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Abstract
In the wind industry, there is a trend towards building larger and larger turbines.
In order to keep increasing the power output of wind turbines, the swept area of
the rotors have to be increased, i.e. the size of the turbines need to increase. This
presents new challenges for structural engineers and might require blade materials
that are both lighter and stiffer than the ones currently used.

Traditionally, blades have been made of fibre-glass, but a study from the University
of Kalmar [1] shows great potential for significant weight reduction, and perhaps
a reduction of cost, if carbon-fibre based technology is used instead. This work is
aimed to aid the work of designing new blades by providing an analysis tool for
wind turbine blades. It can for example be used to evaluate the pros and cons of
using more lightweight material such as carbon fibre in a wind turbine blade, and
to explore the possibilities the use of such a material can bring. The thesis will be
a step towards a design basis for the design of a lightweight blade where the blades
aeroelastic loads and certification guidelines are considered.

The trend of larger turbines and relatively softer blades as well as some other current
design trends in the wind industry increases the risk of aeroelastic instabilities such
as flutter. Therefore a tool to calculate the aerodynamic damping of the shell model
is developed.

To create the structural model, scripts in MATLAB and the FEMAP API are
developed. These allow the geometry of almost any wind turbine blade to be
created and meshed in FEMAP with little to no user intervention after the designing
characteristics of the turbine blade has been specified. The output is a finite element
model that can be used directly in analyses of static strength, buckling, fatigue
etc. The stiffness and mass matrix is also output for use in further analysis in
MATLAB.

To calculate the forces from the wind three different codes are used. Most focus is
put on the blade element momentum (BEM) method which is very widely used in
wind turbine applications. The two other methods used are different versions of the
vortex method (Helical and Free) which are possible replacements for BEM and are
widely used in helicopter and propeller applications. A lot of focus is put on how
to, with as little time as possible, transform the forces calculated by the BEM and
vortex methods to pressure distributions along the blade.

Keywords: Fluid Structure Interaction, Blade Element Momentum, Free Vortex
Method, Wind Turbines, Flutter, Aeroelasticity
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1 Introduction

1.1 Background

The trend in the wind industry is towards larger turbine. This is because in order
to keep increasing the performance of wind turbines, the swept area of the rotors
have to be increased. This requires blade materials that are both lighter and stiffer
than the ones currently used. Traditionally, blades have been made of glassfibre,
but a study from the University of Kalmar [1] shows great potential for significant
weight reduction, and perhaps a reduction of cost, if carbon-fibre based technology
is used instead.

This work is aimed to aid the work of designing new blades by providing a sophis-
ticated computer model for predicting aeroelastic forces and their effect on the
blade.

The trend of larger turbines, as well as some current design trends in the wind
industry increases the risk of aeroelastic instabilities such as flutter, so this is given
special consideration.

1.2 Purpose

The purpose of this thesis is to create a tool that will aid the design of new wind
turbine blades. The tool can for example be used to evaluate the pros and cons of
using more lightweight material such as carbon fibre in a wind turbine blade, and
to explore the possibilities the use of such a material can bring.

The behaviour at different operating conditions is modeled, and quantities like
power and static displacement are calculated. An aeroelastic analysis is also carried
out.

The thesis will be a step towards a design basis for the design of a lightweight blade
where the blades aeroelastic loads and certification guidelines are considered.

1.3 Software

The programs developed in this thesis are mostly written in the programming
environment MATLAB. To create the blade structural model, FEMAP is used as a
pre-processor and NX Nastran is used to write the stiffness and mass matrix. When
calculating the pressure distribution the program xfoil is used. These are used in
subsequent analyses.

1.4 Limitations

This thesis will only concern the blades. The tower, drive train etc. will not be
modelled or investigated in detail.

Only standalone turbines will be considered, wake effects of upwind turbines will
not be simulated.
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The economics of new blade design will not be considered directly. The control
systems for reducing torque and power and their effect and interaction with aerody-
namic forces and elastic responses of the blade will not be treated.
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2 Blade Model

2.1 Blade design

Figure 2.1.1: Cross section of a blade showing spar caps (orange), shear webs
(yellow), leading edge reinforcement (blue) and trailing edge reinforcement (red).

The cross section of a typical wind turbine blade is shown in figure 2.1.1. Throughout
this thesis, we have used the box spar design with two shear webs, but there are
also designs with only one web. The trailing and leading edge reinforcements gives
additional edgewise and torsional stiffness.

2.1.1 Spar caps

The spar caps carry the majority of bending stresses that are due to motion in the
flapwise direction, which is the direction of the weak principal axis and is roughly
perpendicular to the chord line. The moments in the flapwise direction are large,
and the distance between the spar caps is limited by aerodynamic considerations.
Therefore the sparcaps have to be relatively thick, as can be seen in figure 2.1.1 and
made of a stiff fiber. As these stresses are mostly unidirectional it is efficient to use
an unidirectional layup here.

It has been suggested to make the layup slightly unsymmetric and titled. This
would give a strong bending- twisting coupling so that when the blade bends it also
twists to decrease the angle of attack. This would serve as a passive control against
too large deflections and would supplement the pitch control.

2.1.2 Shear webs

The role of the shear webs is to absorb the shear stresses associated with bending
of the blade. It can be shown [2] that a good laminate layup for carrying shear
stresses is obtained if it is composed of plys at ±45◦. Shear webs usually have a
core of foam or similar material to avoid local buckling.

2.1.3 Design for aerodynamic stability

In this section we discuss the concept of aerodynamic stability. One way to increase
aerodynamic stability is to move the center of gravity closer to the leading edge. If

3



the center of gravity is aft of the aerodynamic center the risk of flutter is eliminated
completely, see [3]. This could be accomplished by adding mass to the leading
edge.

Against stall induced edgewise vibrations, better aerodynamic stability can be
obtained by structural pitch, which means rotating the spar caps about the pitch
axis [4]. The purpose is to rotate the principal axis, so that the blade vibrates in a
direction that gives a more favorable aerodynamic damping.
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2.2 Blade model

To create the structural model of the blade, a finite element approach using 2D
orthotropic elements is chosen. The traditional approach for wind turbine blades
is to use beam elements. A beam element model has less computational cost,
does not require techniques like those in chapter 3.3.1 to be integrated with a
aerodynamic code, and has been shown to give a good agreement with experiment
in most situatons. However a structural model of a wind turbine blade for use
in aeroelastic analysis, buckling or very extreme loading situations should include
bending-torsion coupling, warping and other effects. These can be all be modeled
with beam elements, but the derivation of correct parameters requires detailed
information on the layout of the cross section which makes a beam element not
much less complicated than a shell element model. With ever faster computers and
model reduction techiques the computational cost and time of handling a 10000+
element model can be kept at an acceptable level.

2.2.1 Finite element model of wind turbine blades

The full definition of a blade is contained within a cell structure in MATLAB. The
blade is defined from a number of sections, where each section has properties like
chord length, twist angle, pitch axis etc. The blade cell structure and functions
used are written to facilitate changing the design easily.

Figure 2.2.1: Blade section divided into strips

The profile type of the section defines a spline that outlines the geometry. The
profile is split at certain points specified by the user, dividing the blade section into
strips, see figure 2.2.1. The material of the blade is defined by assigning a material
layup to each strip. A shear web or other type of reinforcement can be defined by
specifying two points where the spline is split. These points will then be joined by
a surface in the preprocessor.

The blade cell is input to a function in MATLAB that writes files readable to a
script written in the FEMAP API. This script creates surfaces representing the
external geometry of the blade, as well as surfaces representing the shear webs.
These surfaces are then meshed with laminate shell elements. All geometry is thus
considered thin.

The elements created on the external surfaces are offset inwards, while the shear
web surfaces represent midsurfaces. Offsetting shell elements can create some
problems, more on this in section 2.2.2. Most of the elements created are four
node quadrilaterals, though some three node triangles have to be used as the blade
narrows along the blade span. Overall the elements created have good shape in
terms of Jacobians, aspect ratio, skewness etc. The most troublesome area is
where the cylindrical blade section transforms into the Delft University blade shape
sections. In the resulting model each node of the shell elements has six degrees of
freedom, three translations and three rotations.

5



Table 2.2.1: Twist angle results from test run with thin walled cylinder, with and
without midside nodes

elements 1281 5081 20000
Analytical solution 3.18 · 10−7 3.18 · 10−7 3.18 · 10−7

Midplane, no midside nodes 3.26 · 10−7 3.20 · 10−7 3.18 · 10−7

Offset node, no midside nodes 3.28 · 10−7 3.20 · 10−7 3.19 · 10−7

Midplane and midside nodes 3.27 · 10−7 3.20 · 10−7 3.18 · 10−7

Offset node and midside nodes 4.41 · 10−7 6.24 · 10−7 9.18 · 10−7

The component is meshed and NX Nastran is used to formulate the stiffness and
mass matrix. The matrices are then written to MATLAB where they are used in
the subsequent analysis.

In addition to the stiffness and mass matrix output from FEMAP, a number of
pre-set analysis cases are set in FEMAP, such as modal analysis, buckling analyses
under force of gravity, time- varying loads etc.

When seeding mesh points, the blade model is prepared to have nodes on the radial
position of the stations on table 2.2.3. This helps the analysis in section 3.3.1
considerably.

2.2.2 Accuracy of torsion results when using offset shells

It has been shown that some solvers give erroneous results for torsion when shells
with offset nodes are used. ANSYS has made some changes in their shell element
formulation that appear to have solved this problem [5].

When this problem was first seen it was on a circular hollow cylinder with mid-radius
R = 1, thickness t = 0, 1 and length L = 20, fixed at one end and subjected to
torsion at the other. We have modeled this in NX Nastran through FEMAP and
compared the results to the analytical solution, both with the offset node approach
and midplane modeling approach.

The cylinder is of an isotropic material with G = 100 GPa and subjected to a torque
M = 1 kNm one end, while the other is fixed.

The resulting maximum twist angle for different element sizes can be seen in
the table 2.2.1, together with the analytical solution. Evidently, the problem
exists in NX Nastran as well, but only when using mid-side nodes. It is supposed
that for the purposes of this thesis, sufficient accuracy is obtained with four-node
elements.

2.2.3 NREL Blade

The blade that serves as a test case in this work has been the blade used in the 5MW
reference turbine by NREL [6]. This is a fictitous turbine for offshore placement,
and is heavily based on the real REpower 5M turbine. The blades of the turbine are
defined by sectional properties, based on a blade by LM-Glasfiber Holland. There
has been much work done on this blade, for example an aeroelastic analysis on a
very similar blade by C.Lindenburg [4] and a stability analysis under influence by
wind by Bir and Jonkman [7]. Hansen studies flutter in this blade as a function of
rotor speed in [3].

A full FE model of the blade would require the full layup properties along the span
of the blade. These properties were however not available. Therefore some reverse
engineering has been done based on the equivalent cross sectional data that are
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Table 2.2.2: Material property data used by Sandia [8]
E-LT-5500 / EP-3 Saertex / EP-3 SNL Triax Foam Resin

EL [GPa] 41.8 13.6 27.7 0.256 3.5
ET [GPa] 14.0 13.3 11.8 0.256 2.5
GLT [GPa] 2.63 11.8 7.2 0.022 1.4
νLT 0.28 0.5 0.39 0.3 0.3
ρ [kg/m3] 1920 1780 1780 200 1100

provided in [6] and [4]. The blade design for this thesis has been based on Sandia’s
concept of a 100 meter all glass-fibre blade [8], which itself is based on the NREL
blade but scaled up and modified to be stronger against buckling.

The spanwise properties of the blade, like chord and twist angle, are based on those
used in the Sandia report and scaled down. These are shown in table 2.2.3. There
are many stations near the root in order to put in the many ply drops here. Between
station 2 and 16, the profile types are interpolated between a cylinder and the profile
known as DU40. There are no aerodynamic data for these transitional profiles so
we have not put any aerodynamic load at these stations. As these stations are close
to the root, the load and bending moment from these are not significant. The twist
is the structural twist, which is the angle the principal axis (the edgewise direction)
has with the rotor plane. It happens to coincide with the twist of the chord line for
this blade, but this is not true for all blades.

Laminate thicknesses in the spars, leading and trailing edge reinforcements and the
root skin buildup along the blade span are shown in table 2.2.4. The same materials
as in the Sandia blade has been speciefied in the layup, see table 2.2.2. There
are three glass fibre - epoxy composites used, E-LT-5500, Saertex and SNL Triax.
E-LT-5500 is an uni-directional laminate. In the blade it has used in the spar caps
and the trailing and leading edge reinforcements. Saertex is a double bias fibreglass
material and is primarily used in the shear webs. SNL Triax is used as a skin
material. In additon to the fibre glass composites, there is foam used in skins and
shear webs and extra resin, which make up about 6 % of the weight. The gelcoat
on the outer skins that was used in the Sandia report has been neglected.

Some modifications were made to the design by Sandia. The third shear web was
removed. Thicknesses were overall smaller than what they would be by a simple
down-scaling. The spar was made relatively narrower and is at a constant width of
723 mm along most of the blade before it tapers towards the end. A leading-edge
reinforcement was added so that the shear center were closer to the leading edge
and more in line with those used by C. Lindenburg [4]. This addition also had the
effect of moving the center of gravity closer to the leading edge, which might make
the blade more stable.

The blade model is not supposed to exactly represent the actual blade, it just needs
to be close enough overall so that it can be used as a test case and that some
meaningful comparison with previous results on the same blade can be made.
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Table 2.2.3: Blade properties along the blade span
Station Radial Position [m] Chord [m] Twist Angle [o] Fractional Pitch Profile type

1 0 3.5018 13.308 0.5 Cylinder
2 0.3075 3.5018 13.308 0.5 Cylinder
3 0.4305 3.5018 13.308 0.5 Interpolated
4 0.5535 3.5018 13.308 0.5 Interpolated
5 0.6765 3.5018 13.308 0.5 Interpolated
6 0.7995 3.5018 13.308 0.5 Interpolated
7 1.4760 3.5621 13.308 0.499 Interpolated
8 1.5990 3.5738 13.308 0.498 Interpolated
9 2.8905 3.7257 13.308 0.483 Interpolated

10 4.1820 3.8770 13.308 0.468 Interpolated
11 5.4735 4.0289 13.308 0.453 Interpolated
12 7.0110 4.2035 13.308 0.435 Interpolated
13 8.9790 4.4372 13.308 0.41 Interpolated
14 10.0245 4.5535 13.177 0.40 Interpolated
15 11.0085 4.6445 13.046 0.39 Interpolated
16 11.9925 4.6912 12.915 0.38 DU 40
17 13.6530 4.6648 12.133 0.378 DU 40
18 15.3135 4.6051 11.350 0.377 DU 35
19 16.9740 4.5184 10.568 0.375 DU 35
20 22.0170 4.2576 9.166 0.375 DU 30
21 26.9985 3.9538 7.688 0.375 DU 25
22 31.9800 3.6377 6.180 0.375 DU 21
23 37.0230 3.3315 4.743 0.375 DU 21
24 41.0205 3.0867 3.633 0.375 NACA 64
25 42.0045 3.0258 3.383 0.375 NACA 64
26 45.0180 2.8419 2.735 0.375 NACA 64
27 46.9860 2.7195 2.348 0.375 NACA 64
28 52.0290 2.4139 1.380 0.375 NACA 64
29 54.9810 2.2257 0.799 0.375 NACA 64
30 57.9945 1.7368 0.280 0.375 NACA 64
31 58.8555 1.4606 0.210 0.375 NACA 64
32 59.7780 1.1291 0.140 0.375 NACA 64
33 60.6390 0.7429 0.070 0.375 NACA 64
34 61.5000 0.3075 0 0.375 NACA 64
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Table 2.2.4: Laminate thicknesses along the blade span
Section Z Suction side spar Pressure side spar Root skin Trailing edge Leading edge

(m) (mm) (mm) (mm) (mm) (mm)
1 1.5 34.0
2 1.8 0.5 0.3 34.0 0.2 0.5
3 1.9 1.0 0.5 34.0 1.8 4.2
4 2.1 1.5 0.8 34.0 1.8 4.2
5 2.2 2.0 1.1 34.0 1.8 4.2
6 2.3 4.9 2.6 34.0 1.8 4.2
7 3.0 6.4 3.4 34.0 1.8 4.2
8 3.1 6.4 3.4 34.0 2.0 4.8
9 4.4 9.8 5.3 34.0 3.0 6.9

