundary layer starts getting
chaotic, marking the onset of transition. Further downstream, the flow gets com-
pletely turbulent. This is characterized by an increase in wall shear stress. Due to
the incomplete understanding of the triggering mechanisms, a single approach to
capture transition cannot be ascertained.

In the following section, a literature survey is conducted to better understand
the different mechanisms and paths leading to transition.

2.1 Paths of transition to turbulence
The perturbations in the initial conditions, boundary conditions or surface con-

ditions such as roughness may interact with the boundary layer thereby creating
instabilities. The development of such instabilities in a laminar flow can possibly
lead to transition to turbulent flow. The interaction between external disturbances
and the boundary layer instabilities is referred to as receptivity. Saric et al. [29]
based on some earlier studies, illustrated a simplified scenario for turbulence tran-
sition in external flows. Figure 2.1 depicts the same.
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2. Boundary Layer Transition Theory

Figure 2.1: The paths from receptivity to transition [29]

According to the figure 2.1, the initial external disturbance amplitude increases
from left to right schematically. Starting with receptivity, a number of different in-
stabilities can occur independently or together depending on the Reynolds number,
wall curvature, surface roughness or initial conditions and one of the five different
paths shown is followed. The path A is followed when a very low free stream turbu-
lence (FST) level at the inlet, generally equal to or below 1% of the mean flow. The
first stage in such type of transition is the development of two-dimensional Tollmien-
Schlichting(TS) waves, which can be predicted by the modal/eigenvalue analysis of
the linearized Navier-Stokes(NS) equations. These instabilities grow exponentially
and goes on to evolve on large viscous time scales. As the amplitude grows, the
interactions take place on convective time scales and are three-dimensional in na-
ture. Such interactions are explained using the secondary instability theory. This is
followed by the appearance of small-scale motions and the final stages of transition.
Such a kind of transition is called natural transition. The theoretical and experi-
mental work based on this type of transition is studied by Kachanov [16].

The transition achieved via the paths B, C and D are based on the evolution of the
initial boundary layer instability and reffered to as the transient growth mechanisms.
A non-modal analysis of the linearized NS equations, is used to study this type of
transition mechanism. Schmidt [32] has compiled a review of non-modal stability
analysis.

In the case of the free stream turbulence (FST) level greater than 1%, the
transition will enters into the non-linear interaction stage directly, and the linear
instability stage marked by the formation and growth of TS waves is bypassed. It is

5



2. Boundary Layer Transition Theory

referred to as bypass transition(path D and E). It is characterized by the appearance
of stream-wise elongated streaky structures(referred to as Klebanoff modes) of alter-
nating high and low stream-wise velocity in the laminar boundary layer, which grow
in magnitude as they move downstream and finally lead to complete breakdown
resulting in turbulence [1]. The majority of the mechanisms of bypass transition
follow the path D.

2.2 Bypass-transition mechanisms
Klebanoff [18] first observed the occurrence of stream-wise elongated structures

with alternating positive and negative stream-wise disturbance velocities in laminar
boundary layers subjected to FST. As per his study, the FST amplitude and bound-
ary layer thickness was found proportional to the amplitude of the peak response
of such structures. The Klebanoff modes were also observed in the experimental
studies conducted by Kendall [17] and observed similar results for flow subject to
FST. The Klebanoff modes are usually depicted in terms of rms profiles of stream-
wise velocity in the boundary layer. Matsubara & Alfredsson [21] reviewed several
experiments performed at the Royal Institute of Technology (KTH). Their experi-
ments found that the span-wise spacing of streaks, usually of opposite sign of the
u

′-velocity perturbation increases with the FST level, and also slightly increases
with the stream-wise distance. Towards the end of the transition zone, it was ap-
proximately equal to the boundary-layer thickness.

Bypass transition is characterized with the occurrence of stream-wise streaks in
the boundary layer. The stream-wise velocity grows linearly in time in the presence
of a disturbance with no stream-wise variation. This is ascribed to the lift-up and
vortex-stretching mechanism or more accurately to the vortex tilting mechanism.
The normal vorticity increases in time due to the tilting of cross-stream (span-wise)
vorticity by the perturbation strain rate in span-wise direction (this disturbance
can be viewed as a stream-wise vortex). Since the disturbance is elongated in the
stream-wise direction due to the mean shear, the final effect can be seen as streaks
with high and low stream-wise velocity fluctuations. A good description can be
found in the introduction of the article by Butler and Farrell [6].It is believed that
in the presence of viscosity though, such inviscid amplifications eventually decay
after a short time or short stream-wise distance. This phenomenon is termed as
transient growth. It is then possible for a sufficiently amplified disturbance, before
decay sets in, to trigger non-linear interactions and cause breakdown to turbulence.

The amplification of transient energy is not due to the behaviour of a single
eigen-mode of the linearized disturbance equation as found in exponentially growing
TS waves. The redistribution of span-wise vorticity into stream-wise-periodic lumps
near the critical layer, the growth of 3D modes arises from the combined effects of
vortex tilting and stretching and called non-modal growth as well. Grossmann[12]
details these mechanisms on shear flow turbulence.

The initial disturbance able to induce maximum transient growth at a given time
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2. Boundary Layer Transition Theory

is referred to as optimal. The transient growth mechanism is linear in nature and
has been studied extensively using optimization techniques. Butler and Farrell [6]
used variational methods and deduced the optimal perturbation responsible for the
maximum transient growth in a boundary layer for Couette and Poiseuille flows. It
was observed that perturbations in the form of stream-wise/longitudinal vortices are
responsible for inducing the greatest energy growth in the laminar boundary layer
in the form of powerful stream-wise streaks, that can be related to the Klebanoff
modes found in the pre-transitional boundary layer in the bypass transition case. In
the studies conducted by Andersson et al. [2] and Luchini [19], a spatial instability
problem was formulated in contrast to the temporal instability problem by Butler
and Farrell [6]. It is observed that the optimal perturbation consisted of a pair of
counter rotating stream-wise vortices outside the boundary layer. In addition, the
critical streak amplitudes for the sinuous and varicose instabilities were observed to
be 26% and 37%, respectively. Luchini [19] also found that the shape of the streaks
in the pre-transitional boundary layer tends to be attracted towards the shape of the
optimal perturbation (Klebanoff modes), even for non-optimal initial perturbations.
The shape was found to be insensitive to a wide range of wavenumbers, frequencies
and shape of the initial perturbation.