10 5.7 14.8 7.9 10.2 4.1 9.5
11 7.0 25.1 13.5 5.7 5.7 13.2
12 8.5 33.4 18.0 1.9 7.5 17.5
13 10.5 46.2 24.9 9.1 21.2
14 11.5 54.6 29.4 11.3 26.5
15 12.5 58.5 31.5 13.6 31.8
16 13.5 66.9 36.0 13.6 31.8
17 15.2 66.9 36.0 13.6 31.8
18 16.8 66.9 36.0 13.6 31.8
19 18.5 62.9 33.9 6.8 15.9
20 23.5 58.5 31.5 6.8 15.9
21 28.5 54.6 29.4 3.4 7.9
22 33.5 50.2 27.0 1.8 4.2
23 38.5 41.8 22.5 0.9 2.1
24 42.5 33.4 18.0 0.9 2.1
25 43.5 31.5 16.9 0.9 2.1
26 46.5 23.1 12.4 0.9 2.1
27 48.5 16.7 9.0 0.9 2.1
28 53.5 8.4 4.5 0.9 2.1
29 56.5 4.4 2.4 0.9 2.1
30 59.5 2.5 1.3 0.9 2.1
31 60.4 2.5 1.3 0.9 2.1
32 61.3 2.5 1.3 0.9 2.1
33 62.1 2.5 1.3 0.9 2.1
34 63.0
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2.3 Modal reduction

Starting from the undamped equation of motion (EOM) with the mass matrix M,
stiffness matrix K, and degrees of freedom q :

Mq̈ + Kq = f (2.3.1)

a state-space model is obtained by introducing the state vector with nodal displace-
ments and velocities zs:

zs =

[
q
q̇

]
(2.3.2)

then the equations of motion can be written:

żs = Aszs + Bsf (2.3.3)

where:

As =

[
0 I

−M−1K 0

]
(2.3.4)

Bs =

[
0

M−1

]
(2.3.5)

in equations 2.3.4 and 2.3.5 we note that the inverse of M is required. However
there was no way to make NASTRAN use the consistent mass formulation from the
FEMAP Application Programming Interface (API). The mass matrix was given
zero inertia in the rotational degrees of freedom and was therefore not invertible.
To circumvent this problem we chose to do a modal reduction, i.e. to let the n
displacements in q, depend on a smaller number m modal degrees of freedom in
η:

q = Qη, (2.3.6)

where Q is the nxm modal matrix. The eigenmodes and eigenvalues are obtained
by making the harmonic ansatz q = q̂eiωt, and inserting into 2.3.1:

−ω2Mq̂ + Kq̂ = 0

⇒ (2.3.7)

ω2Mq̂ = Kq̂ (2.3.8)

equation 2.3.8 is the generalized eigenvalue problem, and has n solutions. We solve
for the m eigenvalues and eigenvectors with the smallest eigenfrequency ω, and
collect the associated eigenvectors in the modal matrix Q =

[
q̂1 q̂2 ... q̂m

]
.

The modal matrix Q diagonalizes the stiffness and mass matrix and the modes are
mass diagonalized, meaning:

QTMQ = I (2.3.9)

QTKQ = K̄ = diag(ω2
i ) (2.3.10)
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this means that the undamped equation of motion become m uncoupled equa-
tions:

η̈i + ω2
i ηi = f̄i (2.3.11)

on matrix form:

η̈ + diag(ω2
i )η = f̄ (2.3.12)

where we introduce the modal force f̄ = QT f .

Letting z =

[
η
η̇

]
we can now write:

ż = Az + Bf (2.3.13)

where:

A =

[
0 I

−diag(ω2
i ) 0

]
(2.3.14)

B =

[
0

QT

]
(2.3.15)

with this formulation of the equations of motion, we can go ahead with the aerody-
namic stability analysis in chapter 4.1.

2.3.1 Structural damping

The damping matrix is constructed in MATLAB after the modal reduction. We
have used modal damping, which keeps the orthogonaliy of equation 2.3.12. To get
a damping ratio ζi in the i:th mode, we let:

V̄ii = 2ζiωi (2.3.16)

the modal equation of motion then reads:

η̈i + 2ζiωiη̇i + ω2
i ηi = f̄i (2.3.17)

on matrix form, with K̄ = diag(ω2
i ) and V̄ = diag(2ζiωi):

η̈ + V̄ η̇ + K̄η = f̄ (2.3.18)

the state-space model then becomes:

A =

[
0 I
−K̄ −V̄

]
(2.3.19)

in our case, we have chosen a damping ratio ζi = 0.477465% in all modes in
agreement with the NREL report, see [6].
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3 Aerodynamics

In the previous chapter the method and theory behind how the Finite Element
Model of the blade was created was presented. In this chapter the aerodynamic
forces are calculated by various means and then applied on to the blade. In the
sub-chapter 3.1 the forces are calculated by various methods, one of these methods
are the so-called BEM-method which is very common for wind-turbine applications.
The other two methods are two different versions of the vortex method based on
the lifting line theory, which is used a lot in the helicopter industry.

These methods are very fast, but, they only calculate the sum of the forces on a
section of the blade. Therefore in chapter 3.2 a method for using the forces calculated
to a pressure distribution is described. By applying the pressure distribution as
forces on to the blade, the deformation of the blade can easily be calculated and a
one-way fluid structure interaction coupling has been achieved.

Since all the methods used for calculating the aerodynamic forces are grid-less it is
very easy to go from one-way coupling to two-way, and this is described in chapter
3.3.

3.1 Methods for calculating the aerodynamic forces

As mentioned earlier the aerodynamic forces used in this thesis is calculated by
three different methods. The Blade Element Momentum (BEM) method, which
is described in chapter 3.1.1 is the most commonly used method for calculating
aerodynamic loads in the wind-power industry.

The two other methods, the Helical Vortex Method (HVM), and the Free Vortex
Method (FVM) are not much used for wind turbines yet, but is instead very used
in the helicopter industry and in the propeller industry. These methods may see
increasing use in the wind-power industry as well. Therefore in chapter 3.1.2 these
two methods are described.

3.1.1 Classical BEM Method

Introduction

BEM is a very common tool for wind turbine applications, the benefits of BEM is
the very short computational time and the fact that it is accurate, at least for the
cases for which BEM is suitable for.

In short, the benefits of BEM are:

• Very fast.

• Accurate.

The negative sides are:

• No way to define the geometry in flap or edge wise direction, (for example
pre-bend or a curved blade).

• Engineering models needed.

BEM can accurately be used when the blade is straight (no complicated shapes in
either direction), and the analysis is done assuming a steady state. The reason for
this is because of the actuator disk theorem and Prandtl’s tip loss factor. Prandtl’s
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tip loss factor is an engineering model that have been created to deal with the fact
that actuator disk model assumes ”infinite” amount of blades.

The Theory

The Blade Element Momentum (BEM) theory1 is a very widely used method for
calculating the forces on a wind turbine. By using the actuator disk theory where
the disk changes the pressure and the rotation of the fluid, and couple it with blade
theory a very fast tool can be created.

The actuator disk theory assumes that the blade is replaced by a circular plane
that changes the pressure, and creates a rotational force on the fluid, see figure
3.1.1.

Figure 3.1.1: Actuator disk model.

By the actuator disk theory the thrust can be calculated as the pressure drop over
the actuator disk.

T = ∆pA (3.1.1)

and the induced moment can be calculated as:

dM = ρuωr2dA (3.1.2)

where ∆p is the pressure drop and A is the area of the disk i.e.

∆p = p2 − p3 (3.1.3)

A = πR2 (3.1.4)

assuming that the flow is incompressible and stationary Bernoulli’s equation can
be used to calculate p2 and p3. This is done by calculating the state far upstream
of the blade, and just before it (between 1 and 2) and calculating the state for far
downstream of the blade and just after it (between 4 and 3).

H1 = p1 + (ρu2
1)/2 = p2 + (ρu2

2)/2 (3.1.5)

1The derivations shown in this chapter have been extracted from [9] and [10]
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H2 = p3 + ρ(u2
3 + ω2

3r
2)/2 = p4 + ρ(u2

4 + ω2
4r

2)/2 (3.1.6)

where:

∆p = p2 − p3 =⇒ p3 = p2 −∆p

also
∆v = 0 = v2 − v3 =⇒ v2 = v3 (3.1.7)

and
p4 = p1 (3.1.8)

adding equations these equations and you get:

H1 = p1 + ρu2
1/2 = p2 + ρu2

2/2 (3.1.9)

H2 = p2 −∆p+ ρ(u2
2 + ω2

3r
2
3)/2 = p1 + ρ(u2

4 + ω2
4r

2
4)/2 (3.1.10)

by combining these equations the head drop can be calculated as:

∆H = −∆p+ ρω2
3r

2
3/2 (3.1.11)

where the total pressure head also can be calculated as:

0 = p1 − p4 = ρ(u2
4 − u2

1)/2 + ρ(ω2
4r

2
4 − ω2

3r
2
3)/2 + ∆p (3.1.12)

due to the fact that ∆H = 0, the pressure drop over the blade can be written
as:

∆p = ρ(Ω + ω/2)ωr2
3 (3.1.13)

where Ω is the rotation of the fluid close to the blade.

By combining these equations the total pressure drop can be calculated as:

0 = ρ(u2
4 − u2

1)/2 + ρω2
4r

2
4(Ω + ω/2) (3.1.14)

since the angular velocity omega is supposed to be small, the term ω2 can be
neglected.

By applying these assumptions, on the actuator disk model the thrust and the
moment can be calculated as:

dT = (u1 − u4)dm = 2πρr3u1(u1 − u4)dr (3.1.15)

Similarly the momentum can be calculated as:

dM = rωdm = 2πρu1r
2
3ωdr (3.1.16)

where m is the mass of the fluid.

By substituting some variables, these equations can be written as:
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dT = (V0 − u1) dṁ = 2πρu (V0 − u1) dr (3.1.17)

dM = rCΘdṁ = 2πr2ρuCΘdr (3.1.18)

By expressing u as u = (1− 2a)V0 these two equations can be written as:

dT = 4πrρV 2
o a (1− a) dr (3.1.19)

dM = 4πr3ρVoω (1− a) a′dr (3.1.20)

and the angle of attack can be calculated as:

α = φ−Θ (3.1.21)

where:

tan(φ) =
(1− a)V0

(1 + a′)ωr
(3.1.22)

which makes it possible to calculated the lift and the drag:

L =
1

2
ρV 2

relcCL (3.1.23)

D =
1

2
ρV 2

relcCD (3.1.24)

where CL and CD can be gathered from tabulated data.

The lift and drag is calculated in the same direction as the flow. However a better
way of dividing the forces is in the normal and tangential direction, compared to
the rotor plane. By calculating the forces as:

PN = L cos(φ) +D sin(φ) (3.1.25)

PT = L sin(φ)−D cos(φ) (3.1.26)

or doing it already for the coefficients.

CN = CL cos(φ) + CD sin(φ) (3.1.27)

CT = CL sin(φ)− CD cos(φ) (3.1.28)

they can therefore be expressed as this:

CN =
PN

1
2ρV

2
relc

(3.1.29)

CT =
PT

1
2ρV

2
relc

(3.1.30)

when using the formulation as above the thrust and moment can be calculated
as:
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dT = NBPNdr (3.1.31)

dM = rNBPT dr (3.1.32)

inserting these equation in to eqs. 2.4.19 and 2.4.20 the thrust can be calculated
as:

dT =
1

2
ρNB

V 2
0 (1− a)

2

sin2(φ)
cCNdr (3.1.33)

dM =
1

2
ρNB

V0 (1− a)ωr (1 + a′)

sin(φ) cos(φ)
cCT rdr (3.1.34)

which means that the indical functions a and a’ can be calculated as:

a =
1

4 sin2(φ)
σCN

+ 1
(3.1.35)

a′ =
1

4 sin(φ) cos(φ)
σCT

− 1
(3.1.36)

where σ can be calculated as:

σ(r) =
c(r)NB

2πr
(3.1.37)

using these equations and following the numerical procedure seen in figure 3.1.2 the
forces on the blade can easily be calculated.

The models

• Prant’s Tip Loss factor

Prantl’s tip loss factor is needed because the actuator disk model assumes
that there is a big disk that changes the direction and pressure of the flow
whereas in reality there is just three blades that have that effect. To modify
this the a variable is multiplied in the a and a’ equations. So instead of the
equations 3.1.35 and 3.1.36, with Prantl’s tip loss factor the equations 3.1.38
and 3.1.39 should be used. [10]

a =
1

4F sin2 φ
σCn

− 1
(3.1.38)

a′ =
1

4F sinφ cosφ
σCn

− 1
(3.1.39)

where the variable F is calculated as:

F =
2

π
cos−1(exp(−f)) (3.1.40)
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f is a part in the so-called Glauert correction factor which can be calculated
as:

f =
NB

2

R− r
r sinφ

(3.1.41)

• Glauert Correction Factor

At high induction factors BEM stops working well, to solve this the Glauert
correction factor is used. [10]

The Glauert correction factor is based on empirical data of the thrust, and
the change can be written as:

{
CT = 4a(1− a)F if a < ac

CT = 4(a2
c + (1− 2ac)a)F if a > ac

expressing this in terms of the variable a, it looks like this:

{
a = 1

4F sin2 φ
σCn

−1
if a < ac

a = 1
2 [2 +K(1− 2ac)−

√
(K(1− 2ac) + 2)2 + 4(K(a2

c − 1)] if a > ac

where K is calculated as:

K =
4F sin2 φ

σCn
(3.1.42)

Key assumptions for BEM

• Wind is steady, and normal to the rotor plane.

• A radial element of the blade is not affected by other close-by elements.

• CL, CD and CM data are used from static measurements for different angle
of attacks.
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Numerical procedure

Figure 3.1.2: The Numerical Procedure when using BEM.
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3.1.2 Vortex Methods

Introduction

The Vortex Methods are based on the Prandt’s lifting line theory. There are a lot
of different Vortex methods around. In this thesis two are focused on, these are the
Helical Vortex Method (HVM) and the Free Vortex Method (FVM).

The Theory

For an infinite long thin blade the lift can be calculated by assuming that the blade
is acting like a vortex, and therefore replace the geometry by a vortex line, called
boundvortex, positioned at 25 % of the chord length from the leading edge, see
figure 3.1.3. The strength of the vortex can be calculated by assuming that the
lift generated by the blade and the vortex should be the same therefore using the
Kutta–Joukowski theorem 2.

L = ρΓ∞V∞ (3.1.43)

Figure 3.1.3: A blade and a bound vortex filament.

Blades generally are not infitely long however, and some tip-loss effects will occur
at the ends of the blade. Since a blade, when generating lift, has a high pressure
side, and a low pressure side, at the tips, the fluid at the high pressure side, wants
to go to the high pressure side. This creates tip-vortices, and the tip-vortices and
the bound vortex form a system of vortices called horse-shoe vortices, see 3.1.4.
The strength of these vortices are as strong as that of the bound vortex.

In reality these vortices are released from all points of the blade, and not just the
tip. To model this each a blade can be split in to sections of wings creating multiple
systems of horse-shoe vortices, see 3.1.5.

However when the distance between the different blade sections becomes infinitely
small, the strength of the wake-vortices will not be the same. The tip vortex of
one blade section will rotate in a different direction from the next blade sections
wake-vortex, they will if equally strong, cancel each other. In general for a wing, on
for example an airplane, the bound vortex will not be equally strong over the entire
length of the blade. Therefore the wake vortices will not cancel each other, they
will just have the strength of the difference between the two different vortices. For

2The theory of the lifting line theory has been extracted from [11].
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Figure 3.1.4: A finite blade with a horse shoe vortex.

Figure 3.1.5: different segments of a blade and the horse shoe vortices they create.

a wing in straight flight, the distribution of Gammas can be approximated by a
sine function and it can therefore look like in figure 3.1.6.

All these vortices, will create a flow, going downwards, called downwash. The speed
of the velocity can be calculated through the Biot-Savart Law as:

dV =
Γ

4π

dlr

|r|3
(3.1.44)

The induced velocity changes the angle of attack of the flow that the blade feels,
which can be seen in figure 3.1.7

The change in angle of attack, creates a difference in the bound vortex strength,
and therefore also the lift generated by the blade.

The Helical Vortex Method

In the Helical Vortex Method there are predefined positions where the so-caleld
horse-shoe vortices are released. These vortex filaments are assumed to follow the
free-stream velocity (which has to be normal to the rotating plane), and therefore
forms a helix.
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Figure 3.1.6: A blade and the sytem of horse shoe vortices.

Figure 3.1.7: The angle of attack on an airfoil.

The vortex lines are described by points, and since the points form the shape of a
helix their positions can be expressed as a simple helix equation.

This is the beauty of the Helical Vortex Method, since the positions of the vortices
are known, the effect they have on the blade through the Biot-Savart Law is
known.

The Helical Vortex method can be split in to two parts, the bound vortices and the
wake vortices which can be seen in figure 3.1.8. The bound-vortices are located at
25 % of the chord length from the leading edge.3

The strength of the bound-vortex ΓBoundV ortex is dependent on the angle of attack
and can be calculated from the equation:

ΓBoundV ortex =
L

ρV∞
(3.1.45)

where the lift L is taken from tabulated data.

The wake-vortices are spawned from the boundary between one bound-vortex and
another. The strength of the near-wake vortices depends on how strong the two

3All the equations below have been extracted from [12].
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Figure 3.1.8: The vortex system for the Helical Vortex Method, with the Bound-
Vortices and theWakeVortices.

closest bound-vortices are, i.e. ΓWakeV ortex can be calculated as:

ΓiWakeV ortex = ΓiBoundV ortex − Γi−1
BoundV ortex (3.1.46)

the wake-vortices will, due to Biot - Savart Law induce a velocity on to the blade,
which will change the angle of attack, αeffective.

αeffective = αgeometrical − αinduced (3.1.47)

where αgeometrical is the angle of attack without any induced velocity, calculated
as:

αgeometrical = arctan

(
V0

xiΩ

)
−Θi (3.1.48)

where Θi is the twist of the blade. And αinduced is calculated as:

αinduced(i) =
Wn(i)

Wi
(3.1.49)

where Wn is calculated as:

Wn(i) =
√(

v2
i + w2

i

)
(3.1.50)

and W can be calculated as:

W (i) =
√

(V 2
0 + (xiΩ)2) (3.1.51)

vi and wi is the sum of all induced velocities from the wake-vortices which can be
calculated as:
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vi =

NB∑
j=1

V ijΓij (3.1.52)

wi =

NB∑
j=1

W ijΓij (3.1.53)

where the Γij is the different ΓWakeV ortex calculated earlier and the V ij and V ij
should be calculated as:

V ij =
1

4π

∫ inf

0

(vi,j+1 − vi,j)dθ (3.1.54)

W ij =
1

4π

∫ inf

0

(wi,j+1 − wi,j)dθ (3.1.55)

where vij and wij are calculated as:

vij =

NB∑
n=1

h[−η(cos θ′ + θ sin θ′) + r]

[h2θ2 + η2 + r2 − 2rη cos θ′]
3
2

(3.1.56)

wij =

NB∑
n=1

η2 − rη cos θ′

[h2θ2 + η2 + r2 − 2rη cos θ′]
3
2

(3.1.57)

and the variables η, r θ′ and h can be calculated as:

η =
xj
R

(3.1.58)

r =
xi
R

(3.1.59)

θ′ = θ +
2π(n− 1)

NB
(3.1.60)

h =
V0 − wj

R

(
ω

(
vj
xj

)) (3.1.61)

When a new αeffective has been calculated, a new lift coefficient can be extracted
from the tabulated data. This means that a new ΓBoundV ortex can be calculated.
This will change the ΓWakeV ortex and therefore also the induced velocities on the
blade, which in turn changes the αeffective again. After some iterations the strength
of ΓBoundV ortex will no longer change, and the solution has then converged.

Key assumptions for HVM

• Wind is steady, and normal to the rotor plane.

• A lifting line represents the blade at 25 % of the chord length, also called the
bound vortex.

• From each blade section a horse-shoe vortex is created, where the vortex
filaments form perfect helices.

• CL, CD and CM data are used from static measurements for different angle
of attacks.
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Numerical procedure for HVM

Figure 3.1.9: The Numerical Procedure when using Helical Vortex Method.
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The Free Vortex Method

The Free Vortex Method used here is based on a code written by Bagai and Leishman
[13] and [14] which is used for helicopter applications. A PhD student Hamidreza
Abedi at Chalmers University of Technology is currently tuning the code to work
for wind turbine applications. However, in writing moment, the tuning is not done
and therefore the results will may be inaccurate.

Similarly to the Helical Vortex Method, the Free Vortex Method (FVM) is based
on the lifting line theory. However due to the fact that the wind, in reality, never is
steady or have the same wind speed over a big area, the assumption that is made
for HVM (the wake forms a perfect helix) is not true. Because of this the Free
Vortex Method was created. The difference is then that in the FVM the position of
all the distributed vortex points are calculated from the induced velocity on each
point, as well as the free stream velocity. Whereas for the HVM, the points form a
perfect helix, based on the free stream velocity.

In essence, the position of each vortex point is calculated from the free stream
velocity, the induced velocity of the blade and the induced velocity from all other
vortex filaments. The upside of this method is the fact that the wake is more
accurately predicted, and a more complex flow situation can be modelled.

The downside is the increase in calculation time. To reduce the computational time
a model has been created by Bagai and Leishman, where the wake is divided in a
near wake and a far wake. The near wake follows the helix equation and is very
short. The far-wake is then modelled as a free wake, but with only one filament
that represent all other vortex filaments.

In short, the benefits of FVM are:

• Faster than CFD.

• Pretty accurate.

• Can calculate forces on blades with pretty much any form or shape.

The negative sides are:

• Slower than BEM.

• Engineering models needed to make it computationally effective.

The Model

As previously mentioned, the Free Vortex Method can be split in to three different
vortices, these vortices can be seen in figure 3.1.10.

The vortex that replaces the blade is called the bound-vortex, and is defined from
the geometry of the blade, where it is positioned at 25 % of the chord length from
the leading edge. From each bound-vortex a near-wake vortex is spawned. The
third and last type of vortex is the far wake, which at the start is defined as having
the shape of a helix similar to the helical vortex method.

The strength of the bound-vortex ΓBoundV ortex is dependent on the angle of attack
and can be calculated from the equation:

ΓBoundV ortex = ρLV∞ (3.1.62)

where the Lift L is taken from tabulated data.
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Figure 3.1.10: The vortex system for Free Vortex Method, with the BoundVortices,
NearWakeVortices and the FarWakeVortex.

The strength of the near-wake vortices depends on how strong the two closest
bound-vortices are, i.e. ΓNearWakeV ortex can be calculated as:

ΓiNearWakeV ortex = ΓiBoundV ortex − Γi−1
BoundV ortex (3.1.63)

where i is the different vortices.

The strength of the far-wake vortex is in this model assumed to be the maximum
strength of ΓBoundV ortex, i.e:

ΓFarWakeV ortex = max{ΓBoundV ortex} (3.1.64)

when all this is known, the real program starts and the updating of the far-wake
starts. This is done in two steps, a predictor step, and a corrector step.

First of all the induced velocity by all vortices are calculated using the Biot-Savart
Law which can be seen below:

Vind(r(ψ, ζ), r(ψj , ζ)) =
h2

4π
√
r4
c + h4

∫
Γ(ψj , ζ)dζj × (r(ψ, ζ)− r(ψj , ζ))

|r(ψ, ζ)− r(ψj , ζ)|3
(3.1.65)

this is done for the Vind induced by the bound-vortex, the Vind induced by the
near-wake and also the Vind induced by the other far-wake vortices.

When all the induced velocities are known the far-wake is moved using the equation
below. This is called the predictor step, and it is assumed that all vortices are
located where they were the last time step.

26



rnj,k = rnj−1,k−1 +

(
∆ψ −∆ζ

∆ψ + ∆ζ

)
·
(
rnj,k−1 − rnj−1,k

)
+

∆ψ ·∆ζ
∆ψ + ∆ζ

2

Ω

(
V∞ +

1

4

(
Nv∑
i=1

Vind

(
rn−1
j−1,k−1, r

n−1
i,ψ

)
+

Nv∑
i=1

Vind

(
rn−1
j−1,k, r

n−1
i,ψ

)
+

Nv∑
i=1

Vind

(
rn−1
j,k−1, r

n−1
i,ψ

)
+

Nv∑
i=1

Vind

(
rn−1
j,k , rn−1

i,ψ

)
(3.1.66)

when the new position of the far-wake is known, the induced velocities are re-
calculated for the new positions, using the same Biot-Savart Law as before.

Before the corrector step is run, a mean induced velocity is calculated, using the
induced velocities from before the predictor step, as well as the ones after, using
the equations below:

V ind (rj,k, ri,ζ) =
1

2
[Vind

(
rn−1
j,k , rn−1

i,ζ

)
+ Vind

(
rnj,k, r

n
i,ζ

)
] (3.1.67)

V ind (rj−1,k−1, ri,ζ) =
1

2
[Vind

(
rn−1
j−1,k−1, r

n−1
i,ζ

)
+ Vind

(
rnj−1,k−1, r

n
i,ζ

)
] (3.1.68)

V ind (rj−1,k, ri,ζ) =
1

2
[Vind

(
rn−1
j−1,k, r

n−1
i,ζ

)
+ Vind

(
rnj−1,k, r

n
i,ζ

)
] (3.1.69)

V ind (rj,k−1, ri,ζ) =
1

2
[Vind

(
rn−1
j,k−1, r

n−1
i,ζ

)
+ Vind

(
rnj,k−1, r

n
i,ζ

)
] (3.1.70)

when these velocities have been calculated the corrector step is run, using an
equation very similar to the predictor step, the new position of the far-wake is
calculated.

rnj,k = rnj−1,k−1 +

(
∆ψ −∆ζ

∆ψ + ∆ζ

)
·
(
rnj,k−1 − rnj−1,k

)
+

∆ψ ·∆ζ
∆ψ + ∆ζ

2

Ω

(
V∞ +

1

4

(
Nv∑
i=1

V ind (rj−1,k−1, ri,ζ)

+

Nv∑
i=1

V ind (rj−1,k, ri,ζ) +

Nv∑
i=1

V ind (rj,k−1, ri,ζ)

+

Nv∑
i=1

V ind (rj,k, ri,ζ) (3.1.71)

when the new positions are updated, new induced velocities are calculated, but this
time the velocity calculated is the velocity on the control points on the blade.

The Biot-Savart Law is used yet again, however now it is only the effect of the
far-wake and near-wake that is taken in to account.

With the induced velocities at the blade calculated a new angle of attack can be
calculated, αE . αE can simply be calculated as the velocity in the normal direction,
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divided by the velocity in the tangential direction.

αE = arctan

(
UNormal
UTangetial

)
(3.1.72)

With a new angle of attack, the lift force can be updated from the table, changing
all the vortex strengths Γ, with new strengths of the vortices the far-wake can be
moved again. This procedure is repeated until the far-wake does not move anymore,
and the forces are pretty much constant from one iteration to another.

Key assumptions for FVM

The strength of the far-wake is calculated as the max of the boundvortex strength.
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Numerical Procedure for FVM

Figure 3.1.11: The Numerical Procedure when using Free Vortex Method.
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3.2 Method for applying the aerodynamic forces

Since the blade calculation of the structural part is a FEM model i.e. 3-D, but the
vortex methods/BEM method only give the force components on a section, some
sort of engineering model is needed. Therefore to transform the 1-D data from
the VM/BEM calculations to 3-D data, the OpenSource code XFoil is used. By
matching the CL, CD and CM data a pressure distribution can be calculated.

3.2.1 Pressure Distribution

To calculate the pressure distribution using XFoil, three different methods are
used. The first and the quickest method is to calculate a lot of different pressure
distributions for the different airfoils that is going to be used, before starting the
simulations. Using this method around 100 different pressure distributions are
calculated for each angel of attack, where the Reynolds number is changed for each
case.

However, for some cases the CL, CD and CM data that is used in BEM (from
measurements) does not match any of the tabulated data, for these cases the
tabulated data can not be used and therefore two other methods can be used,
depending on the angle of attack.

By plotting the different CL’s for different angel of attacks one can see that the CL
curve can be divided in to two different sections, a roughly linearly depended part,
and a non linear part, see figure 3.2.1.

Figure 3.2.1: CL and CD plotted against different angle of attacks.

The linear part appears at low angle of attacks (angle of attacks smaller than 11).
This is important because in the linear section a rather easy method for calculating
the pressure distribution can be utilized. Whereas for higher angle of attacks a
more complicated and less accurate method needs to be used.

More detailed information can be found in the sub-chapters below.
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Tabulated Pressure fields

The tabulated data is as previously mentioned stored for different angle of attacks.
For a given angle of attack. The pressure distribution is calculated in XFoil for
different Reynolds numbers, by changing the Reynolds number the CL, CD and
CM will change. How CL, CD and CM changes for the angle of attack of 7o can be
seen in figure 3.2.2.

Figure 3.2.2: How the CL, CD and CM changes with different Reynolds numbers
for the angle of attack α = 7 o.

All these values, the CL, CD, CM and the pressure distribution are stored in .mat
files in a specific folder. When the fluid code is run a function will then look at
the effective angle of attack and try to find two pressure distribution that has the
smallest difference between the tabulated CL

CD
value and the CL

CD
thats calculated

from the fluid code.

Sometimes this does not work however. For example as seen in figure 3.2.2 the
airfoil has a maximum CL

CD
value whereas the CL

CD
value calculated from the fluid

code can be higher than this. In that case the code would not work and an iterative
method needs to be used.

Small angle of attacks

For small angle of attacks (roughly in the linear part of the CL curve) XFoil has a
function that lets the user specify the CL value which then calculates the pressure
distribution and the CD and CM . By inputting the CL value received from the
fluid code, the pressure can be iterated, changing the the Reynolds number to get a
CD that matches the one calculated by the fluid code.

High angle of attacks

When the angle of attacks are so high that the method used for small angle of
attacks does not work, the angle of attack is given as an input to XFoil. By changing
the Reynolds number a CL

CD
can be found that matches the CL

CD
thats calculated

from the fluid code.
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Numerical Procedure for calculating the pressure distribution

Figure 3.2.3: The Numerical Procedure when calculating the pressure distribtuin.
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3.2.2 XFoil

Introduction

Xfoil is a program based on he 2D-panel method and has been created by Mark
Drela from MIT [15].

The program can be run either from a text file with commands in it, or ”live” where
the user inputs commands on the fly. XFoil in itself has a lot of different functions,
and how it works and more in-depth of the theory can be read in [15]. In figure
3.2.4 a graphical result from XFoil is shown.

Figure 3.2.4: In the figure a plot generated by XFoil can be seen.

Brief Theory Description

This report will not cover much of the panel method, because it is not used much
for the thesis. However to get a complete picture it will be introduced. For more
information [16] is a good start.

The panel method is pretty similar to the lifting line theory. The main difference is
the fact that instead of a line, the geometry is replaced by several square panels.
On all the panels, at 25 percent of the chord length (of the panel), a lifting line
is creating a lift force (similar to lifting line theory). From the panel, other wake
panels are spawned, these panels model the wake, and follows the induced plus the
free stream velocity.

How XFoil is used

In this thesis, XFoil is used to calculate the pressure distribution for a given angle of
attack and airfoil. To do this a Matlab script creates a text file with the commands
that XFoil should run. Typical inputs for XFoil is either the lift coefficient CL or
the angle of attack α. Other inputs are the profile coordinates for the specified
airfoil, along with the Mach number the airfoil is travelling with, as well as the
Reynolds number.
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With the data described above XFoil starts to do some calculations, calculating the
pressure distribution and the CL, CD and CM that the pressure creates. This is
saved in two text files, the pressure distribution in one file, called PressureBlade1.txt,
and the CL, CD and CM in another file, called Polar1.txt.

A typical command file created by the Matlab script can be seen in the appendix A
2.
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3.3 Two-way Fluid Structure Interaction

With one-way coupling the fluid forces are calculated and then applied to the
structure. When switching to two-way coupling the forces on the structure creates
a deformation, which at the same time changes the forces that is applied by the
fluid. To create two-way coupling with these methods, the only thing needed is to
calculate the forces, calculate the deformation, update the geometry, calculate new
forces, and then iterate this until the residual becomes small (deformation does not
change).

Going from one-way to two-way is quite simple. All that is needed is a way to
update the geometry. This is done in two steps, since the structural model is a 3d
FEM model there is a lot of data of how the blade moves. However the fluid only
uses one point per section.

The first thing that is needed is to calculate how each section of the blade behaves.
This is done by the least square fitting method. More can be read in the chapter
below.

The second thing that needs to be done is to update the geometry for the fluid
forces calculator. Since the geometry is defined slightly different depending on what
solver is used there will be some small differences.

For Blade Element Momentum (BEM)

BEM uses very few parameters to define the geometry therefore BEM probably will
not give extremely good results for a deformed blade. The only parameters that
can be changed is the radial position of the section, and the twist angle (which is
the most important parameter).

For Helical Vortex Method (HVM)

For Helical Vortex Method the deformation in the flap-wise and edge-wise direction
is taken in to account for the as well as the twist of the blade, and the deformation
in the radial direcion.

However, when taking into account the deformation, the equations presented in
chapter 3.1.2 has to be modified slightly. This is because the Helical Vortex Method
presented in this thesis do not have the possibility to change the geometry in the
flap-wise and edge-wise directions.