A comprehensive experimental study of the disturbance growth inside the bound-
ary layer was conducted by Matsubara et al. [21]. The results of the experiments
were in accordance with the linear non-modal growth mechanism of the boundary
layer streaks. The Direct Numerical Simulation (DNS) of flow over a flat plate was
conducted by Jacobs and Durbin [14], by considering the inflow FST as a sum of
span-wise and temporal fourier modes, multiplied by wall-normal Orr-Sommerfeld
modes. Only the continuous spectrum of the latter was considered due to their in-
herent property of being sinusoidal in the free-stream and approaching to zero near
the wall. The concept of shear sheltering was introduced by Jacobs and Durbin
[13] that the disturbances convected with free-stream velocity did not couple to the
fluid in the shear layer near the wall. The penetration depth of such disturbances
was found to be inversely proportional to their frequency and the Reynolds number
based on the distance from the leading edge, thus establishing that streaks are an
implicit property of the boundary layer. Brandt et al. [5] in their DNS study of a
flat plate boundary layer, also used the continuous spectrum of the Orr-Sommerfeld
equation to generate inflow boundary condition similar to Jacobs and Durbin and
included the Squire modes for the wall-normal vorticity. They observed that the on-
set of transition moves upstream with an increase in the FST length scale. However,
like in the Jacobs and Durbin study [14], the span-wise scale of the streaks inside
the shear layer was found to be highly insensitive towards the details of inlet turbu-
lence (FST). With fine, turbulent-like resolution in the entire boundary layer, they
obtained very good agreement with the T3A experiment of Roach & Brierley [28] at
3% FST intensity. Klebanoff modes were found to be a prominent feature of their
simulations, and were generated non-linearly by the penetration of the FST into the
boundary layer Jonas et al. [15] performed as experiments on flat plate boundary
layer, and also concluded that the onset of transition moved upstream with increas-
ing FST length scale. Brandt et al. [5] also concluded that for receptivity, linear
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2. Boundary Layer Transition Theory

mechanism is most relevant if the FST contains low-frequency disturbances, whereas,
non-linear mechanism takes over if the FST contains high-frequency disturbances.
Berlin and Henningson [4] had proposed a non-linear receptivity mechanism based
on their spectral DNS study of Blasius flow with both temporal and spatial formu-
lations and observed that the non-linear mechanism is responsible for generating
wall-normal perturbations associated with stream-wise vortices inside the boundary
layer, which on interacting with the boundary layer shear produce the stream-wise
streaks. At levels of low FST intensity levels linear mechanism dominate, whereas
non-linear mechanism plays important role at higher FST levels. At moderate dis-
turbance levels, both mechanisms produce streaks of similar strength. The growth
of streaks is supposed to be based on linear transient mechanism i.e. it is only char-
acterized by the appearance of streaks, which could be linear or non-linear. The
importance of wall-normal velocity in the free-stream for inducing transition was
also emphasized by Voke and Yang [34] in their LES study of flow over a flat plate.
The factors affecting penetration depth of free stream turbulence was studied by
Zaki et al. [38]. In their study, the Orr-Sommerfeld/Squire eigenvalue problem were
analyzed and concluded that the penetration depth inside a boundary layer shear
depended on the following paramets: Inversely proportional to the frequency of dis-
turbance, Reynolds number, the local mean shear at the wall and increases with
increasing wall-normal wavenumber. Additionally, an increase in the wall-normal
wavenumber, leads to an increase in the decay rate but it does persist far down-
stream of the leading edge. A coupling coefficient was defined that depicted the
local interaction of continuous Orr-Sommerfeld modes and the boundary layer. It
represented the penetration ability of the modes in the boundary layer and also
its ability to generate streaks. Not all penetrating modes generated streaks; the
ones with high decay rate failed to do so, e.g. disturbances with high wall-normal
wavenumber. Disturbances with low frequencies and small wall-normal wavenum-
bers had higher coupling coefficients.

The effect of Pressure gradient has a significant effect on the receptivity process.
The study conducted by Zaki et al. [37] resulted in lower shear at the wall in the
case of zero pressure gradient in comparison to the adverse pressure gradient case.
The onset and location of transition is observed to be is delayed in the case of the
adverse pressure gradient case. This is attributed to the fact that streak formation
is higher in magnitude for adverse pressure gradient in comparison with the zero
pressure gradient cases, hence more sensitive to FST.

Most of the studies on transient growth assumed parallel flow, thereby neglecting
the effect of the leading edge(non-parallel flow). The numerical study conducted by
Zaki and Durbin [38] consider a leading edge. In their case at the leading edge, as
boundary layer thickness δ −→ 0, all modes act as low frequencies and become pen-
etrating; but since Rex −→ 0 (Re based on distance from leading edge), they also
decay rapidly. They conclude that the coupling leading to boundary layer streaks
and transition is local, and occurs downstream of the leading edge. A non-linear
method discussed by Berlin and Henningson [4] forced streaks in the boundary layer
locally even downstream of the leading edge. Goldstein and Wundrow [20] consider

8



2. Boundary Layer Transition Theory

the leading edge and show that FST containing wake like disturbances, correspond-
ing to wall-normal vortical structures, get stretched and tilted around the leading
edge and transform into low frequency modes corresponding to stream-wise aligned
vortices. These vortices then penetrate in the boundary layer to produce streaks.
It was observed that the leading edge just enhances the growth of Klebanoff modes
inside the boundary layer; the mechanism to transition still remains the same. Na-
garajan et al. [23] carried out simulations on a flat plate boundary layer with a
blunt elliptical leading edge. They observed that a blunter leading edge, gives free
stream conditions, exhibits earlier onset and completion of transition. In addition,
it was found the same mechanism is in play around the leading edge as observed by
Goldstein and Wundrow– stretching and tilting of vortices around the leading edge.

The stream-wise elongated unsteady streaks in the boundary layer are the main
driving source of bypass transition. The mechanisms driving the conversion of
streaks into turbulent spots and subsequent break-down have been an important
aspect of bypass transition studies. Jacobs and Durbin [14] observe that streaks
with negative stream-wise fluctuation (u′

< 0), termed as negative jets, are respon-
sible for the formation of turbulent spots. They are present predominantly in the
upper boundary of the shear layer and are continuously in contact with the high
frequency free-stream disturbances outside the boundary layer. This implies the
development of turbulent spots. The positive jets, predominant close to the surface
of the plate, do not undergo instability. Brandt et al. [5] observe that streak break-
down and turbulent spot formation is caused by either of two types of instability
modes of low-speed streaks (negative jets). The sinuous mode is characterized by
streak oscillations in the span-wise direction, was observed more frequently than the
varicose mode of instability that is driven by the wall-normal shear. The sinuous
mode instability is similar to the backward jet mechanism of Jacobs and Durbin
[14]. Zaki et al. [38] in their DNS study used a pair of inflow modes, one with high
coupling coefficient (presumably low frequency), and the other a weakly coupled
mode (high frequency) and observe that it was sufficient to trigger transition. The
low frequency modes generate streaks inside the boundary layer. The fluctuations
due to the low frequency modes interact with the fluctuations generated by the
high frequency modes, thereby lifting the negative streaks towards the edge of the
boundary layer. The latter is unable to penetrate the shear layer and is present in
the free-stream. Some of these jets get intensified and burst into turbulent spots.
This is also similar to the mechanism observed by Jacobs and Durbin [14].

The DNS study conducted by Nagarajan et al. [23] that identical inflow tur-
bulence field results in different paths to transition depending on the leading edge
geometry. There is a shift in the location of onset of transition. Spot precursors
responsible for transition were identified to be wavepacket like disturbances orig-
inating at the leading edge (blunt). Spot precursor formed at the leading edge
inhabited the lower part of the boundary layer. The vortices were aligned normal to
the wall and get stretched around the leading edge resulting in localized regions of
stream-wise vorticity inside the boundary layer, which grow as they convect down-
stream. The effect of FST length scales and leading edge on bypass transition were
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2. Boundary Layer Transition Theory

studied by Ovchinnikov et al. [25]. Their studies concluded that the FST length
scales comparable to the boundary layer thickness at the onset of transition, δ99, the
transition followed the Klebanoff mode mechanism, whereas for higher FST length
scales, comparable to 7δ99, the transition followed a different path. They observed
that wave packet like disturbances in stream-wise direction act as spot precursors
that lead to transition. They are associated with span-wise vortical structures in
boundary layer in contrast to stream-wise ones in the simulations of Nagarajan et al.
[23]. Initially in spanwise direction, the vortices subsequently reorient themselves
partially in stream-wise direction. The result is either a Λ -vortex (two legs) or
quasi-streamwise vortex (one-leg). These structures finally develop into spots and
subsequently break down to turbulence. They also find that wavepackets appear
in wall-normal velocity component as compared to the span-wise component in the
simulations of Nagarajan et al. [23] and that they are not confined to the lower
part of the boundary layer close to the wall, as was observed by the former. This
could be explained as a result of higher Re (based on FST integral length scale) in
the study of Ovchinnikov et al.[25] and also the higher FST intensity in their study.
The DNS study for a spatially evolving turbulent zero pressure gradient boundary
layer over a smooth flat plate, conducted by Wu and Moin [36] and deduced from
their flow visualizations that the occurance of boundary layer streaks was merely a
kinematic feature, appearing as a result of lift up mechanism. They were not found
to be responsible for transition. The non-linear development of obliquely Λ -oriented
vortices into hairpin packets was observed to be responsible for the breakdown into
transition. However, receptivity of such disturbances inside the boundary layer was
not discussed. Cherubini et al. [8] proposed a purely non-linear scenario of (bypass)
transition in boundary layer, justifying the preponderance of hairpin structures ob-
served by Wu and Moin [36] in their transitional boundary layer. Using non-linear
optimization of the energy growth at short time, they identified the smallest flow
structure, called the minimal seed perturbation, responsible for inducing turbulence
in the boundary layer. Cherubini et al. [7] concluded that transition in a flat plate
boundary layer in the presence of FST, follows a purely non-linear route character-
ized by the formation of hairpin/Λ vortices, when turbulent intensity and turbulent
length scale of the FST are very high (for I > 4.5% and l > 20). In the case of
lower intensities and length scales of the FST, the transition was said to follow the
traditional streak mechanism (transient growth and secondary instability leading to
break-down).
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3
Governing Equation and Solution

Methods

The governing equations for laminar, transitional and turbulent flows are the Navier-
Stokes (NS) equations for the velocity components ui(i = 1, 2, 3) and the pressure
p. The NS equations for an incompressible fluid flow in conservative form and in
the absence of body forces is presented as:

∂vi
∂xi

= 0 (3.1)

∂vi
∂t

+ ∂vivj
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

(3.2)

The equations 3.1 and 3.2 represent the continuity and momentum conservation
equations respectively. In the absence to achieve an exact analytical solution to these
equations, the equations are discretized and solved numerically. There are multiple
ways of solving these equations numerically. One way is to solve the time averaged
NS equations, where the extra terms appearing out of averaging are modelled: the
RANS method. Another way is to resolve the whole range of temporal and spatial
scales, without the need for modelling: called the DNS. The latter method requires a
very fine grid resolution thus limiting it’s practicality due to the high computational
cost involved. In the wake of the two methods mentioned above, LES is being
used for time accurate prediction of unsteady flows at high Reynolds numbers. In
contrast to DNS the Kolmogorov dissipation scale is not resolved in LES, making the
computational cost of LES largely independent of the Reynolds number. The level of
abstraction is lower than the statistical approaches based on RANS equations. Thus
the scope of LES extends to unsteady turbulent flows with a broad range of spatial
and temporal scales in which the larger energy containing motions are resolved and
the effect of the smaller ones are modelled.

3.1 Large Eddy Simulations
As mentioned earlier, in LES, the larger scales are resolved and smaller ones are
modelled. The first step in LES is filtering in which the flow variable (φ) is decom-
posed into a resolved/filtered component (φ̄) and the residual/SGS(sub-grid scale)
component (φ′). The most commonly used LES approach is the implicitly filtered
approach. In implicitly filtered LES, the computational grid and the discretization
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3. Governing Equation and Solution Methods

operators are considered as the filtering of the governing equations. In the present
study, a volume-average box filter is used where the filter-width (∆̄) is taken as
[∆̄ = (∆VIJK) 1

3 ]. The details about filtering operations can be found in [26]. The
equations 3.1 and 3.2, after the filtering operation give rise to a set of equations
presented as:

∂v̄i
∂xi

= 0 (3.3)

∂v̄i
∂t

+ ∂v̄iv̄j
∂xj

= −1
ρ

∂p̄

∂xi
+ ν

∂2v̄i
∂xj∂xj

−
∂τ rij
∂xj

(3.4)

The effect of the non-resolved small(residual) scales enters in equation 3.4 through
the subgrid-scale (SGS) term:

τ rij = vivj − v̄iv̄j (3.5)

The τ rij is not closed since vivj cannot be obtained from the filtered quantities ui
alone. The next step is to obtain closure by modelling τ rij by an appropriate SGS
model. The energy dissipation due to the SGS stresses τ rij is:

εSGS = τ rijS̄ij (3.6)

As per equation 3.6, εSGS describes the amount of kinetic energy which is dissipated
by the SGS model in addition to the (physical) viscous dissipation. It is often argued
that a correct prediction of the SGS dissipation is one of the crucial statistical
features of a successful LES [22]. In the present study three such models are used
for performing LES – the Smagorinsky model [33], the WALE model [24] and the
Scale-similarity Model [9].