To be able to take this is to account, the influence coefficient equations needs to be
modified in the following way:

Instead of:

vij =

NB∑
n=1

h[−η(cos θ′ + θ sin θ′) + r]

[h2θ2 + η2 + r2 − 2rη cos θ′]
3
2

(3.3.1)

wij =

NB∑
n=1

η2 − rη cos θ′

[h2θ2 + η2 + r2 − 2rη cos θ′]
3
2

(3.3.2)

The equations should look like this:
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vij =

NB∑
n=1

h[−η · (cos(θ′ + ηe) + (θ + ηf ) · sin(θ′ + ηe)) + r + rf ]

[h2 · (θ + ηf )2 + η2 + r2 + r2
f + r2

e − 2η(r cos(θ′ + ηe) + re sin(θ′ + ηe))− 2rfh · (θ + ηf )]
3
2

(3.3.3)

wij =

NB∑
n=1

η2 − rη cos(θ′ + ηe)− reη sin(θ′ + ηe)

[h2 · (θ + ηf )2 + η2 + r2 + r2
f + r2

e − 2η(r cos(θ′ + ηe) + re sin(θ′ + ηe))− 2rfh · (θ + ηf )]
3
2

(3.3.4)

Where rf is the distance the control point moves in flap-wise direction, ηf is the
distance the vortices move in the flap-wise direction. Similarly for re and ηe but in
the edge-wise direction. All the distances are normalized by dividing them with the
tip radius RB .

By changing the equations in this way, it is possible to use the Helical Vortex
Method to calculate the forces on blade which are not perfectly straight. So if
one wants to calculate the forces on a blade thats pre-bent, or curved, then these
equations should be used as well.

For Free Vortex Method (FVM)

FVM works in a similar way to the the Helical Vortex Method, i.e. it is possible to
calculated the forces on blades which are either curved or bent. The parameters
thats used are the radial position, the edge-wise position, the flap-wise position
aswell as the twist angle for all sections.

Iterating

With the new geometry the fluid code can be run again and will create a different
force compared to the first iteration, after around 5-12 iterations there will not be
much, if any difference in the force, between the current iteration and the previous
one, the solution has then converged and the two-way fluid structure interaction
calculation is complete.
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3.3.1 Derivation of equivalent sectional displacements

Figure 3.3.1: Definition of cordinate system used throughout this thesis

The equations for the aerodynamic coefficients depend on sectional displacements
such as pitch angle, plunge velocity etc, but when using an FE - model, there are no
direct quantities that corresponds to these. In this paper, in order to approximate
these, we have used a least square fit. We choose k nodes from the i:th section,
where node j has the coordinates (xi,j , yi,j), the elastic center of the section i is
at (xie, y

i
e) and the aerodynamic center of section i is at (xic, y

i
c). See figure 3.3.1

for a definition of the coordinate system. If we write the equation for the nodal
displacements as if they deform as a rigid section, we get an overdetermined system
of equations for the equivalent sectional displacements:



1 0 0 0 0 −(yi,1 − yic)
0 1 0 0 0 (xi,1 − xic)
0 0 1 yi,1 − yie −xi,1 + xie 0
1 0 0 0 0 −(yi,2 − yic)
0 1 0 0 0 (xi,2 − xic)
0 0 1 yi,2 − yie −xi,2 + xie 0

...
1 0 0 0 0 −(yi,k − yic)
0 1 0 0 0 (xi,k − xic)
0 0 1 yi,k − yie −xi,k + xie 0





ûix
ûiy
ûiz
θ̂ix
θ̂iy
θ̂iz

 =



ui,1x
ui,1y
ui,1z
ui,2x
ui,2y
ui,2z
...
ui,kx
ui,ky
ui,kz


(3.3.5)

Or

Tiûi = ui (3.3.6)

By a least square fit, the equivalent sectional displacements become:

ûi = (TT
i Ti)

−1TT
i ui = T+

iu (3.3.7)
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Doing this for all sections we get an equation for the full system:
û1

û2

...
ûN

 =


T+

1 0 ... 0
0 T+

2 0
...

0 0 ... T+
N

u (3.3.8)

û = T+u (3.3.9)

Where û holds the sectional displacements of the blade. The same procedure of
course applies to respective velocities. As an example, the out-of-plane displacements
under gravity is shown in figure 3.3.2.

Figure 3.3.2: Static flap-wise displacement under gravity when the blade is in the
horizontal postion. Each point represents a node, and the black line is the sectional
displacements calculated by equation (3.3.9)
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4 Aeroelasticity

4.1 Aerodynamic stability

Under certain conditions, the equilibrium of an elastic structure subjected to
aerodynamic forces can become unstable. When this happens, the vibrations
become self-feeding and destructive. Physically, an instability implies that the
elastic, inertial, and aerodynamic forces line up so that a mode of the structure
gains energy from the surrounding airstream. There are different types of instabilities
that can occur, two being stall induced vibrations and classical flutter. Stall induced
vibrations, or stall flutter happens at stalled conditions, i.e. for blunt objects, or,
in our case for high angles of attack. Classical flutter always involves more than
one degree of freedom [17], and typically involves strongly coupled torsion and
bending. Aerodynamic stability has, with some exceptions, not been a large issue
for wind turbines. An exception was in 1997 when several 19 m blades by LM
Glasfiber suffered cracks near the trailing edge by the root due to large edgewise
oscillations.[18] Classical flutter has not been seen in wind turbine blades, though the
increasing size of turbine blades and strong bending-torsion coupling can increase
the risk for flutter.

The stability problem is adressed in the following way. For given operating conditions,
let the the state vector z be:

z(t) = z0 + z∗(t) (4.1.1)

Where the constant z0 is the state at equilibrium and z∗(t) a small pertubation.
Lets assume that the aerodynamic force f is dependent only on the state vector z,
and linearize the force around z0:

f = f0 +
∂f

∂z |z=z0

(z− z0) = f0 +
∂f

∂z |z=z0

z∗ (4.1.2)

where, if f is a nx1 vector, and we have m states, then ∂f
∂z |z=z0

is a nxm matrix.

Introduce

Af =

 0
QT

0

 ∂f

∂z |z=z0

(4.1.3)

then, as ż = ż∗, equation (4.1.1) can be written:

ż∗ = (A + Af )z∗ + Bf0 = Ãz∗ + Bf0 (4.1.4)

where we introduced Ã = (A + Af ). Ignoring the constant force f0, and using the
ansatz z∗ = ẑ∗eλt we get the eigenvalue problem for the eigenvalues λ and the
eigenvectors ẑ of the matrix Ã:

λẑ∗ = Ãẑ∗ (4.1.5)

As Ã is not symmetric, there is now the possibility that the real part of λ is positive,
and the system is unstable. The matrix Af has terms proportional to displacement
and velocity that can be thought of as forms of stiffness and damping. Through
those terms, the eigenmodes η of the free structure become coupled, so orthogonality
is lost and the eigenmodes ẑ∗ become combinations of the eigenmodes of the free
structure.
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Figure 4.1.1: Flow over a section of the blade, showing relative flow direction when
the blade moves

4.1.1 Aerodynamic damping on one section

To get the matrix Af , we begin by looking at a single section that, superimposed
onto its rigid motion in the x-direction due to the blades rotation, is free to translate
in the x- and y-direction with displacements ûx, ûy, velocities v̂x, v̂y and rotate
about the aerodynamic center with the angle θz, see figure 4.1.1. The free stream
velocity is V0 and is perpendicular to the rotor plane. Then the flow angle φ relative
to the rotor plane is given by φ = θtwist + θpitch + α = tan−1( V0

rΩ ).

Due to the movement of the blade, we have the relative flow angle φ∗ = tan−1(
V0−v̂y
rΩ−v̂x ),

and the lift L and drag D are defined with respect to this. The forces in the x- and
y-direction and the pitching monent becomes:

fx = Dcos(φ∗)− Lsin(φ∗) (4.1.6)

fy = Dsin(φ∗) + Lcos(φ∗) (4.1.7)

Mz = M (4.1.8)

We now take the derivative with respect to some state zj . These states will later be
the eigenfrequencies of the structure. As both the magnitude of the aerodynamic
forces as well as the angle of attack changes due to the displacement of the section
the chain rule gives:

∂fx
∂zj

=
∂D

∂zj
cos(φ∗)− ∂L

∂zj
sin(φ∗)− (Dsin(φ∗) + Lcos(φ∗))

∂φ∗

∂zj
(4.1.9)

∂fy
∂zj

=
∂D

∂zj
sin(φ∗) +

∂L

∂zj
cos(φ∗) + (Dcos(φ∗)− Lsin(φ∗))

∂φ∗

∂zj
(4.1.10)

∂Mz

∂zj
=
∂M

∂zj
(4.1.11)
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the parts ∂D
∂zj

and ∂L
∂zj

have a dependence both on the relative flow velocity and on

the aerodynamic coefficients:

D =
1

2
ρcV 2

relCD (4.1.12)

L =
1

2
ρcV 2

relCL (4.1.13)

M =
1

2
ρc2V 2

relCL (4.1.14)

∂D

∂zj
= ρcVrelCD

∂Vrel
∂zj

+
1

2
ρcV 2

rel

∂CD
∂zj

≈ 1

2
ρcU2(

2

U
CD

∂Vrel
∂zj

+
∂CD
∂zj

) (4.1.15)

∂L

∂zj
= ρcVrelCL

∂Vrel
∂zj

+
1

2
ρcV 2

rel

∂CL
∂zj

≈ 1

2
ρcU2(

2

U
CL

∂Vrel
∂zj

+
∂CD
∂zj

) (4.1.16)

∂M

∂zj
= ρc2VrelCM

∂Vrel
∂zj

+
1

2
ρc2V 2

rel

∂CM
∂zj

≈ 1

2
ρc2U2(

2

U
CM

∂Vrel
∂zj

+
∂CM
∂zj

) (4.1.17)

as the velocity relative to the blade Vrel is

Vrel =
√

(rΩ− v̂x)2 + (V0 − v̂y)2 (4.1.18)

⇒
∂Vrel
∂zj

= −rΩ− v̂x
Vrel

∂v̂x
∂zj
− V0 − v̂y

Vrel

∂v̂y
∂zj
≈ −rΩ

U

∂v̂x
∂zj
− V0

U

∂v̂y
∂zj

= −cos(φ)
∂v̂x
∂zj
− sin(φ)

∂v̂y
∂zj

(4.1.19)

insert into 4.1.15 to 4.1.17:

∂D

∂zj
=

1

2
ρcU2{− 2

U
CD[cos(φ)

∂v̂x
∂zj

+ sin(φ)
∂v̂y
∂zj

] +
∂CD
∂zj
} (4.1.20)

∂L

∂zj
=

1

2
ρcU2{− 2

U
CL[cos(φ)

∂v̂x
∂zj

+ sin(φ)
∂v̂y
∂zj

] +
∂CL
∂zj
} (4.1.21)

∂M

∂zj
=

1

2
ρc2U2{− 2

U
CM [cos(φ)

∂v̂x
∂zj

+ sin(φ)
∂v̂y
∂zj

] +
∂CM
∂zj
} (4.1.22)

using that φ∗ = tan−1(
V0−v̂y
RΩ−v̂x ), it can be shown that

∂φ∗

∂zj
≈ 1

U
sin(φ)

∂v̂x
∂zj
− 1

U
cos(φ)

∂v̂y
∂zj

(4.1.23)

therefore
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[Dsin(φ) + Lcos(φ)]
∂φ∗

∂zj
= −1

2
ρcU2[CDsin(φ) + CLcos(φ)][− 1

U
sin(φ)

∂v̂x
∂zj

+
1

U
cos(φ)

∂v̂y
∂zj

]

= −1

2
ρcU2{− 1

U
[CDsin(φ) + CLcos(φ)]sin(φ)

∂v̂x
∂zj

+

+
1

U
[CDsin(φ) + CLcos(φ)]cos(φ)

∂v̂y
∂zj
} (4.1.24)

[Dcos(φ)− Lsin(φ)]
∂φ∗

∂zj
= −1

2
ρcU2[CDcos(φ)− CLsin(φ)][− 1

U
sin(φ)

∂v̂x
∂zj

+
1

U
cos(φ)

∂v̂y
∂zj

]

= −1

2
ρcU2{− 1

U
[CDcos(φ)− CLsin(φ)]sin(φ)

∂v̂x
∂zj

+

+
1

U
[CDcos(φ)− CLsin(φ)]cos(φ)

∂v̂y
∂zj
} (4.1.25)

use eqns 4.1.20 - 4.1.22 and 4.1.24 - 4.1.25 in eqns 4.1.9 to 4.1.11 :

∂fx
∂zj

= −1

2
ρcU2{ 1

U
[CD(2cos2(φ) + sin2(φ))− CLcos(φ)sin(φ)]

∂v̂x
∂zj

+
1

U
[CDsin(φ)cos(φ)− CL(2sin2(φ) + cos2(φ))]

∂v̂y
∂zj

− ∂CD
∂zj

cos(φ) +
∂CL
∂zj

sin(φ)} (4.1.26)

∂fy
∂zj

= −1

2
ρcU2{[ 1

U
CDcos(φ)sin(φ) +

1

U
CL(2cos2(φ) + sin2(φ))]

∂v̂x
∂zj

+

+ [
1

U
CD(2sin2(φ) + cos2(φ)) +

1

U
sin(φ)cos(φ)CL]

∂v̂y
∂zj

− ∂CD
∂zj

sin(φ)− ∂CL
∂zj

cos(φ)} (4.1.27)

∂M

∂zj
= −1

2
ρc2U2{ 2

U
CM [cos(φ)

∂v̂x
∂zj

+ sin(φ)
∂v̂y
∂zj

]− ∂CM
∂zj
} (4.1.28)

from these equations, we see that for small φ, and when CD is smaller than CL the
motion in the x-direction is less damped than in the y-direction.

There is no direct dependence on the twist angle θz in these equations, though
classical flutter always includes bending and twist. The dependence on the twist
angle comes in through the terms ∂CL

∂zj
and less importantly ∂CD

∂zj
and ∂CM

∂zj
.

As we have that [
v̂x
v̂y

]
= Tiq̇ = TiQη̇ (4.1.29)

where T is from equation (3.3.9) from chapter 3.3.1 and Q is the modal matrix, we

have the derivatives ∂v̂x
∂zj

and
∂v̂y
∂zj

as rows of the matrix TQ The derivatives ∂CL
∂zj

,
∂CM
∂zj

and ∂CD
∂zj

is the subject of chapter 4.2.

4.1.2 Stall induced vibrations

By inspection, equations 4.1.26 to 4.1.28 are equivalent to those used in the Risø
report 4.2.1 if one ignores the pitching moment component and sets z1 = v̂x and
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z2 = v̂y. Further, if one makes the quasi-steady assumtion that the ∂CL
∂zj

only

components is due to changes in angle of attack α, i.e:

∂CL
∂zj

=
∂CL
∂α

∂α

∂zj
(4.1.30)

the derivative ∂CL
∂α is taken from tabulated data of steady conditions. Then one

gets the following equations for aeroelastic damping coefficients:

∂fx
∂v̂x

= −cxx = −1

2
ρcU{CD(2cos2(φ) + sin2(φ))− CLcos(φ)sin(φ)−

∂CD
∂α

cos(φ)sin(φ) +
∂CL
∂α

sin2(φ)} (4.1.31)

∂fx
∂v̂y

= −cxy = −1

2
ρcU{CDsin(φ)cos(φ)− CL(2sin2(φ) + cos2(φ))+

∂CD
∂α

cos2(φ)− ∂CL
∂α

sin(φ)cos(φ)} (4.1.32)

∂fy
∂v̂x

= −cyx = −1

2
ρcU{CDcos(φ)sin(φ) + CL(2cos2(φ) + sin2(φ))−

∂CD
∂α

sin2(φ)− ∂CL
∂α

cos(φ)sin(φ)} (4.1.33)

∂fy
∂v̂y

= −cyy = −1

2
ρcU{CD(2sin2(φ) + cos2(φ)) + sin(φ)cos(φ)CL+

∂CD
∂α

sin(φ)cos(φ) +
∂CL
∂α

cos2(φ)} (4.1.34)

One can use these damping coefficients and constrain the section to move in one
direction. If the damping is plotted as a function of direction of vibration, it can be
seen that for certain directions of motion, the damping becomes negative. When
the angle of attack becomes high, i.e, at stalled conditions, either the edgewise or
the flapwise mode, typically the edgewise, will have vibration motion that falls into
a range where the damping is negative. This instability is stall induced vibrations
or stall flutter. The difference to classical flutter is that it occurs under stalled
conditions and involves little coupling between modes. In the actual program, we
have not made the quasi-steady assumption, as it has been shown that one must
take into account the effects of dynamic stall.