3.1.1 Smargorinsky model
The most widely-used SGS models are the eddy-viscosity models, given by

τ rij −
1
3τ

r
kkδij = −2νrS̄ij (3.7)

where S̄ij is the filtered strain-rate tensor. The eddy viscosity νr is usually modelled
according to [33] yielding the Smagorinsky model. This model forms the basis of all
other eddy-viscosity models and assumes the Boussinesq hypothesis. The constant
of proportionality νr is the residual viscosity, also called the SGS viscosity and needs
be modelled. Based on the mixing-length hypothesis, the eddy-viscosity is modelled
as:

νr = l2smg|S̄| = l2smg

√
2S̄ijS̄ij (3.8)

where, lsmg represents the Smagorinsky lengthscale and is taken as proportional
to the filter-width ∆̄, such that

lsmg = Cs∆̄ (3.9)
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3. Governing Equation and Solution Methods

where, Cs is the Smagorinsky coefficient.

In laminar flow regions and in the viscous sublayer of turbulent wall-bounded flows,
the SGS model contributions should vanish or at least be very small. Using the
classical Smagorinsky as mentioned above, this condition is not necessarily fulfilled
since the filtered strain-rate tensor (S̄ij) actually peaks at the walls. Nevertheless, for
wall-bounded shear flows, transitional or intermittent flows, ad−hoc remedies have
to be used to obtain acceptable results such as a low-Reynolds number correction
as implemented in [35]. In the present study, the RANS length scale is used as an
upper limit to dampen the eddy-viscosity νr.

∆̄ = min
{

(∆VIJK) 1
3 , κn

}
(3.10)

where, n is the distance to the nearest wall.

3.1.2 WALE (Wall adapting local eddy-viscosity) model
The WALE model [24] proposed to model the subgrid/residucal viscosity is based
on the square of the velocity gradient tensor (ḡij) accounts for the effects of both
the strain and the rotation rate of the smallest resolved turbulent fluctuations. The
eddy-viscosity can be written in a generic form as:

νr = l2waleDm(ui) (3.11)
where, lwale represents the WALE lengthscale and is taken as proportional to the
filter-width ∆̄, such that

lwale = Cw∆̄ (3.12)
where, Cw is the WALE coefficient and the filter-width (∆̄) is taken the same as
mentioned in equation 3.10.

In LES, the eddy-viscosity must not change when the frame of reference is changed,
thus the differential operator (Dm(ui)) as mentioned in equation 3.11 must be based
on the invariants of a tensor which should be representative of the turbulent activity.
The differential operator for the WALE model is approximated as:

Dm(ui) =
(SdijSdij)

3
2

(S̄ijS̄ij)
5
2 + (SdijSdij)

5
4

(3.13)

where,
Sdij = 1

2(ḡ2
ij + ḡ2

ji)−
1
3δij ḡ

2
kk (3.14)

By construction, the trace of (Sdij) is zero and its second invariant remains finite
and proportional (SdijSdij). Therefore, a LES model based on (SdijSdij) will detect
turbulence structures with either strain rate, rotation rate or both of the small
turbulent structures. The resulting WALE reproduces the proper scaling at the wall
(νr = O(y3)). It is also well-suited for LES as no explicit filtering is needed and
only local information is required to build the eddy-viscosity. Thus all the turbulence
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3. Governing Equation and Solution Methods

structures relevant for the kinetic energy dissipation are detected by the model, the
eddy-viscosity goes naturally to zero in the vicinity of a wall so that neither dynamic
adjustment nor damping function are needed to compute wall bounded flows, the
model produces zero eddy viscosity in case of a pure shear. Thus it is able to
reproduce the laminar to turbulent transition process through the growth of linear
unstable modes.

3.1.3 Scale-similarity model
The main idea behind the use of scale similarity subgrid models is to use the small
scales of LES itslef. The scale-similarity subgrid models consider the largest unre-
solved scales are similar to the smallest resolved scales. This is the main idea behind
the scale similarity model by Bardina et al. [3]. Scale similarity models involves the
interactions between the largest subgrid scales and smallest resolved scales, hence
there is a need to define these scales. In the present study, a volume-average box
filter is used where the filter-width (∆̄) is taken as [∆̄ = (∆VIJK) 1

3 ].The velocity
fields are then defined as follows:

uunresi = ui − v̄i (3.15)

~ui = ūi − ¯̄vi (3.16)

u′′i = ūi − ¯̄vi (3.17)

Equation 3.15 represents the unresolved scales (≤ ∆̄). Equation 3.16 represents the
largest subgrid scale part defined by filtering. Lastly, equation 3.17 represents the
smallest resolved scales(>∆̄), defined by a second filter on the resolved field. The
last two expressions as mentioned in equations 3.16 and 3.17 are identical, so it is
assumes that these scales have similar structure, near the grid cutoff. In other words,
the SGS stresses for the full velocity field are the same as the ones corresponding to
the resolved field ūi.

τ rij = v̄iv̄j − ¯̄vi ¯̄vj (3.18)

In the present study, the backscatter (transfer of energy from small resolved scales
to large resolved scales) from a scale similarity model as described by Davidson [9],
will be used with an aim to trigger transition in the boundary layer. The equation
for the resolved, turbulent kinetic energy, K = 〈u′iu′i〉/2 is given as:

DK

Dt
+〈u′ju′i〉

∂〈ūi〉
∂xj

+∂〈p′u′i〉
∂xi

+1
2
∂〈u′ju′iu′i〉
∂xj

= ∂2K

∂xj∂xj
−ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
−〈

τ rij
∂xj

u′i〉 (3.19)

The last term in the equation 3.19 describes εSGS, is a source term arising from the
SGS stress tensor, which can be positive or negative. When it is positive, forward
scattering takes place and when it is negative, back scattering occurs. The back
scattering is achieved by defining a sign function as follows:
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3. Governing Equation and Solution Methods

Mij = −
(
−
∂τ rij
∂xj

∂2u′i
∂xj∂xj

)
= −

(
−
∂τ rij
∂xj

∂2ūi
∂xj∂xj

)
(3.20)

where, the sign function Mij is taken as negative. In addition, the sign of the
fluctuating velocity (u′i) is not known initially but second derivative of the resolved
velocity fluctuations (u′i) is the same as the resolved velocity (ūi) . Hence the
second derivative of the resolved velocity is taken in equation 3.20. Using the sign
function, only the dissipative part of the SGS term, (−∂τr

ij

∂xj
), was included in the

momentum equations. The subgrid stress term can also be used as a forcing term.
Each component of the divergence of SGS stress tensor in equation 3.4 is then
multiplied by:

M̃ij = max(Mij, 0) (3.21)
which results in,

∂τBij
∂xj

= M̃ij

∂τ rij
∂xj

(3.22)

As per the equations 3.20, 3.21 and 3.22, the subgrid tensor term is included when-
ever the sign of (−∂τr

ij

∂xj
) is opposite to that of the viscous diffusion. This means that

the SGS term, (−∂τB
ij

∂xj
), in the momentum equations acts as a counter-gradient dif-

fusion term. In this way the backscatter can be used as forcing to trigger transition.
In the present study, the scale similarity is applied to the boundary layer along the
entire stream-wise direction.

3.2 Solving for the pressure field: PPE
In case of an incompressible flow, there is no explicit equation for solving pressure.
Pressure is involved in the momentum equations 3.2 and in general, it is solved
indirectly by making use of the continuity equation 3.1. In the present case, pressure
is computed directly by solving a Pressure Poisson equation (PPE). The consistent
PPE is derived by taking divergence over the momentum equation 3.2:

1
ρ

∂2p̄

∂xi∂xi
= − ∂2v̄i

∂xi∂t
− ∂2v̄iv̄j
∂xi∂xj

+ ν
∂3v̄i

∂xi∂xj∂xj
−

∂2τ rij
∂xi∂xj

(3.23)

By application of adequate boundary conditions, and imposing the divergence of
velocity field to go to zero – the continuity equation – the above equation can be
solved. In the present numerical method, an intermediary velocity field from the
NS equations devoid of the implicit Pressure gradient term is first solved. A similar
PPE as above is formulated by imposing the requirement of continuity on the correct
velocity field. The formulation and the whole projection method to solve the system
of equations is explained in [11]. The effectiveness of the afore mentioned fractional
step projection method mentioned is based on the efficiency of the PPE matrix
solver. To solve the PPE, a Geometric Multigrid (GM) algorithm is employed,
which is explained in brief in [27].
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4
Geometry and Case Set-up

4.1 Overview of experimental flow conditions

The experiment conducted by Roach and Brieley [28] for the ERCOFTAC T3B
case [31] is used for comparison with the LES conducted in the present study. The
test plate measures 1700mm × 20mm in the x − direction (stream-wise) and z −
direction (span-wise) respectively, having leading edge radius of 0.75mm . The inlet
flow conditions for the experiment are en-numerated in Table 4.1. The experimental
data at four x−stations (stream-wise), i.e. 25, 45, 95, and 195 mm from the leading
edge of the flat plate is used as a basis to evaluate the results of the present LES.

Inlet velocity Uo 9.6m/s
Turbulent intensity I 6%

Table 4.1: Inlet flow conditions

Figure 4.1: Schematic of the computational domain
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4. Geometry and Case Set-up

4.2 Computational domain and case set-up
The geometry for the simulation of transitional flow over a flat plate is given in

Figure 4.1. The computational box for the LES starts at x = 10mm downstream
of the leading edge, thereby the transition under 6% FST is performed in a domain
extending from Rex = 6620 to Rex = 200000. The stream−wise, wall−normal and
span−wise dimensions of the box are Lx = 300mm, Ly = 30mm and Lz = 20mm
respectively. The dimensions of the computational box are taken in accordance with
the LES performed by Voke and Yang [34].

4.2.1 Mesh and boundary specific restrictions
A Cartesian mesh is generated for the computational domain described in Figure

4.1. In order to conduct a mesh independence study, two sets of meshes are generated
namely MESH-I and MESH-II, having an overall resolution of (128×64×48) and
(256×64×48) respectively. The wall units are based on the local wall friction velocity
as mentioned in the work by Voke and Yang [34]. The details of the mesh for the
present study are summarized in Table 4.2.

MESH-I MESH-II
Nx 128 256
Ny 64 64
Nz 48 48
∆x 2.30 mm 1.17 mm
∆z 0.40 mm 0.40 mm
∆+
x 78 40

∆+
y 1-66 1-66

∆+
z 14 14

Table 4.2: Meshing of the simulations - Nx, Ny, Nk denote the number of cells in
each direction.

The Geometric Multigrid (GM) method to solve the pressure poisson equa-
tion(PPE), as mentioned in section 3.2, restricts the number of cells in each direc-
tion. In the present study, the stream-wise grid spacing of MESH-I is twice the one
in MESH-II, therefore, the number of cells in the stream-wise direction should be a
multiple of 2n, where n is the desired number of levels.

Face
(0-3-7-4) Inlet
(1-2-6-5) Outlet
(3-2-6-7) Symmetry
(0-1-5-4) Wall
(0-1-2-3) and (4-5-6-7) Periodic

Table 4.3: Boundary specifications
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4. Geometry and Case Set-up

The vertices of the computational box as shown in Figure 4.1 are used to define
the specific boundaries. The Table 4.3 represents the vertices of the computational
box that enclose faces and mention their corresponding boundary type.

4.2.2 Boundary conditions

Fluid properties
Density ρ 1
Prandtl no. Pr 0.7
Inlet conditions
Inlet velocity Uin Blasius profile
Reynolds no. Re 6620

Table 4.4: Simulation flow conditions

Inflow
Dirichlet(Uin)
Neumann( ∂p

∂n
= 0)

Forced inlet fluctuations

Outflow Convective BC for u,v,w
Neumann for p

Walls No-slip(u=v=w=0), Neumann for p

Table 4.5: Boundary conditions: u, v, w and p denote x, y, z components of
velocity respectively.

Synthetic fluctuations
Turbulent intensity I 6%
Turbulent length scale Lt 2.4×10−3m
Turbulent time scale T 2.5×10−4s

Table 4.6: Inlet turbulence: Simulations

Inflow Boundary : The upstream boundary of the computation domain as
shown in Figure 4.1 represents a point 10 mm downstream of the leading edge of
the flat plate (Rex=6620). In order to define the inflow boundary, fixed values of
velocity are used (specified in Table 4.4). An appropriate Blasius velocity profile is
specified at the inlet boundary. A zero Neumann boundary condition for pressure
is specified in order to solve the PPE at both the inlet, outlet and wall. The veloc-
ity fluctuation field is based on the turbulence intensity and turbulent length-scales
mentioned at the inlet. This will characterize the different scales of motion in the
FST, which is crucial in triggering transition.

Inlet Fluctuations: The turbulence conditions at the inflow boundary are
prescribed using synthetic isotropic fluctuations. The free-stream disturbances are
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4. Geometry and Case Set-up

generated using the method specified by Davidson in [10], but are limited to the re-
gion above y=0.3 mm. The free-stream disturbances at the inflow of the simulations
decay rapidly at first, but within a very short distance downstream, attains a more
physically realistic decay rate. The effects of FST-induced boundary-layer transition
studied by Ovchinnikov [25], indicate that the onset of transition is dependent on
the FST length scale. In the absence of data pertaining to the FST-length scale
from the experiments, the length at the inlet had to be raised to a suitable value, in
an attempt to match the experimental stream-wise decay rate established by Roach
and Brierley [28]. Table 4.6 depicts the turbulence specifications of the simulations.

Walls: No slip boundary is specified at the walls. For pressure, a zero Neumann
condition is prescribed at the wall, inlet and outlet.