The NREL reference turbine is pitch-regulated, which means that it does not operate
at high angles of attack under normal circumstances. Stall flutter is not thus not a
large concern for it.

4.1.3 Flutter

Flutter is another phenomenom of instablity. It occurs due to an unfavorable
coupling between the torsion and bending of a blade or wing. When the blade
moves in a torsional mode, the angle of attack changes. Under attached flow
conditions, a change in angle of attack means that the lift force increases. This
change in lift force excites the bending modes. Thus the bending and torsional
modes become coupled.
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4.1.4 Aeroelastic stiffness and damping matrix

By linearizing the aerodynamic forces through equation 4.1.26 to 4.1.28 for each
section, a force vector can be constructed as:

∂ f̂

∂zj
=



∂f1
x

∂zj
∂f1
y

∂zj

0
0
0

∂m1
z

∂zj

...
∂fNx
∂zj
∂fNy
∂zj

0
0
0

∂mNz
∂zj



(4.1.35)

where zeros have been put in for the axial force and distributed bending moments.
By doing this for all our modes zj , j = 1, 2...,m we get the derivative of sectional

forces f̂ with respect to the eigenmodes z:

∂ f̂

∂z
=
[
∂ f̂
∂z1

∂ f̂
∂z2

... ∂ f̂
∂zm

]
(4.1.36)

in equation 4.1.4 there is the nodal forces f , that one would have to find from the
forces on the sections. However as Af can be rewritten to:

Af =

 0
QT

0

 ∂f

∂z |z=z0

=

 0
∂ f̄
∂z |z=z0

0

 (4.1.37)

where f̄ are the modal forces. The modal forces can be got by constructing a modal
matrix Q̂ = TQ, of sectional modes. The modal forces are then calculated from
that matrix:

∂ f̄

∂z
= Q̂T ∂ f̂

∂z
(4.1.38)

to summarize:

Af =

 0

Q̂T

0

 ∂ f̂

∂z |z=z0

(4.1.39)
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4.1.5 Including stall variables in eigenvalue analysis

The ”stall variables” x1 to x4 are included by collecting them in the vector x:

x =


x1

x2

x3

x4

 (4.1.40)

equations 4.2.23 can be written on this form:


ẋ1

ẋ2

ẋ3

ẋ4

 = Axxx + Axuz (4.1.41)

all dependence on geometrical terms like the three quarter point downwash angle etc.
are expressed through the term Axuz. Introduce the new state vector zx:

zx =


z
x1

x2

x3

x4

 =

[
z
x

]
(4.1.42)

the state space equation for this vector then becomes:

żx =

[
Ã Ãzx

Axz Axx

]
zx (4.1.43)

Where the modification of lift, drag, and pitch moment due to the stall variables
enters into the term Ãzxx
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4.2 Dynamic Stall

Introduction

All methods for calculating the forces in this thesis (BEM, HVM and FVM) use
tabulated data for CL, CD and CM for a given angle of attack. These data are
created mainly from experiments where a profile is exposed to flow at a certain
Reynolds number for different angles of attack. However these data are only true
during steady conditions, so if the purpose is to calculate anything unsteady there
would be errors. The reason is that there is a time lag and an unsteady effect in
the force and the pressures when unsteady effects appear.

To take the unsteadiness in account a model called the dynamic stall model has
been created. Nowadays there are many different types of dynamic stall models
(Onera, Leishman-Beddoes are two commonly used models). Depending on the
application different dynamic stall models should be used, for wind turbines the
Leishman-Beddoes is very popular.

Leishman-Beddoes was written mainly for helicopter applications and thus there
are some parts that is not really necessary. Therefore Risø has created a version
specifically for wind turbines, it can be found in [19].

Physical explanation of Dynamic Stall

Physically what is happening when there is a change in the flow field is described
below:

Assume first that an airfoil is exposed to a steady flow which can be seen in figure
4.2.1 1. The left figure shows the flow field and the right figure shows the Cp curve
for this flow field (a Cp curve is the pressure distribution over the airfoil, where the
pressure has been normalized by dividing it with the stagnation pressure).

Figure 4.2.1: The left figure shows the flow around an airfoil in steady conditions.
And the right figure shows the Cp curve for the flow field.

The airfoil is then rotated a few degrees, and what happens is that due to a delay
in the flow field a vortex is created at the leading edge (hence called leading edge
vortex). This vortex creates suction at the suction side of the leading edge, creating
a lift force, a decrese in the drag and a moment that wants to lift the leading edge.
This can be seen in figure 4.2.2.

After a small amount of time, the leading edge vortex is realeased from the blade,
which removes the suction at the leading edge. However, as an aftermath of the
leading edge vortex releasing a trailing edge vortex is created (not so surprisingly
located at the trailing edge of the airfoil). This vortex creates a suction at the
suctions side of the airfoil at the trailing edge. This can be seen in figure 4.2.3
where the suction increases the lift and the drag force, and creates a moment that
wants to lift the trailing edge of the airfoil.

1The four figures in this chapter are snapshots from a video on YouTube uploaded
by kimyusiks on Jul 5, 2011. The video can be seen either by using the link:
http://www.youtube.com/watch?v=MHuQIWfD9dk , or by searching on YouTube for Oscil-
lating airfoil.
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Figure 4.2.2: The left figure shows the flow around an airfoil shortly after a change
in the angle of attack. And the right figure shows the Cp curve for the flow field.

Figure 4.2.3: The left figure shows the flow around an airfoil shortly after the
trailing edge vortex is released. And the right figure shows the Cp curve for the
flow field.

After some time the trailing edge vortex will release aswell and the flow will go back
to normal, as can be seen in figure 4.2.4.

Figure 4.2.4: Flow around an airfoil in steady conditions at the new angle of attack.

The description above was for a general airfoil. However for wind turbines, due
to the relatively low wind speeds and the relatively thick airfoils used, the leading
edge vortex is not that strong [19]. Therefore in the Risø model the trailing edge
vortex has been neglected and only the trailing edge vortex is accounted for.

More detailed physical eplanation can be found in [11] and [19].

Mathematical model

The dynamic stall model2 calculates the lift, drag and momentum forces when a
change in angle of attack or inlet velocity happens. To calculate this the input
needed is the tabulated data for the static CL, CD and CM for all angle of attacks.

2The derivations shown in this chapter have been extracted from [19].

47



The other things that are needed is the velocity U, the angle of attack α for both
the previous times-step, and the current time-step. The acceleration U̇ and the
angular velocity α̇ are also needed, and the size of the time-step dt is needed as
well.

The tabulated data for the lift, drag and momentum are denoted CstL , CstD and CstM ,
respectively which are measured at the different angle of attacks α. There are six
different constants used for this model, these can be seen in table 4.2.1.

Table 4.2.1: Constants used in the Risø model
b1 0.0455
b2 0.3
A1 0.165
A2 0.335
ω7 0.4125
ω3 0.0875

For all airfoils there are some characteristic data: the angle at which the lift is zero
CL0

and the slope of the linear part of the lift curve called CL,α. Other interesting
data are the drag and the momentum at the angle of attack where the lift is zero
CD0 and CM0 .

CL,α is calculated as:

CL,α = max{ C
st
L (α)

(α− α0)
} (4.2.1)

When calculating near stall conditions it is very important is where the separation
begins, or where the flow close to the wall is flowing against the free stream velocity.
This point is expressed as fst which is the procentual distance from the leading
edge. fst can be approximated from the tabulated data as:

fst =
CstL

CL,α · (α− α0)
(4.2.2)

The lift for a fully stalled airfoil at a certain angle of attack can be calculated
as:

CfsL =
CstL − CL,α · (α− α0) · fst

1− fst
(4.2.3)

The above equation does not work if fst =1, so when fst =1 then CfsL should be
calculated as:

CfsL =
CstL
2

(4.2.4)

For the moment there is another interesting point, which is the position of the
pressure centre ast, which can be calculated as:

ast =
CstM − CM0

CstL
(4.2.5)

If one approximates the impulse response function Φ(t) as:

Φ(t) = 1−A1e
−ω1t −A2e

−ω2t (4.2.6)
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Then the state-space variables xi can be calculated as:

ẋ1 + T−1
u

b1 + cU̇

2U2
x1 = b1A1T

−1
u α3/4 (4.2.7)

ẋ2 + T−1
u

b2 + cU̇

2U2
x2 = b2A2T

−1
u α3/4 (4.2.8)

ẋ3 + T−1
p x3 = T−1

p · (CL,α · (αE − α0) + πTuα̇) (4.2.9)

ẋ4 + T−1
f x4 = T−1

f fst(
x3

CL,α + α0
) (4.2.10)

where αE is calculated as:

αE = α3/4 · (1−A1 +A2) + x1 + x2 (4.2.11)

And Tu, Tf and Tp are calculated as:

Tu =
c

2U
(4.2.12)

Tp =
ω7c

2U
(4.2.13)

Tf =
ω3c

2U
(4.2.14)

Where c is the chord length.

When the differential equations are solved the only thing that is left to do is to
calculate the dynamic variables as:

CdynL = CL,α · (αE − α0) · x4 + CfsL (αE) · (1− x4) + πTuα̇ (4.2.15)

CdynD = CstD (αE)+(α−αE)·CdynL +(CstD (αE)−CD0
)·(
√
fst(αE)−√x4

2
−f

st(αE)− x4

4
)

(4.2.16)

CdynM = CstM (αE) + CdynL · (ast(x4)− ast(fst(αE)))− π

2
Tuα̇ (4.2.17)

4.2.1 Using dynamic stall for flutter analys

When the blade vibrates and changes the angle of attack, dynamic stall effects
as described above starts to show. For most frequencies the fluid is acting as a
viscous dampener, reducing the amplitude of the vibrations. However at certain
frequencies, the vibration of the blade matches with the Reynolds number of the
flow in such a way that the fluid, instead of dampening the vibrations, are increasing
the amplitude and thus flutter problems have arisen.

When doing a flutter analysis, which is described in chapter 4.1, the eigenvalues are
calculate, through the equation 4.1.4.
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The equation is linear, where the forces from the fluid is called Af . However the
dynamic stall equations are very non-linear, therefore to be able to do a flutter
analysis the dynamic stall equations needs to be linearised3. This can rather safely
be done when linearising around a steady state, and assuming that the changes in
α and U and so on are small, i.e. the variables can be expressed as:

α = α0 + α1, α3/4 = α0 + α1
3/4 and U = U0 + U1 where U1, α1 and α1

3/4 are small.

Which means that x1
i in the equation below is small aswell:

xi = x0
i + x1

i (4.2.18)

The above assumptions gives that the state-space variables for the steady state x0
i

can be expressed as below:

x0
1 = A1α

0 (4.2.19)

x0
2 = A2α

0 (4.2.20)

x0
3 = CL,α ·

(
α0 − α0

)
(4.2.21)

x0
4 = fst(α0) (4.2.22)

This means that the differential equations can be expressed as:

ẋ1
1 + T−1

1 x1
1 = A1T

−1
1 α1

3/4 −
A1α

0

U0
U̇1 (4.2.23)

ẋ1
2 + T−1

2 x1
2 = A2T

−1
2 α1

3/4 −
A2α

0

U0
U̇1 (4.2.24)

ẋ1
3 + T−1

p x1
3 = T−1

p · (CL,αα1
E + πT0α̇

1) (4.2.25)

ẋ1
4 + T−1

f x1
4 = T−1

f

dfst

dα

∣∣∣
α=α0

x1
3

CL.α
(4.2.26)

Where, as before α1
E can be calculated as:

α1
E = α1

3/4 · (1−A1 +A2) + x1
1 + x1

2 (4.2.27)

And T1 and T2 is calculated as:

T1 =
c

2U0b1
(4.2.28)

T2 =
c

2U0b2
(4.2.29)

The variable dfst

dα is the equation for x4 when it has been Taylor expanded giving
this expression:

dfst

dα
=

2

CL,α · (α− α0)
·
(
dCstL
dα
− CstL (α)

α− α0

)
·

(
2−

√
CL,α · (α− α0)

CL(α)

)
(4.2.30)

When linearising the dynamic variables, the lift, drag and moment depends on a
couple of variables some of them are common to all variables, some are not, however

3The derivations shown in this chapter have been extracted from [19].
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all of them depends on the effective angle of attack αE and the position where the
flow becomes stalled x4. By Taylor expanding the dynamic lift, drag and moment
the equations below are given:

ClinL = C0
L + cl,α · α1

E + cl,f · x1
4 + π

c

2U0
α̇1 (4.2.31)

ClinD = C0
D + cd,α · α1

E + cd,f · x1
4 + C0

L ·
(
α1 − α1

E

)
(4.2.32)

ClinM = C0
M + cm,α · α1

E + cm,f · x1
4 − π

c

2U0
α̇1 (4.2.33)

Where the linearised constants cl,α, cl,f etc. is calculated as below:

cl,α = CL,α · f0 +
dCfsL
dα

∣∣∣
α=α0

(1− f0) (4.2.34)

cl,f = CL,α ·
(
α0 − α0

)
− CfsL (α0) (4.2.35)

cd,α =
dCstD
dα

∣∣∣
α=α0

−df
st

dα

∣∣∣
α=α0

(
CD0

− C0
D

)
· 1−

√
f0

4
√
f0

(4.2.36)

cd,f =
(
CstD0

− C0
D

)
· 1−

√
f0

4
√
f0

(4.2.37)

cm,α =
dCstM
dα

∣∣∣
α=α0

−C0
L ·

dfst

dα

∣∣∣
α=α0

·da
st

df

∣∣∣
α=α0

(4.2.38)

cm,f = C0
L ·

dast

df

∣∣∣
α=α0

(4.2.39)

dCfsL
dα can be calculated as:

dCfsL
dα

=

(
dCstL
dα − CL,α · f

st(α)
)

(1− fst(α)) + (CstL − CL,α · (α− α0)) df
st

dα

(1− fst(α))
2

(4.2.40)

And
dCstL
dα ,

dCstD
dα ,

dCstM
dα and dast

df is simply calculated as the difference between CstL /

CstD or CstM divided by the difference between α for the tabulated data (or difference

between dast divided by the difference between α for dast

df ).

The degrees of freedom like the effective angle of attack, downwash angle on 3/4
chord in equations 4.2.31 - 4.2.33 can be calculated from modal degrees of freedom in
the following way. Lets collect small pertubations of them in the vector dud:

dud =



dαE
dα3/4

dα̇
dx1

dx2

dx3

dx4

dα


(4.2.41)
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lets introduce the state vector zs,x as:

zs,x =

u
u̇
x

 (4.2.42)

lets further presume that dud are to be found from the state vector dzsx by the
matrix Tds:

dud = Tdsdzsx (4.2.43)

if we take the derivative of for example for the lift coefficient with respect to the
state vector zx using the chain rule:

∂CL

∂zx
=
∂CL

∂ud

∂ud
∂zs,x

∂zs,x
∂zx

(4.2.44)

∂CiL
∂uid

=
[
cil,α 0 πT i0 0 0 0 cil,f 0

]
(4.2.45)

The first part of (4.2.44) is taken from [19] and is shown, for one section as an
example, in (4.2.45). For the second part of (4.2.44), we start with the sectional
displacements and velocities, obtained in chapter 3.3.1, and the stall variables
collected in the vector ẑ:

dẑx =

dûd ˙̂u
dx

 =

T 0 0
0 T 0
0 0 I

dqdq̇
dx

 = Thsdzs,x (4.2.46)

the quantities ud are easily found from the sectional displacements and their
velocities together with the stall variables via the matrix Tdh.

dud = Tdhdẑx = TdhThsdzs,x = Tdsdzs,x (4.2.47)



dαE
dα3/4

dα
dα̇
dx1

dx2

dx3

dx4


=



φ(0) 1
U φ(0) φ(0) c

2U 1 1 0 0
1
U 1 c

2U 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





dḣ
dα
dα̇
dx1

dx2

dx3

dx4


(4.2.48)

here dḣ = cos(φ)dvy − sin(φ)dvx, dα = −dθ̂z, and dα = −d ˙̂
θz. Tds is the second

part of (4.2.44), i.e

Tds =
∂ud
∂zs,x

(4.2.49)

rembering that

dzx =

dηdη̇
x

 (4.2.50)
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to get
∂zs,x
∂zx

we use that the state vector zs,x is found from the state vector zx
by:

zs,x =

dqdq̇
dx

 =

Q 0 0
0 Q 0
0 0 I

 zx (4.2.51)

∂zs,x
∂zx

=

Q 0 0
0 Q 0
0 0 I

 (4.2.52)

ud = Tds

q
q̇
x

 = Tds

Q 0 0
0 Q 0
0 0 I

 z = Tdηz (4.2.53)

∂Ci

∂z
=
∂Ci

∂ud

∂ud
∂z

=
∂Ci

∂ud
Tdη (4.2.54)
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5 Model verification

5.1 CFD calculation

Introduction

To be able to compare the results from the BEM, HVM and FVM two CFD
calculations are done on a 3-D wind-turbine blade. The first CFD calculation is
done on a non-deformed blade, whereas the second calculation is done on a deformed
blade. The results are not important in themselves and therefore this chapter will
not be very detailed.

Geometry

Both blades are created from the same profiles as the structural model, see figure
5.1.1.

Figure 5.1.1: Flow around an airfoil in steady conditions.

For the deformed blade, the profiles are moved and rotated to form the shape of a
deformed blade, which can be seen in figure 5.1.2. How much they are moved and
rotated are calculated from the displacement of each section, using the method for
calculating the two-way FSI as described above.

Figure 5.1.2: Flow around an airfoil in steady conditions.

The fluid volume is defined as a third of a cylinder, see figure 5.1.3.

Meshing

The meshing has been done in Ansys Mesher where the mesh itself contains six
different zones, see figure 5.1.4.
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Figure 5.1.3: Flow around an airfoil in steady conditions.

Figure 5.1.4: Flow around an airfoil in steady conditions.

The mesh has around 18 million cells, where the most part of the mesh is hexagonal,
except for the part which rotates (the part with the blade in it) which have mostly
tetrahedral cells.

Settings

The boundary conditions of the mesh can be seen in figure 5.1.5. To the left the
inlet can be seen with an inlet velocity of 11.4 m/s. The centre part of the geometry,
the part with the blade in it, has a frozen rotor boundary condition, which rotates
with the speed of Ω = 12.1 RPM. All the sides in the cylinder have a periodical
boundary condition specified.

Figure 5.1.5: Flow around an airfoil in steady conditions.

The solver used is Ansys CFX, with the turbulence model k-ω - SST.
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Gathering the results

When the simulation have been run, the forces on all sections are calculated from
the pressures using the mathematical function with the CFX equation.

force y()@F244.240 (5.1.1)
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5.2 Beam model

In order to test the aeroelastic code and how much the results depend on the finite
element model, a beam model was created from the properties in the NREL report.
This was done with the FE-package CALFEM for MATLAB. The distributed polar
moment of inertias were not specified and was taken to a value proportional of the
extensional stiffness, and scaled so that the first torsional eigenfrequency was about
8 Hz.

The only modifications of the aeroelastic program necessary to analyze a beam
model was to change from the modal matrix of the shell model to the modal matrix
of the beam model, and change the matrix T to the identity matrix.
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6 Results

6.1 Blade model results

The finite element model of the blade is shown in figure 6.1.1.

Figure 6.1.1: Finite Element Model of the blade.

The overall integrated results are calculated in FEMAP and shown in table 6.1.1
and compared to those reported by Risø.

Table 6.1.1: Integrated blade results compared to NREL
Our NREL

Integrated mass 17 510 kg 17 740 kg
CM location (w.r.t. Root) 20.07 m 20.475 m
Mass moment of inertia (w.r.t. Root) 11 129 312 kg m2 11 776 047 kg m2

Figure 6.1.2: Blade planform showing center of gravity, elastic axis, half and quarter
chord

The sectional properties were calculated in the program crosec by Risø and are
shown together with the sectional properites given by NREL in the figure below.
The elastic axis and center of gravity have also been calcuated with the same
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program and are shown in figure 6.1.2.

Figure 6.1.3: Cross sectional properties

The cross sectional properties of the blade are compared to those in [4] in figure
6.1.3. These have been calculated with the program CROSEC by Risø. The values
calculated have not been used for anything other than validation of the model and
when tweaking the model parameters. The cross sectional properties are not exactly
equal, and there is especially a large discrepancy near the root of the blade. Overall
the blade design has been a compromise betwen getting the right cross sectional
propeties, correct eigenfrequencies, and the same integrated properties like total
blade mass. One could set up some kind of iterative procedure to get a design that
satifies all of these, but this was considered too cumbersome asnd not worthwhile.
It is considered sufficient that the total blade mass, and the eigenfrequencies are
close to the original, and that the cross sectional properties are reasonably close. If
the blade mass, and the eigenfrequencies are correct, the overall stiffness and mass
properties are probably correct as well.

One possible weakness is that the first edgewise mode has a fairly large component
in the out-of-plane direction. At the tip, the blade moves with an angle 17.7◦ relative
to the rotor plane in the first edgewise mode, and 22.4◦ in the second. Possibly this
reflects wrong principal directions. As shown in chapter 4.1, flapwise motion has
higher aerodynamic damping than edgewise motion, so getting too much flapwise
motion can stabilize the blade and make the stability analysis unconservative.

6.1.1 Eigenfrequencies and eigenmodes of the blade

An eigenvalue is done in MATLAB to get the eigenfrequencies and eigenvalues. A
modal analysis in FEMAP gives the same result. The first six eigenmodes are shown
in figure 6.1.4, where the method of calculating equivalent beam displacements
from chapter 3.3.1 has been used. Modes 1, 3 and 5 are flapwise modes, 2 and 4 as
edgewise modes and mode 6 a torsional mode.
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Table 6.1.2: Eigenfrequencies of the finite element blade model.
Mode Frequency Note Dowec
1 0.6581 Hz 1st flapwise 0.6542 Hz *
2 1.1089 Hz 1st edgewise 1.0911 Hz **
3 1.8836 Hz 2nd flapwise 1.9026 Hz**
4 3.4400 Hz 2nd edgewise 3.7741 Hz
5 3.9847 Hz 3rd flapwise
6 6.1312 Hz 1 st torsional 5.5883 Hz **
7 6.6586 Hz 4 th flapwise

* From [4] with PHATAS.
** From [4] at 11.844 rpm with BLADMODE.

The resulting eigenfrequencies are shown in table 6.1.2. Note that some of the
frequencies included in the comparison from [4] are calculated with a non-zero
rotational speed. In those cases the centrifugal force tends to stiffen the structure,
though with the low rotational speeds of a wind turbine, the difference is probably
not more than 10 %.

Figure 6.1.4: The first six eigenmodes of the blade.
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6.2 Aerodynamic forces

By calculating the forces on the blade using BEM, HVM and FVM. The results
from these can be compared to the forces on the blade calculated by a 3-D CFD
model.

For all the below cases the 5 MW reference wind turbine has been used. The
calculations are done on the steady case where the wind blows at 11.4 m/s and the
rotor speed of 12.1 RPM.

6.2.1 Blade Element Momentum (BEM)

In figure 6.2.1 the forces calculated by BEM can be seen.

Figure 6.2.1: Forces calculated by BEM compared to forces from 3D CFD data.

As can be seen the BEM results are pretty similar to the CFD results. This means
that for a static simulation BEM predicts the forces with almost as accurate as a
CFD calculation. And the big difference is ofcourse that BEM takes less than one
second on an ordinary PC, whereas the CFD calculation takes around 5 hours on
16 CPUs on a cluster.
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6.2.2 Helical Vortex Method (HVM)

In figure 6.2.2 the forces calculated by the Helical Vortex Method is shown.

Figure 6.2.2: Forces calculated by Helical Vortex Method compared to 3D CFD
data.

As can be seen the forces calculated by are also very close to the CFD results. The
simulations take around 5-10 seconds on an ordinary PC.
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6.2.3 Free Vortex Method (FVM)

As mentioned before the Free Vortex Method code still needs to be tuned for wind
turbine applications. Therefore the FVM results are not nearly as good as they
should and could be.

In figure 6.2.3 the forces calculated by the Free Vortex Method are shown.

Figure 6.2.3: Forces calculated by FVM compared to forces from 3D CFD data.

Especially the over-prediction of the forces near the rotor tip are serious, since those
forces have the most impact on predicted power and tip deflection.

The result above most likely have something to do with the model of only one free
tip vortex, instead of several vortices. In figure 6.3.7 the Free Vortex code used
here is compared to another vortex code from National Technical University of
Athens. As can be seen, the Genuvp code does not over-predict the forces at the
tip, however that code has a very long computational time.

Figure 6.2.4: Forces calculated by FVM compared to forces from the Genuvp vortex
particle method code from National Technical University of Athens.

In the above comparison the wind speed is 8 m/s and the rotating speed is 1.0032
rad/s.
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6.2.4 Comparison between the methods

In figure 6.2.5 the different methods for calculating forces are compared to each
other for a wind speed of 11.4 m/s.

Figure 6.2.5: Forces calculated by BEM, compared to forces calculated by HVM
and FVM.

As can be seen the forces calculated by BEM and HVM are very similar, HVM
predicts a slightly higher force than the BEM at this wind speed. The FVM give
much higher forces, which is probably because it is still tuned for helicopters.

In figure 6.2.6 the different methods for calculating forces are compared to each
other for a wind speed of 19 m/s.

Figure 6.2.6: Forces calculated by BEM, compared to forces calculated by HVM
and FVM.

For 19 m/s, at the tip all models predict similarly, where BEM and HVM predict
almost the same forces, whereas FVM has a slightly lower force. At the root however
some differences starts to show. The force calculated by FVM is much higher at
the root then for the other BEM which in turn has quite a bit higher force then
HVM.
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6.3 Forces for Two Way Fluid Structure Interac-
tion

6.3.1 Blade Element Momentum (BEM)

In figure 6.3.1 the forces calculated by the BEM, using both the two-way FSI
method and the one-way FSI method.

Figure 6.3.1: Forces calculated by BEM using the two-way FSI method compared
to forces calculated using the one-way FSI method for a wind speed of 11.4 m/s.

As can be seen there is not much difference at all between the two-way and one-way
FSI method. The difference comes mainly at the tip (which is not a surprise).
However something that is a surpise is that the forces in the flap-wise direction, are
higher for the two-way method, than they are for the one-way method.

In figure 6.3.2, the wind speed has been increased from 11.4 m/s in the previous
figure, to 19 m/s.

At the higher wind speed it can be seen that the difference between the forces
calculated by one-way and two-way FSI, are much bigger then previously.

The reason that there is a much bigger difference between the forces at higher
wind speeds is most likely due to the increased power of the wind which creates a
higher pitching force. The pitching force increases the twist and therefore the forces
become smaller.

In figure 6.3.3 the forces calculated by two-way FSI is compared to the CFD
simulation on a deformed blade.

As can be seen the CFD calculations have a much flatter curve at the tip of the
blade, compared to the one-way FSI forces shown above. However nothing of the
flattness can be seen in the BEM results. For this angle of attack, the difference
does not matter as much as the difference is not that big. However, for higher angle
of attacks this might play an important role.
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Figure 6.3.2: Forces calculated by BEM using the two-way FSI method compared
to forces calculated using the one-way FSI method for a wind speed of 19 m/s.

Figure 6.3.3: Forces calculated by BEM compared to forces from 3D CFD data.

6.3.2 Helical Vortex Method (HVM)

In figure 6.3.4 the forces calculated by the HVM, using both the two-way FSI
method and the one-way FSI method.

As can be seen in the figure there is not much difference at all between the two-way
and one-way FSI method. The difference comes mainly at the tip (which is not a
surprise). For the HVM method the forces in the flap-wise direction are lower for
the two-way method than they are for the one-way method. This was expected,
however, the BEM results showed the opposite.

In figure 6.3.5, the wind speed has been increased from 11.4 m/s in the previous
figure, to 19 m/s.

At the higher wind speed it can be seen that the difference between the forces
calculated by one-way and two-way FSI, are much bigger then previous.

The reason that there is a much bigger difference between the forces at higher
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Figure 6.3.4: Forces calculated by HVM using the two-way FSI method compared
to forces calculated using the one-way FSI method for a wind speed of 11.4 m/s.

Figure 6.3.5: Forces calculated by HVM using the two-way FSI method compared
to forces calculated using the one-way FSI method for a wind speed of 19 m/s.

wind speeds is most likely due to the increased power of the wind which creates a
higher pitching force. The pitching force increases the twist and therefore the forces
become smaller.

In the figure 6.3.9 the forces calculated by two-way FSI is compared to the CFD
simulation on a deformed blade.
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Figure 6.3.6: Forces calculated by HVM compared to forces from 3D CFD data.

6.3.3 Free Vortex Method (FVM)

In figure 6.3.7 below the forces calculated by the FVM, using both the two-way FSI
method and the one-way FSI method.

Figure 6.3.7: Forces calculated by FVM using the two-way FSI method compared
to forces calculated using the one-way FSI method for a wind speed of 11.4 m/s.

As can be seen in the figure the difference between the two-way and one-way FSI
method are very small. The difference comes mainly at the tip where the graph is
very jagged for the two-way method.

In figure 6.3.8, the wind speed has been increased from 11.4 m/s in the previous
figure, to 19 m/s.

As can be seen in the figure the difference between the forces calculated by one-way
and two-way FSI, are much bigger at higher wind speeds.

In figure 6.3.9 the forces calculated by two-way FSI is compared to the CFD
simulation on a deformed blade.

As can be seen the CFD calculations have, at the tip of the blade a much flatter
curve, compared to the one-way FSI forces shown above. The results from FVM
seems to try and flatten out at the tip but something is missing. For this angle
of attack, the difference does not matter as much as the difference is not that big,
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Figure 6.3.8: Forces calculated by HVM using the two-way FSI method compared
to forces calculated using the one-way FSI method for a wind speed of 19 m/s.

Figure 6.3.9: Forces calculated by FVM compared to forces from 3D CFD data.

However for higher angle of attacks this migth play an important role.
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6.3.4 Comparison between the methods

In figure 6.3.10 the different methods for calculating forces are compared to each
other for a wind speed of 11.4 m/s.

Figure 6.3.10: Forces calculated by BEM, compared to forces calculated by HVM
and FVM.

For the two-way method there are some differences between the models at 11 m/s, in
general HVM has a lower force than BEM, which is most likely due to the fact that
the deformed geometry decreases the forces a bit. However HVM have a slightly
higher maximum force. The FVM forces are still much higher than the BEM and
HVM forces.

In figure 6.3.11 the different methods for calculating forces are compared to each
other for a wind speed of 19 m/s.

Figure 6.3.11: Forces calculated by BEM, compared to forces calculated by HVM
and FVM.

For 19 m/s, at the tip there are some small differences. BEM predicts a slightly
higher force than HVM, which in turn has a slightly higher force than FVM. At
the root the models behave the same way as they did in one-way, i.e. FVM gives
much higher forces than BEM which gives higher than HVM.
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6.4 Pressure distribution

The pressure distribution that have been calculated using the method described in
chapter 3.2.1 is compared to the pressure distribution calculated by the 3-D CFD
model.

The results are calculated at the different radial positions where the blade is defined.
In figure 6.4.1 the pressure distributions for the four sections which are closest to
the centre are shown at the radial positions r = 11.75, 15.85, 19.95, 24.05.

Figure 6.4.1: Pressures Calculated by Xfoil compared to 3D CFD pressures.

As can be seen the pressure distribution closest to the root is quite different
from the CFD solution. However the further up the blade the better the results
become.

In figure 6.4.2 the pressure distribution is shown for the radial positions r =
28.15, 32.25, 36.35, 40.45.

Figure 6.4.2: Pressures Calculated by Xfoil compared to 3D CFD pressures.

As can be seen in the figure above, the pressure at these radial position compares
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quite well to the CFD results.

All the above pressure distributions have been for the different DU profiles, the DU
profiles are harder to calculate on for both xfoil and CFD (especially the thicker ones
at the root). In the figure 6.4.3 below the pressure distribution of the first NACA pro-
files can be seen, this is at the radial positions r = 44.55, 48.65, 52.75, 56.16.

Figure 6.4.3: Pressures Calculated by Xfoil compared to 3D CFD pressures.

As can be seen now with the NACA profiles the different pressure distributions
match almost perfectly with the CFD results.

However most likely due to the slightly bigger difference between the forces from
the CFD result and the BEM result, the last two profiles does not have as good
agreement between the different results. This can be seen in figure 6.4.4.

Figure 6.4.4: Pressures Calculated by Xfoil compared to 3D CFD pressures.

This means that in general the pressure distributions get better and better results,
the further out on the blade they are calculated. This is a very good thing, because
the further out on the blade, the higher the forces, and also the higher impact the
force will have on the deflection, as well as on the power output.
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All these pressure distributions are also applied to the structural model, which can
be seen in figure 6.4.5 and figure 6.4.6.

Figure 6.4.5: Pressures Calculated by Xfoil applied to the structural model.

Figure 6.4.6: Pressures Calculated by Xfoil applied to the structural model.
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6.5 Tip Deflection

When the pressure distribution in chapter 4.3 has been applied to the structural
model, it is quite simple to calculate the deformation of the blade. The deformation
of the blade when the incoming wind velocity is 11.4 m/s and the rotational speed
Ω is 12.1 RPM can be seen in figure 6.5.1

Figure 6.5.1: Pressures applied to the structural model creating a deformed blade.