Outflow Boundary: At the outflow boundary, a convective boundary con-
dition is used for describing the velocity. Due to the increase in the momentum
thickness layer growth along the stream-wise direction and the symmetry boundary
condition on face(3-2-6-7). It is defined as:

∂φ

∂t
+ Uo

∂φ

∂xi
= 0 (4.1)

where, Uo is the free-stream velocity.

4.2.3 Numerical method
The simulations are carried out using an in-house incompressible, finite-volume

based code, namely CALC-LES. For space discretization, the central-differencing
scheme is used for all the velocity equations. The Crank-Nicolson method is used
for time dicretization of all the equations. The numerical procedure as explained
by Davidson and Peng [11], is based on an implicit, fractional step technique with
a multigrid pressure poisson solver and a non-staggered grid system.
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5
Results and Discussion

5.1 Post processing of results
The simulations are initially run for 3 through-flow passes (Lx/Uo) ' 30ms,

before the sampling is started in order to ensure statistical steady state is achieved.
The sampling is carried out for a time equivalent to 10 through-flow passes (Lx/Uo)
' 400ms. The CFL (Courant number) during the simulation was reported as ' 0.3.
The onset of transition is based on the dimensionless coefficient i.e the skin friction
coefficient Cf . Cf is computed as:

Cf = 2 τw
U2
o

(5.1)

where, τw is the local wall shear stress and Uo is the free-stream velocity.

The second dimensionless coefficient used to verify laminar-turbulent transition
is the Shape factor: H= δ∗/θ, where, δ∗ is the displacement thickness and θ is the
momentum thickness.

δ∗ =
∫ ∞

0
(1− u(y)

Uo
)dy (5.2)

θ =
∫ ∞

0

u(y)
Uo

(1− u(y)
Uo

)dy (5.3)

where, Uo is velocity in the free-stream outside the boundary layer, and y is the
coordinate normal to the wall.

5.2 Comparison with experimental results
In this section, the results from the experimental study [28] are compared with

those from the simulations. As mentioned earlier, the simulations are carried out
using three different SGS modelling techniques, Smagorinsky, WALE and Scale-
similarity. Additional comparisons with the experimental data can be found in the
Appendix.

5.2.1 Skin friction
Figure 5.1 depicts the comparison of skin friction coefficient Cf with respect

to the stream-wise Reynolds number(Rex) over the flat plate. The calculated skin
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5. Results and Discussion

friction coefficient, Cf and stream-wise Reynolds number(Rex) are scaled logarith-
mically. It can be seen that the three models (Smagorinsky, WALE and Scale-
similarity) appear to be in good agreement at the upstream of the computational
domain(approximately up to the region with Reynolds number ' 25000) with the
experimental data qualitatively. The location of transition onset agreed with the
experiments adequately but further downstream the change in the skin friction coef-
ficient (the region from Reynolds number ' 25000 up to Reynolds number ' 65000),
appears to be damped in comparison to experimental data [28]. The Smargorinsky
model estimates the skin friction coefficient in the transition region slightly better
than the WALE and the Scale-similarity models respectively. The WALE and the
Scale-similarity models predict the skin friction coefficient in a similar manner. The
calculated skin friction coefficient is in agreement with the experimental data [28]
in the region post transition(region downstream with Reynolds number ' 65000).

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Log(Rex)

-2.45

-2.4

-2.35

-2.3

-2.25

L
o
g
(C

f)

Skin friction coefficient

Figure 5.1: Skin friction coefficient; Legend: ◦ Experimental; − Smargorinsky;
−− WALE; − · − Scale-similarity

The simulations show a lower deceleration of flow near the wall as compared
to the experiments. The overall shape of the skin friction coefficient profile in the
simulations suggests that the local flow over the flat plate does not adequately
undergo transition from laminar to turbulent flow.

5.2.2 Shape factor
Figure 5.2 depicts the comparison of shape factor, H with respect to the stream-

wise Reynolds number (Rex) over the flat plate. The stream-wise Reynolds number
(Rex) is scaled logarithmically. It can be seen that the three models (Smagorinsky,
WALE and Scale-similarity) appear to be in good agreement with the experimental
data qualitatively. The location of transition onset agreed with the experiments
adequately but further downstream the change in the shape factor(the region from
Reynolds number ' 25000 up to Reynolds number ' 65000), appears to be damped
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in comparison to experimental data [28]. The Smargorinsky model estimates the
shape factor in the transition region better than the WALE and the Scale-similarity
models respectively. The WALE and the Scale-similarity models predict the shape
factor in a similar manner. The calculated shape factor is in agreement with the ex-
perimental data [28] in the region post transition (region downstream with Reynolds
number ' 65000).

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
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1.4

1.6

1.8

2

2.2

2.4

2.6

H
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Figure 5.2: Shape factor; Legend: ◦ Experimental; − Smargorinsky; −− WALE;
− · − Scale-similarity

The overall shape of the shape factor profile in the simulations suggests that the
local flow over the flat plate undergoes laminar to turbulent transition.

5.3 Mesh independence study

As mentioned in Chapter 4, two sets of meshes are studied (see Table 4.2).
MESH-II has a better stream-wise resolution than MESH-I, and has twice the num-
ber of sample nodes than MESH-I. Figures 5.3 & 5.4 depicts the Cf and H profiles
over the flat plate for the MESH-II. It can be seen that the skin friction coefficient
and shape factor profile overlaps completely in both the cases. It implies that the
stream-wise resolution of the domain has no significant effect on the transition. The
Cf profiles follow the experimental curve very closely for a very short distance the
transition zone. It shows an initial drop for a while, but then increases in the mid-
dle of the transition zone. The increase indicates that the non-linear interactions in
the boundary layer have been triggered, but it fails to grow in accordance with the
experimental data.
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Figure 5.3: Skin friction coefficient; Legend: ◦ Experimental; − Smargorinsky;
−− WALE; − · − Scale-similarity
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Figure 5.4: Shape factor; Legend: ◦ Experimental; − Smargorinsky; −− WALE;
− · − Scale-similarity

5.4 Boundary layer study
In the following section, the flow in the boundary layer is discussed, in order to

understand why the simulations do not comply with experimental data. In addition,
the results from the Smagorinsky, WALE and Scale-similarity models are presented.
All the results in this section pertain to the simulations carried out on MESH-I. The
Resolved Reynolds stresses are plotted at four stream-wise stations (25,45,95,195mm
from the leading edge of the flat plate).
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Figure 5.5: Stresses at x = 25mm; Legend: − ◦ − 〈u′su′s〉; −− 〈u′nu′n〉;
− · − 〈u′zu′z〉; − 〈u′su′n〉
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Figure 5.6: Total viscosity at at x = 25mm; Legend: − νtot/ν

The Resolved Reynolds stresses are normalized with the free-stream velocity Uo.
All the variables plotted at these stations over the flat plate are with respect to the
wall with one axis parallel to the wall in the stream-wise direction (subscript "s") and
the other normal to the wall pointing into the domain (subscript "n"). The third
axis (subscript "z") is parallel to the span-wise direction in the global coordinate
system.The stresses and fluxes will be plotted with respect to the normal distance
from wall (∆n) scaled by the length of the domain in the wall normal direction
(Ly). A second axis is also shown depicting the y+ values corresponding the normal
distance. Also, plotted are the maximum resolved turbulent kinetic energy (TKE),
kt over the flat plate.

24



5. Results and Discussion

-0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
n
/L

y

0

100

200

300

400

500

600

700

800

y
+

Smargorinsky

-0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n
/L

y

0

100

200

300

400

500

600

700

800

y
+

WALE

-0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n
/L

y

0

100

200

300

400

500

600

700

800

y
+

Scale-similarity

Figure 5.7: Stresses at x = 45mm; Legend: − ◦ − 〈u′su′s〉; −− 〈u′nu′n〉;
− · − 〈u′zu′z〉; − 〈u′su′n〉
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Figure 5.8: Total viscosity at at x = 45mm; Legend: − νtot/ν

5.4.1 Resolved stresses
Figure 5.5 illustrates the stress values at the first station (at 25mm from the

leading edge). Figure 5.6 depicts the total viscosity (νtot = ν + νr) scaled by kine-
matic viscosity (ν) at the point corresponding to those in the Figure 5.6. It can be
seen in Figure 5.5 that with the three models, stress in the stream-wise direction,
〈u′su′s〉 is the largest. In can be noted that the wall normal component 〈u′nu′n〉 as
well as the span-wise component 〈u′zu′z〉 of the stress are considerably lower to the
stream-wise component 〈u′su′s〉 very close to the wall. The stresses seem to be more
damped than in the WALE case, whereas the stresses predicted almost similarly by
the Smargorinsky and Scale-similarity models respectively. In the scale-similarity
case, the positive values of νr can be seen near the walls (νtot/ν > 1), indicating the
absence of backscatter.
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5. Results and Discussion

Figure 5.7 and Figure 5.8 represent the stresses and the total viscosity at the
second station (at 45mm from the leading edge). This station lies approximately in
the locally accelerating part of the domain(approximately at Rex ' 25000). It can
be seen that the stream-wise component of stress, 〈u′su′s〉 is the most dominating
part in comparison to the other components. This region of the boundary layer is
probably indicates that the flow is beginning to get turbulent.
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Figure 5.9: Stresses at x = 95mm; Legend: − ◦ − 〈u′su′s〉; −− 〈u′nu′n〉;
− · − 〈u′zu′z〉; − 〈u′su′n〉
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Figure 5.10: Total viscosity at at x = 95mm; Legend: − νtot/ν

Figure 5.9 and Figure 5.10 illustrate the stresses and total viscosity at the third
station (at 95mm from the leading edge). It can be seen that 〈u′su′s〉 is still very
large as compared to the other components. Also, it can be seen the boundary layer
thickness has increased considerably, as this stream-wise component is much bigger
than the corresponding value at the second section even farther away from the wall.
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5. Results and Discussion

In addition, the low y+ values show that the wall friction velocity has decreased
with respect to the upstream, as the local flow is decelerating. According to the
experiments (section 5.2), at this station, the boundary layer is on the verge of
attaining full turbulence, implying that the other components, namely wall-normal
(n-direction) and span-wise (z-direction), should have increased significantly. It can
be inferred that in the present simulations, the non-linear interactions are responsible
for transition as the distribution of stresses in directions are considerably lower.
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Figure 5.11: Stresses at x = 195mm; Legend: − ◦ − 〈u′su′s〉; −− 〈u′nu′n〉;
− · − 〈u′zu′z〉; − 〈u′su′n〉
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Figure 5.12: Total viscosity at at x = 195mm; Legend: − νtot/ν

Figure 5.11 and Figure 5.12 represent the stresses and total viscosity at the fourth
station (at 195mm from the leading edge). At this station, as per the experiments,
the boundary layer should have gone completely turbulent. This is characterized by
means of an isotropic distribution of stresses in all directions except for the wall-
normal component close to the wall. This is not found in the present simulations.
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5. Results and Discussion

The span-wise component 〈u′zu′z〉 shows a slight decrease close to the wall and the
wall-normal component 〈u′nu′n〉 slightly away from the wall, both compared to their
corresponding values at the upstream stations (Figure 5.5 and Figure 5.7). There
are signs of growing turbulence, as emphasized by the shape factor plot in figure
5.2. At this station, the boundary layer thickness has increased considerably and
the normal components of stress 〈u′nu′n〉 and 〈u′zu′z〉 are significant compared to the
upstream stations.

In conclusion to the analysis of Reynolds stresses in the boundary layer, it can be
said that there is a definite decrease in the stream-wise stress component as the flow
moves downstream, while the same cannot be said for the wall-normal and span-
wise components. The Smagorinsky, WALE and Scale-similarity models predict
similar behaviour and the difference is not significant. As a result, the numerical
oscillations created this way help in sustaining turbulence and do not dampen out. In
addition, if they can act as sources of disturbance, as provided by FST, and whether
they invoke the non-linear modes is not known. The numerical fluctuations do not
mimic the FST as provided in the experiments, hence it fails to trigger transition
appropriately. The peaks seen in the intensities at the downstream of the flow i.e
region with Reynolds number > 65000, broadly at the correct position and with
the correct magnitude, .indicate that the LES captures the essential fluid dynamics
occurring in the turbulent layer, but it does not give considerable confidence that
the true physical processes of bypass transition are being reproduced numerically.
The profiles of the principal Reynolds stress 〈u′su′n〉 at x = 45mm and x = 95mm.
The predictions are clearly high relative to the experimental data as shown in the
Appendix). It is not known what aspect of the current LES simulations are at fault
but in the light of the general level of agreement obtained, we conclude that,the
the simulation qualitatively mimics ,the real boundary layer, even though precise
quantitative, agreement is not found for all variables.

5.4.2 Turbulent kinetic energy and rms fields
In this section the maximum of turbulent kinetic energy (TKE) and rms fields

over the flat plate is studied. Along with the TKE (kt), the stream-wise (〈u′su′s〉),
wall normal velocity field (〈u′nu′n〉) and span-wise (〈u′zu′z〉) velocity fields are stud-
ied. The aim is to study the evolution of the fluctuating fields over the wall. In
bypass transition, these fluctuations grow appreciably while going from laminar to
turbulent phase. Plots from the Smagorinsky, WALE and Scale-similarity models
are demonstrated.