Some interesting values that describe the deformation is the tip deflection in the
edge-wise (DiED) and flap-wise direction (DiFD).

For the blade shown above, these values are DiED=-1.4 and DiFD=6.1.

The tip deflection has been calculated, not only for this specific wind speed, but for
a range of different wind speeds. Similarly to the report [6], In that report the blade
is pitched and has a varying rotational speed Ω depending on the wind velocity.
To be able to compare the results the same values for pitch and Ω is used. These
values can be seen in figure 6.5.2.

Figure 6.5.2: The pitch and the rotational speed of the blade (Ω for different
incoming wind velocities.

These tip deflections have been calculated by the three different methods for
calculating forces. For all three methods both one-way and two-way Fluid Structure
Interaction have been used.
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6.5.1 Blade Element Momentum (BEM)

The figure 6.5.3 shows how the tip deflection varies with the different wind velocities
as described above. The forces are calculated using BEM.

In the figure there are six different lines, the three at the top describe the flap-wise tip
deflection, and the three at the bottom describe the edgewise tip deflection.

The black lines shows the data from the Jonkman et. al. report [6]. The red
lines show the deflection when calculated by one-way FSI. The blue lines show the
deflection when using two-way FSI.

Figure 6.5.3: The tip deflection using our model and calculating forces with BEM
compared to Jonkman et al report DiFD = Deflection in Flapwise Direction, and
DiED = Deflection in Edgewise Direction.

As can be seen in the figure the flap-wise tip deflection follows the Jonkman results
quite well until, at a wind speed of about 15 m/s. The edgewise deflection is way
too high at the low wind speeds and becomes good first after 15 m/s.

The reason for the low tip deflection in the flap-wise direction at high wind speeds
probably comes from the fact that the torque and thrust generated at these velocities
are different than what Jonkman had. The torque and the thrust for the different
wind velocities can be seen in the figure 6.5.4 below.

Figure 6.5.4: The torque and thrust calculated by BEM, compared to the Jonkman
et al report.
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The reason for the high edgewise tip deflection can most likely be found in the
structural model of the blade. Where compared to the Jonkman blade [6], the
strength toward deformation in the edgewise direction is smaller. As expected the
tip deflection when using two-way FSI is smaller than when using one-way FSI, this
is especially true for the high wind speeds.
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6.5.2 Helical Vortex Method (HVM)

The figure 6.5.5 below shows how the tip deflection varies with the different wind
velocities as described above. The forces are calculated using HVM.

Figure 6.5.5: The tip deflection using our model and calculating forces with HVM
compared to Jonkman et al report DiFD = Deflection in Flapwise Direction, and
DiED = Deflection in Edgewise Direction.

As can be seen in the figure the results are almost identical to the BEM results.
The reasons are the same as for the tip deflections when the force was calculated
by the BEM code.

The torque and the thrust for the different wind velocities can be seen in the figure
6.5.6 below.

Figure 6.5.6: The torque and thrust calculated by HVM, compared to the Jonkman
et al report.

77



6.5.3 Free Vortex Method (FVM))

The figure below shows how the tip deflection varies with different wind speeds
when using FVM to calculate the forces.

Figure 6.5.7: The tip deflection using our mode and calculating forces with FVM
compared to Jonkman et al report DiFD = Deflection in Flapwise Direction, and
DiED = Deflection in Edgewise Direction.

As can be seen in the figure, the tip deflections calculated by FVM are way off. At
low wind speed the deflectionsa are way too high and at about 15 m/s the flap-wise
deflection starts getting too low.

The reasons for these results are probably due to the extremely high over-prediction
of the power, torque and thrust that the FVM code does at low wind speeds, and
the eqxtreme under-prediciton of the power at high wind speeds. This can be seen
in the figure 6.5.8 below.

Figure 6.5.8: The torque and thrust calculated by FVM, compared to the Jonkman
et al report.
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6.6 Results of aeroelastic analysis

To test the aeroelastic code, we did a number of analyses. In the following figures,
the frequency is defined as the absolute value of the complex eigenvalue ωn = |λ|,
and the damping ratio as ζ = Re(λ)

|λ| . In addition to the modes shown here there

were modes appearing that had very high damping and a small imaginary part of
their eigenvalues. The physical meaning of these modes, if any, are not clear.

The first analysis is one where the free stream velocity is varied, and the pitch and
rotational velocity is set according to [6]. The resulting aeroelastic damping ratios
and aeroelastic frequencies vs wind speed for the first and second flapwise modes are
shown in figure 6.6.1. As expected, within moderate windspeeds the flapwise modes
are highly damped. Included in the figure are the results of a three-blade analysis
by Jonkman in [6]. In the case of a three-blade analysis there are the collective,
forward whirl (progressive) and backward whirl (regressive) modes. These modes
include centrifugal stiffening, gyroscopic effects and interaction with the tower and
nacelle, so a 100 % agreement is not achievable. We only include them to see if
there is a general trend common in the results. In comparison to Jonkmans results,
the single blade analysis seems to follow the damping curve up to 12 m/s. There is
a peak in both the frequency and damping curve starting after 12 m/s, that is not
seen in Jonkmans results.

Figure 6.6.1: Aeroelastic frequency and damping in our analysis compared to those
reported by Jonkman.

For the same case, we plot the damping in the first edgewise mode together with
those in the lag modes by Jonkman.

In the second analysis, the free stream velocity is set to zero, and the rotational
velocity is varied. This gives small angles of attack and is closer to classical flutter
problem than the first analysis. The twist and pitch angle where set to zero, so the
flow angle is zero during the whole analysis.

The results are shown in figure 6.6.3, and compared to those by Hansen in [7]. The

damping in this case is the logarithmic increment 2π |λ|
Im(λ) . Hansen’s analysis is
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Figure 6.6.2: Aeroelastic frequency and damping in our analysis compared to the
results by Jonkman

done with the tool HAWCstab which uses beam elements and, similar to our model,
a modified Beddoes–Leishman dynamic stall model . In our case, we have carried
out the analysis up to 35 RPM while in the Hansen analysis the goes to 30 RPM.
The overall qualitative behaviour in the frequency curves is similar for both analyses.
We see a flutter mode with a frequency 4.5 Hz at about 25 RPM, involving the
third flapwise mode and the torsional mode.

The damping curves agrees well, at least at the lower rotor speeds. It is not
completely clear if the cause of the discrepancies one can see is an error in the
aeroelastic analysis in itself, or in differences in the blade structural model. The
blade structural model differs in several crucial ways. For instance, the center of
gravity is closer to the leading edge in our model than it is for Hansen. Another
perhaps even more important point is that the first torsional eigenfrequency in
the Hansen analysis is 8 Hz, while it in our case it is just over 6 Hz. On one
hand, a higher torsional frequency in the Hansen case should mean that his blade
is more stable, on the other the 1st torsional is closer to a flapwise frequency in
his case, while in our the frequencies are more separated which increases stability.
We see that the fourth flapwise mode is not very affected, possibly because it has a
higher eigenfrequency than the torsional mode. Another problem could be that the
relative flow angle is zero in our case, while the blade probaly was probably at least
slightly twisted in Hansens analysis. As shown earilier, the relative flow angle is
important.

To get an additional verification of the aeroelastic code, the beam model was also
analyzed. The resulting aeroelastic frequency and damping can be seen in the figures
below. In the pre-flutter range, we see a very good agreement in the frequency
curves of the first torsional and first flapwise modes. The flutter frequency is about
equal in both cases, and happens at almost exactly the rame rotor speed. However
the free frequency of the third flapwise mode is higher and it no longer couples to
the torsional mode, possibly because there are coupling terms missing in this very
simple model.
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Figure 6.6.3: Aeroelastic frequency in our shell model analysis compared to those
reported by Hansen.

Figure 6.6.4: Aeroelastic damping in our shell model analysis compared to those
reported by Hansen.
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Figure 6.6.5: Aeroelastic frequency in our analysis with a beam model compared to
those reported by Hansen.

Figure 6.6.6: Aeroelastic frequency in our analysis with a beam model compared to
those reported by Hansen.
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7 Summary and Conclusions

• A method to automatically create a finite element model of a rotor blade from
a parametrized description has been developed.

• A way to do aeroelastic calculatons on a finite element shell model has been
successfully developed.

• For one-way Fluid Structure Interaction BEM is the best code to use. Espe-
cially when calculating on rather unphysical cases like one would when doing
flutter analysis.

• At low windspeeds the difference between one-way and two-way FSI is really
small. However for higher wind speeds (> 15 m/s) the effects of deformation
of the blade really starts to show.

• For two-way FSI, BEM has the benefit of working for most cases, whereas
with the current code, HVM and FVM might have convergency issues. This
happens mostly when the pitch is too high so that the tip experiences negative
lift.

When doing flutter analysis on a two-way FSI blade BEM is definately prefered.

For a general case where one wants to know the deformation HVM might be
better.
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8 Suggestions for future research

An aeroelastic analysis that involves just a single blade is unconservative in com-
parison to an analysis including the full turbine system, i.e. all three blades, tower,
drivetrain etc that includes the effects of rotation on the blades. It would therefore
be of value to do a model that includes these things. One possibility is to use
the Rotordyn package in NX NASTRAN, or a MATLAB program based on rotor
dynamics. A good report on this is [20]. The tower and shaft could possibly
be modeled with beam elements. A program that writes the stiffness, mass and
damping matrices for three blades, including centrifugal and gyroscopic effects is
already done in this thesis, but further work is necessary.

The state-space formulation of the aeroelasitc analysis lends itself well to model
reduction. A reduced model could be used to test a number of different excitations,
like wind shear, tower shadow effects, different forms of turbulence etc. One could
include a number of wind excitations based on those in IEC, to test if a new blade
design is up to code. The Risø model used in the stability analysis has a term for
varying free stream velocity that we have omitted.

The thesis has shown that BEM gives a good accuracy for steady simulations,
rendering the use of the vortex methods rather unnecessary from a Fluid-Structure
Interaction point-of-view. However for unsteady simulations the effects of BEM
vs the vortex methods have not been tested. Therefore further development of a
vortex code for unsteady simulations would be interesting. The benefits of using a
vortex method for unsteady cases would most likely be that the wake characteristics
would be more accurately calculated (how it behaves). When using vortex methods
for unsteady simulations the effect of other wind turbines etc would also be possible
to calculate.
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A Appendix

A.1 List of scripts & Files

Following is a list and description of the files that make up the structural part of
this thesis.

JNCJ Blade.m an example of how a blade cell can be defined, in this case the
NREL 5 MW blade with our laminate properties.

JNCJ LayupCalc.m help function that calculates the laminate A, B and D-
matrices to use in crosec for the cross sectional displacements. Uses equation
from [2]

JNCJ FemapInput.m a function that writes files readable to the FEMAP
script. It also calculates equivalent sectional beam properties with crosec.

JNCJ StiffnessAndMassMatrix.m reads the stiffness and mass matrix, on
the NX Nastran output4 form, into MATLAB.

JNCJ ElementConnecticity.m reads topological information from FEMAP,
i.e. element connectivity and nodal coordinates, output by JNCJ FemapOutputCoord.BAS.

JNCJ AreaNormals.m function to calculate areas of the elements

JNCJ FindNodesOnZero.m constrains nodes on z = 0, and creates list of free
and constrained nodes.

JNCJ SectionalFEM.m calculates the matrix Msec fem, that determines sec-
tional displacements from nodal displacements, according to equation (3.3.9).

JNCJ DampingMatrix.m creates a modal damping matrix with given damp-
ing ratio, from equation (2.3.16).

JNCJ Gravity.m creates the force vector under gravity

JNCJ RisoCoord.m creates a matrix that gets the effective angle of attack,
quarter chord downwash angle etc. , from the sectional displacements and
stall variables

JNCJ SSeom.m formulates the eom on state-space form, including the stall
variables in the state vector, but without any cross coupling due to linearized
force.

JNCJ AerodynCoeffLin.m linearizes the aerodynamic coefficients as functions
of the displacements and stall variables.

JNCJ dfdC.m creates nodal forces from aerodynamic coefficients

JNCJ FullAeroElasticAmatrix.m makes the final linearization and combines
with the equation from modal reduction 1 .

JNCJ AeroElastic.m List of commands to make an aeroelastic analysis

JNCJ ModesByImag.m After an aeroelastic eigenvalue analysis, this program
sorts modes by imaginary part of eigenvalue

JNCJ ReadCrosec.m reads results from the program Crosec

JNCJ PlotCompare1.m Comparison of cross sectional propeties with DOWEC
data 1

JNCJ PlotCompare2.m Comparison of cross sectional propeties with DOWEC
data 2
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JNCJ FEMAP.BAS script in FEMAP API that reads the files written by
JNCJ FemapInput.m, creates and meshes a model of the blade, meshes it and
creates a number of analyses

JNCJ FemapOutputCoord.BAS script in FEMAP API that outputs element
connectivity and nodal coordinates to be read by JNCJ ElementConnectivity.m

JNCJ CalculatePressures.m The main pressure distribution function, de-
pending on what data are available, and the angle of attack, this program
calls different functions that calculate the pressure distribution

JNCJ CalculatePD High.m Itterative method for calculating the pressure
distribution for high angle of attacks

JNCJ CalculatePD Low.m Itterative method for calculating the pressure
distribution for low angle of attacks

JNCJ LoadPresDist.m Loads and interpolates a pressure distribution which
has the same value of CL / CD as the fluid force calculation

JNCJ StorePresDist.m A program that stores alot of pressure distributions
for a given airfoil, should be used when a new airfoil is used and no data for
JNCJ LoadPresDist.m exists

JNCJ onewayFSIBEM.m BEM program that calculates the forces on a wind-
turbine, depending on settings the JNCJ CalculatePressures.m program can
be called, and the deformation of the blade can be calculated using the
program JNCJ CalculateDeflection.m

JNCJ onewayFSIHVM.m HVM program that calculates the forces on a wind-
turbine, depending on settings the JNCJ CalculatePressures.m program can
be called, and the deformation of the blade can be calculated using the
program JNCJ CalculateDeflection.m

JNCJ onewayFSIFVM.m FVM program that calculates the forces on a wind-
turbine, depending on settings the JNCJ CalculatePressures.m program can
be called, and the deformation of the blade can be calculated using the
program JNCJ CalculateDeflection.m

JNCJ twowayFSIBEM.m BEM program that calculates the forces and the
deformation on a windturbine, Where the force and deformation is calculated
for a deformed blade, The program makes use of JNCJ CalculatePressures.m
and JNCJ CalculateDeflection.m

JNCJ twowayFSIHVM.m HVM program that calculates the forces and the
deformation on a windturbine, Where the force and deformation is calculated
for a deformed blade, The program makes use of JNCJ CalculatePressures.m
and JNCJ CalculateDeflection.m

JNCJ twowayFSIFVM.m FVM program that calculates the forces and the
deformation on a windturbine, Where the force and deformation is calculated
for a deformed blade, The program makes use of JNCJ CalculatePressures.m
and JNCJ CalculateDeflection.m

JNCJ readFluidProfiles.m Reads the geometry that has been created for the
solid model, and outputs the data ready to be used by any of the fluid programs
(onewayBEM, onewayHVM, onewayFVM, twowayBEM, twowayHVM and
twowayFVM)

xfoil.exe Receives commands from either JNCJ StorePresDist.m, JNCJ CalculatePD7.m
or JNCJ CalculatePD3.m and calculates a pressure distribution, and the CL,
CD and CM that that pressure distribution gives
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A.2 A typical command file for xfoil

PLOP

G

-

LOAD NACA64 618.dat

PANE

MDES

FILT 1.00

EXEC

EXEC

EXEC

EXEC

EXEC

PANE

XYCM

0.25

0

OPER

VPAR

N 9.00

VACC 0.0100

XTR

1.0000

1.0000

-

VISC 10148276.1718

MACH 1.071419

ITER 1000

pacc

Polar1.txt

-

CL

1.0248

CPWR PressureBlade1.txt

PACC

-

QUIT
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A.3 Example of blade cell

% Name of Blade, this will be the name of

% the folder where data is saved

Blade.Name = ’NREL5’;

% no sections used to create FE-model

nSect = 34 ;

Blade.nsections = nSect;

% no sections used in fluid model

Blade.nFluidSections = 19;

% Definition of materials used in blade

% mat. no. ->

% row

% 1 E_L

% 2 E_T

% 3 G_LT

% 4 ny_LT

% 5 rho

Blade.MatlInBlade = [41.8*1e9 13.6*1e9 27.7*1e9 0.256*1e9 3.5*1e9;

14.0*1e9 13.3*1e9 11.8*1e9 0.256*1e9 2.5*1e9;

2.63*1e9 11.8*1e9 7.2*1e9 0.022*1e9 1.4*1e9;

0.28 0.5 0.39 0.3 0.3

1920 1780 1780 200 1100];

% Use of material

Blade.SparMatl = 1;

Blade.ShearMatl = 2;

Blade.SkinMatl = 3;

Blade.FoamMatl = 4;

Esp = Blade.MatlInBlade(1,Blade.SparMatl);

Gsp = Blade.MatlInBlade(3,Blade.SparMatl);

rsp = Blade.MatlInBlade(5,Blade.SparMatl);

Esh = Blade.MatlInBlade(1,Blade.ShearMatl);

Gsh = Blade.MatlInBlade(3,Blade.ShearMatl);

rsh = Blade.MatlInBlade(5,Blade.ShearMatl);

Eskin = Blade.MatlInBlade(1,Blade.SkinMatl);

Gskin = Blade.MatlInBlade(3,Blade.SkinMatl);

rskin = Blade.MatlInBlade(5,Blade.SkinMatl);

% Radial position of sections

Zs(1:nSect) = ...

[0.000 0.005 0.007 0.009 0.011 ...

0.013 0.024 0.026 0.047 0.068 ...

0.089 0.114 0.146 0.163 0.179 ...

0.195 0.222 0.249 0.276 0.358 ...

0.439 0.520 0.602 0.667 0.683 ...

0.732 0.764 0.846 0.894 0.943 ...

0.957 0.972 0.986 1.000 ]*61.5;
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% Chord length of sections

Chord(1:nSect)= ...

[3.5018 3.5018 3.5018 3.5018 3.5018 ...

3.5018 3.5621 3.5738 3.7257 3.8770 ...

4.0289 4.2035 4.4372 4.5535 4.6445 ...

4.6912 4.6648 4.6051 4.5184 4.2576 ...

3.9538 3.6377 3.3315 3.0867 3.0258 ...

2.8419 2.7195 2.4139 2.2257 1.7368 ...

1.4606 1.1291 0.7429 0.3075];

% Twist angle of chord line relative to rotor plane

TwistAng(1:nSect) = ...

[13.308 13.308 13.308 13.308 13.308 ...

13.308 13.308 13.308 13.308 13.308 ...

13.308 13.308 13.308 13.177 13.046 ...

12.915 12.133 11.350 10.568 9.166 ...

7.688 6.180 4.743 3.633 3.383 ...

2.735 2.348 1.380 0.799 0.280 ...

0.210 0.140 0.070 0.000]*pi/180;

% Fractional pitch

Xpitch(1:nSect)= ...

[0.500 0.500 0.500 0.500 0.500 ...

0.500 0.499 0.498 0.483 0.468 ...

0.453 0.435 0.410 0.400 0.390 ...

0.380 0.378 0.377 0.375 0.375 ...

0.375 0.375 0.375 0.375 0.375 ...

0.375 0.375 0.375 0.375 0.375 ...

0.375 0.375 0.375 0.375 ];

% Create transitional profile types

PT3 = transitP(Zs(3), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT4 = transitP(Zs(4), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT5 = transitP(Zs(5), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT6 = transitP(Zs(6), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT7 = transitP(Zs(7), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT8 = transitP(Zs(8), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT9 = transitP(Zs(9), Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT10 = transitP(Zs(10),Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT11 = transitP(Zs(11),Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT12 = transitP(Zs(12),Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT13 = transitP(Zs(13),Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT14 = transitP(Zs(14),Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT15 = transitP(Zs(15),Zs(2),Zs(16),{’Cylinder’},{’DU40_A17’});

PT3 = PT3{1}; PT4 = PT4{1}; PT5 = PT5{1}; PT6 = PT6{1};

PT7 = PT7{1}; PT8 = PT8{1}; PT9 = PT9{1}; PT10 = PT10{1};

PT11 = PT11{1}; PT12 = PT12{1}; PT13 = PT13{1}; PT14 = PT14{1};

PT15 = PT15{1};

% Assign profile types

ProfileType(1:nSect) = ...

{’Cylinder’ ’Cylinder’ ...

PT3 ...

PT4 ...
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PT5 ...

PT6 ...

PT7 ...

PT8 ...

PT9 ...

PT10 ...

PT11 ...

PT12 ...

PT13 ...

PT14 ...

PT15 ...

’DU40_A17’ ’DU40_A17’ ...

’DU35_A17’ ’DU35_A17’ ...

’DU30_A17’ ...

’DU25_A17’ ...

’DU21_A17’ ’DU21_A17’ ...

’NACA64_618’ ’NACA64_618’ ’NACA64_618’ ’NACA64_618’ ’NACA64_618’ ...

’NACA64_618’ ’NACA64_618’ ’NACA64_618’ ’NACA64_618’ ’NACA64_618’ ...

’NACA64_618’ };

Blade.Chord = Chord;

Blade.Xpitch = Xpitch;

Blade.TwistAng = TwistAng;

Blade.Z = Zs;

v = zeros(nSect,1);

Sh = 1:nSect;

Sh1X = v; Sh2X=v;

% Spar cap width over the majority of the blade

Sh1X(Sh) = zeros(size(Sh ))-.62*.615;

Sh2X(Sh) = zeros(size(Sh ))+.62*.615;

Shb = v; Shb(Sh)=1; % = 1 if shear webs present in section

% Make spar cap taper off at tip of the blade

Sh1X(end) = Sh1X(end) + .3;

Sh1X(end-1) = Sh1X(end-1) + .2;

Sh1X(end-2) = Sh1X(end-2) + .1;

Sh1X(end-3) = Sh1X(end-3) + .01;

Sh2X(end) = Sh2X(end) - .3;

Sh2X(end-1) = Sh2X(end-1) - .2;

Sh2X(end-2) = Sh2X(end-2) - .1;

Sh2X(end-3) = Sh2X(end-3) - .01;

% Trailing edge reinforcement x-position

TrRe = 1:nSect;

TrReX(TrRe) = Chord(TrRe).*(1-Xpitch(TrRe))-.3;

% Leading edge reinforcement x-position

LeReX(TrRe) = Chord(TrRe).*(-Xpitch(TrRe))+.3;

% Make trailing edge reinforcement taper off at tip of the blade

TrReX(end-4) = 0.85;
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TrReX(end-3) = 0.6;

TrReX(end-2) = 0.45;

TrReX(end-1) = 0.3;

TrReX(end) = 0.15;

TrReX = TrReX’;

LeReX = LeReX’;

% Make leading edge reinforcement taper off at tip of the blade

LeReX(end-8) = -0.85;

LeReX(end-7) = -0.8;

LeReX(end-6) = -0.75;

LeReX(end-5) = -0.65;

LeReX(end-4) = -0.55;

LeReX(end-3) = -0.45;

LeReX(end-2) = -0.33;

LeReX(end-1) = -0.22;

LeReX(end) = -0.1;

%TrReX(TrReX<0)=-Chord(TrReX<0).*Xpitch(TrReX<0)+.001;

TrReb = v; TrReb(TrRe) = 1; % = 1 if reinforcement present in third section

nstr = 5;

Reb = [Shb Shb TrReb Shb ];

ReX = [Sh1X Sh2X TrReX LeReX];

% Thickness of foam in the aft panel

Aftpanel =[0.0000 0.0000 0.0000 0.0000 0.0000 ...

0.0004 0.0013 0.0049 0.0113 0.0189 ...

0.0227 0.0227 0.0227 0.0227 0.0227 ...

0.0227 0.0227 0.0227 0.0227 0.0227 ...

0.0227 0.0227 0.0227 0.0227 0.0208 ...

0.0170 0.0113 0.0057 0.0038 0.0019 ...

0.0019 0.0019 0.0019 0.0000];

%Thickness of foam in the fore panel

LEpanel = [0.0000 0.0000 0.0000 0.0000 0.0000 ...

0.0004 0.0013 0.0049 0.0113 0.0189 ...

0.0227 0.0227 0.0227 0.0227 0.0227 ...

0.0227 0.0227 0.0227 0.0227 0.0227 ...

0.0227 0.0227 0.0227 0.0227 0.0208 ...

0.0170 0.0113 0.0057 0.0038 0.0019 ...

0.0019 0.0019 0.0019 0.0000];

%Thickness of uni-directional material in the spar caps

thsp = [0 0.0004 0.0008 0.0011 0.0015 ...

0.0038 0.0049 0.0049 0.0076 0.0113 ...

0.0193 0.0257 0.0356 0.0420 0.0450 ...

0.0514 0.0514 0.0514 0.0484 0.0450 ...

0.0420 0.0386 0.0321 0.0257 0.0242 ...

0.0178 0.0129 0.0064 0.0034 0.0019 ...

0.0019 0.0019 0.0019 0 ];

%Thickness of uni-directional material in the LE reinforcement

thTrRe1 = [0 0.0004 0.0030 0.0030 0.0030 ...

0.0030 0.0030 0.0034 0.0049 0.0068 ...
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0.0095 0.0125 0.0151 0.0189 0.0227 ...

0.0227 0.0227 0.0227 0.0113 0.0113 ...

0.0057 0.0030 0.0015 0.0015 0.0015 ...

0.0015 0.0015 0.0015 0.0015 0.0015 ...

0.0015 0.0015 0.0015 0 ];

%Thickness of uni-directional material in the TE reinforcement

thTrRe2 = [0 0 0 0 0 ...

0 0 0 0 0 ...

0.0227 0.0227 0.0227 0.0227 0.0227 ...

0.0227 0.0227 0.0227 0.0151 0.0151 ...

0.0076 0.0038 0.0038 0.0038 0.0038 ...

0.0038 0.0038 0.0038 0.0038 0.0038 ...

0.0038 0.0038 0.0038 0];

% Root buildup

thRoot = [0.0340 0.0340 0.0340 0.0340 0.0340 ...

0.0340 0.0340 0.0340 0.0340 0.0102 ...

0.0057 0.0019 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 ];

% Skin thickness + Root

thskin = 0.0019*ones(1,nSect);

thskin = thskin + .8*thRoot;

for i = 1:nSect

% Number of strips at section

Blade.Sect{i}.nstr = nstr;

% Z coordinate of section

Blade.Sect{i}.Z = Zs(i);

% Chord of section

Blade.Sect{i}.Chord = Chord(i);

% Twist angle of section

Blade.Sect{i}.TwistAng = TwistAng(i);

% Pitch of section

Blade.Sect{i}.Xpitch = Xpitch(i);

% Profile type of section

Blade.Sect{i}.ProfileType = ProfileType(i);

% Material parameters for FEMAP

Blade.Sect{i}.E1out = Blade.MatlInBlade(1,:);

Blade.Sect{i}.E2out = Blade.MatlInBlade(2,:);

Blade.Sect{i}.Gout = Blade.MatlInBlade(3,:);

Blade.Sect{i}.nyout = Blade.MatlInBlade(4,:);

Blade.Sect{i}.rout = Blade.MatlInBlade(5,:);

94



% Number of plys in each laminated section

Blade.Sect{i}.l = [5 4 4 4 4 4 4 4 4 5 3 3];

% Definition of laminates

% Format:

% [ Material no. Thickness Angle ]

% Trailing edge reinforcement 1

Blade.Sect{i}.L{1} = [3 thskin(i) 0

1 .6*thTrRe1(i) 0;

4 .25*Aftpanel(i) 0;

3 .003*.615 0

5 0.005*0.615 0];

% Skin 1

Blade.Sect{i}.L{2} = [3 thskin(i) 0;

4 Aftpanel(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

% Spar 1

Blade.Sect{i}.L{3} = [3 thskin(i) 0;

1 0.7*thsp(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

%Skin 3

Blade.Sect{i}.L{4} = [3 thskin(i) 0;

4 LEpanel(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

% LE Reinf

Blade.Sect{i}.L{5} = [3 thskin(i) 0

1 1.4*thTrRe1(i) 0;

3 .003*.615 0

5 0.005*0.615 0];

% LE Reinf

Blade.Sect{i}.L{6} = [3 thskin(i) 0

1 1.4*thTrRe1(i) 0;

3 .003*.615 0

5 0.005*0.615 0];

% Skin 4

Blade.Sect{i}.L{7} = [3 thskin(i) 0;

4 LEpanel(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

% Spar 2

Blade.Sect{i}.L{8} = [3 thskin(i) 0;

1 1.3*thsp(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

%Skin 5
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Blade.Sect{i}.L{9} = [3 thskin(i) 0;

4 Aftpanel(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

% Trailing edge reinforcement 2

Blade.Sect{i}.L{10} = [3 thskin(i) 0

1 .6*thTrRe1(i) 0;

4 .25*Aftpanel(i) 0;

3 .003*.63 0

5 0.005*0.615 0];

% Shear web 1

Blade.Sect{i}.L{11} = [2 0.003*.63 0 ;

4 0.08*.615 0 ;

2 0.003*.63 0 ];

% Shear web 2

Blade.Sect{i}.L{12} = [2 0.003*.63 0 ;

4 0.08*.615 0 ;

2 0.003*.63 0 ];

for k = 1:2*nstr+2

Blade.Sect{i}.th(k) = sum(Blade.Sect{i}.L{k}(:,2));

[A B D] = layupcalc(Blade.Sect{i}.L{k}(:,1)’,Blade.Sect{i}.L{k}(:,2)’,Blade.Sect{i}.L{k}(:,3)’,(Blade.MatlInBlade));

Blade.Sect{i}.E(k) = (A(1,1)*A(2,2)-A(1,2)^2)/(A(2,2)*Blade.Sect{i}.th(k));

Blade.Sect{i}.G(k) = A(3,3)/Blade.Sect{i}.th(k);

Blade.Sect{i}.r(k) = sum(Blade.MatlInBlade(5,Blade.Sect{i}.L{k}(:,1)).*Blade.Sect{i}.L{k}(:,2)’)/Blade.Sect{i}.th(k);

end

% Print x coordinates of reinforcements

for j= 1:nstr-1

if Reb(i,j) == 1

Blade.Sect{i}.xstr(1,nstr-j) = ReX(i,j);

Blade.Sect{i}.xstr(2,nstr-j) = ReX(i,j);

end

end

Blade.Sect{i}.connect = [3 4 ;

7 8];

end

% Some modifications

Blade.Sect{1}.l = [5 4 3 4 4 4 4 3 4 5 3 3];

Blade.Sect{1}.L{3} = [3 thskin(1)/3 0;

3 thskin(1)/3 0;

3 thskin(1)/3 0];

Blade.Sect{1}.L{8} = [3 thskin(1)/3 0;

3 thskin(1)/3 0;

3 thskin(1)/3 0];
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Blade.Sect{1}.E(nstr-1)=Eskin;

Blade.Sect{1}.E(nstr+2)=Eskin;

Blade.Sect{1}.G(nstr-1)=Gskin;

Blade.Sect{1}.G(nstr+2)=Gskin;

Blade.Sect{1}.r(nstr-1)=rskin;

Blade.Sect{1}.r(nstr+2)=rskin;

Blade.Sect{1}.th(nstr-1)=thskin(1);

Blade.Sect{1}.th(nstr+2)=thskin(1);

97


	Abstract
	Contents
	Introduction
	Background
	Purpose
	Software
	Limitations

	Blade Model
	Blade design
	Spar caps
	Shear webs
	Design for aerodynamic stability

	Blade model
	Finite element model of wind turbine blades
	Accuracy of torsion results when using offset shells
	NREL Blade

	Modal reduction
	Structural damping


	Aerodynamics
	Methods for calculating the aerodynamic forces
	Classical BEM Method
	Vortex Methods

	Method for applying the aerodynamic forces
	Pressure Distribution
	XFoil

	Two-way Fluid Structure Interaction
	Derivation of equivalent sectional displacements


	Aeroelasticity
	Aerodynamic stability
	Aerodynamic damping on one section
	Stall induced vibrations
	Flutter
	Aeroelastic stiffness and damping matrix
	Including stall variables in eigenvalue analysis

	Dynamic Stall
	Using dynamic stall for flutter analys


	Model verification
	CFD calculation
	Beam model

	Results
	Blade model results
	Eigenfrequencies and eigenmodes of the blade

	Aerodynamic forces
	Blade Element Momentum (BEM)
	Helical Vortex Method (HVM)
	Free Vortex Method (FVM)
	Comparison between the methods

	Forces for Two Way Fluid Structure Interaction
	Blade Element Momentum (BEM)
	Helical Vortex Method (HVM)
	Free Vortex Method (FVM)
	Comparison between the methods

	Pressure distribution
	Tip Deflection
	Blade Element Momentum (BEM)
	Helical Vortex Method (HVM)
	Free Vortex Method (FVM))

	Results of aeroelastic analysis

	Summary and Conclusions
	Suggestions for future research
	Appendix
	List of scripts & Files
	A typical command file for xfoil
	Example of blade cell