Figure 5.13, depicts the maximum of TKE (kt)|max over the plate surface. It also
depicts the maximum values of the stream-wise 〈u′su′s〉 |max, wall normal 〈u′nu′n〉 |max
and span-wise 〈u′zu′z〉 |max fluctuating velocity components. The TKE (kt)|max and
other fluctuating fields are normalized with respect to the free-stream velocity Uo.
As per the experiments, the transition zone lies between x=45mm (Rex=25000) and
x=95mm (Rex=65000), as per Figure 5.1. Over the plate surface, the Smargorinsky,
WALE and Scale-similarity models there is a sudden jump in TKE corresponding
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Figure 5.13: Peak TKE kt over the surface; Legend: − kt|max ; ·· 〈u′su′s〉|max ;
−− 〈u′nu′n〉|max ; − · − 〈u′zu′z〉|max

to the experimentally measured trigger point, but then it decays steadily further
downstream. It can be concluded that the fluctuations grow in amplitude inside the
boundary layer and can be associated to the appearance of stream-wise streaks in
the boundary layer. Bypass transition is associated with the free-stream turbulence
interacting with the boundary layer in order to force transition. In the present case,
the streaks are formed but unable to sustain due to the absence of forcing by FST
as the maximum fluctuation level remains almost constant at the downstream.

Figure 5.13, depicts the maximum of normal fluctuations 〈u′nu′n〉 |max over the
plate surface. It can be observed that the predicted peak fluctuations normal fluc-
tuations 〈u′nu′n〉 |max and 〈u′zu′z〉 |max are negligible in comparison to the stream-wise
fluctuations 〈u′su′s〉 |max. The lack of such fluctuations in the boundary layer shows
that there is no real transition in the boundary layer.
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6
Conclusions and Future Work

6.1 Conculsions

It can be concluded from simulations conducted in the present study that the
transition observed cannot justify the experimental findings. The skin friction
coefficient(Cf ) as well as the shape factor H profile from the simulations do not
show complete agreement with the experimental data, although they do suggest the
occurrence of laminar-turbulent transition. The non-linear mechanisms inside the
boundary layer responsible for transition appear to not get triggered sufficiently by
the artificial fluctuations used as FST in the simulations.

The boundary layer study showed a gradual decrease in the stream-wise fluctu-
ations along the plate surface, as evident from the decrease in the stream-wise com-
ponent of resolved stress. However, the other components, namely, the span-wise
and wall-normal components of resolved normal stress, do not show any significant
increment. The reason for the absence of energy distribution, over the plate surface
is not clear. Probably, the growth in stream-wise fluctuations is not enough to force
production in the other directions.

The study of the peak TKE (kt) showed that the fluctuations grow apprecia-
bly near the experimentally observed transition point. It also indicates a growth of
stream-wise streaks in comparison to the wall normal and span-wise fluctuations.
Also as discussed in the literature survey, the wall normal component of the fluctu-
ations plays an important role in triggering transition, thereby proving the absence
of non-linear interactions triggering transition. It can be attributed to the necessity
of continuous forcing provided by the FST for these fluctuations to be maintained.
More about it can be understood by the nature of FST turbulence outside the
boundary layer in this region.

A mesh with a finer resolution in the stream-wise direction did not show any signif-
icant effect on the transition. The Cf and H profile followed the experimental data
only in the upstream (laminar) as well as the downstream (turbulent) of the transi-
tion point but did not agree well experimentally defined transition point. One of the
possibilities concluded is that there is a need for a very fine stream-wise resolution
throughout the surface to enable the continuous interaction of non-linear modes.
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6. Conclusions and Future Work

6.2 Future Work
According to the literature survey the effect of considering the leading edge as

well as the concept of shear sheltering is explained briefly. It would be interesting
to analyze how the turbulence evolves from the inflow boundary till it reaches the
leading edge, and how the low frequency modes be allowed to enter the boundary
layer with the leading edge effects. Also, it would be interesting to observe the results
for simulations conducted on the entire flat plate rather than a limited computational
domain and see whether it makes any significant changes to the results. The results
are also dependent on the choice of discretization schemes and other SGS models
and the effect on these parameters can also be studied.
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A
Mesh resolution in wall units
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Figure A.1: Wall y+ units; Legend: − Smargorinsky; −− WALE; − · − Scale-
similarity. X-coordinates are scaled by the stream-wise length Lx.
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Comparison of mean velocity with

experimental data
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Figure B.1: Mean velocity U at x = 25mm; Legend: − LES; ◦ Experimental;
Mean velocity scaled with the free-stream velocity Uo
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Figure B.2: Mean velocity U at x = 45mm; − LES; ◦ Experimental; Mean velocity
scaled with the free-stream velocity Uo
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Figure B.3: Mean velocity U at x = 95mm; − LES; ◦ Experimental; Mean velocity
scaled with the free-stream velocity Uo
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Figure B.4: Mean velocity U at x = 195mm; − LES; ◦ Experimental; Mean
velocity scaled with the free-stream velocity Uo
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experimental data
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Figure C.1: Velocity fluctuation urms at x = 25mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure C.2: Velocity fluctuation urms at x = 45mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure C.3: Velocity fluctuation urms at x = 95mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure C.4: Velocity fluctuation urms at x = 195mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure D.1: Velocity fluctuation vrms at x = 25mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure D.2: Velocity fluctuation vrms at x = 45mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure D.3: Velocity fluctuation vrms at x = 95mm; Legend: − LES; ◦ Experi-
mental; rms velocity scaled with the free-stream velocity Uo
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Figure D.4: Velocity fluctuation vrms at x = 195mm; − LES; ◦ Experimental;
rms velocity scaled with the free-stream velocity Uo
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Figure E.1: Velocity fluctuation wrms at x = 25mm; − LES; ◦ Experimental; rms
velocity scaled with the free-stream velocity Uo
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Figure E.2: Velocity fluctuation wrms at x = 45mm; − LES; ◦ Experimental; rms
velocity scaled with the free-stream velocity Uo
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Figure E.3: Velocity fluctuation wrms at x = 95mm; − LES; ◦ Experimental; rms
velocity scaled with the free-stream velocity Uo
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Figure E.4: Velocity fluctuation wrms at x = 195mm; − LES; ◦ Experimental;
rms velocity scaled with the free-stream velocity Uo
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Figure F.1: Principal stress 〈u′v′〉 at x = 25mm; − LES; ◦ Experimental; 〈u′v′〉
velocity scaled with the free-stream velocity U2
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Figure F.2: Principal stress 〈u′v′〉 at x = 45mm; − LES; ◦ Experimental; 〈u′v′〉
velocity scaled with the free-stream velocity U2
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Figure F.3: Principal stress 〈u′v′〉 at x = 95mm; Legend: − LES; ◦ Experimental;
〈u′v′〉 scaled with the free-stream velocity U2
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Figure F.4: Principal stress 〈u′v′〉 at x = 195mm; − LES; ◦ Experimental; 〈u′v′〉
scaled with the free-stream velocity U2
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