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This paper introduces a new approach for gradient computations on node-centered unstruc-
tured grids. The proposed approach is to derive a gradient algorithm from a least squares
approximation, where a local system is solved to introduce connectivity between neighbouring
nodes. The resulting scheme forms a globally coupled linear system of equations for the gradients
which can be solved efficiently by iterative techniques. Fourth-order gradient accuracy for
interior nodes can be obtained on isotropic quadrilateral and mixed elements (quadrilaterals
and triangles) grids. The same accuracy is achieved on quadrilateral and mixed elements grids
with high-aspect-ratio. Additionally, a different formulation to the standard distance weighted
least squares node-centered gradients is proposed, which shows robust second-order accuracy
on grids with high-aspect-ratio compared to the standard formulation. The paper concludes
with a proposed continuation for future developments.

I. Introduction

Computational Fluid Dynamics (CFD) tools are now routinely used for direct support/guidance of fast-paced
engineering design processes in the aerodynamic industry. The gradient reconstruction scheme is a crucial part in a

CFD analysis, which is closely associated to computational accuracy and efficiency, where the finite-volume methods is
an industry standard. Finite volume discretizations are usually divided into cell-centered and node-centered approaches
[1, 2]. In the cell-centered approach, the solution is defined at the centers of the grid elements, where the cell center
coordinates are typically defined as the averages of the coordinates of the cell’s vertexes. In the node-centered approach,
the solutions are defined at the grid nodes. Control volumes are constructed around the grid nodes by a dual-grid, where
the faces between control volumes are located at the midpoints between nodes. Since this study is focused towards a
Node-centered finite-volume solver [3, 4], the focus is placed on a node-centered gradient reconstruction scheme.

Two common gradient reconstruction methods for unstructured finite-volume schemes are the Green-Gauss (GG)
(see for example [5]) and Least Squares (LSQ) methods (see for example [6]). The LSQ method is a very popular
method for unstructured grids, where the gradients are computed as a solution to a LSQ problem of fitting a polynomial
over solution values in nearby cells. The LSQ method is more flexible than the GG method in that it is designed to be
exact for linear functions on any type of grid, and also can be extended to high-order by fitting high-order polynomials.
A drawback is, however, that high-order LSQ methods require large stencils, thus being less attractive for parallel
implementation and for the construction of effective implicit solvers.

A recent approach called the variational reconstruction (VR) [7] method was proposed. In this method, a globally
coupled system of linear equations for the gradients is found by minimizing the solution jumps at cell faces. The system
is iteratively solved along with a finite-volume solver. In case that only one iteration is performed for the gradients per
solver iteration, the cost per iteration is almost the same as the explicit methods suchs as the GG or LSQ methods. A
similar approach, the Implicit Green-Gauss (IGG) gradient method [8], was derived from a second-order finite-volume
discretization of a hyperbolic diffusion model. A common feature shared among these methods is that higher order
can be achieved while still retaining a compact formulation. However, both methods were designed for cell-centered
schemes, where the high accuracy gradients are assumed to be stored at the cell centers. Inspired by the these methods,
we have explored a similar implicit gradient methodology, but targeted towards a node-centered scheme.
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The presented work shares many similarities with high-order implicit finite difference (FD) methods called compact
difference (CD) methods, also known as Padé schemes [9, 10]. The main difference between the CD and classical FD
schemes is the computational stencil employed in the formulation of the discretization formulas. In the CD methods,
the derivatives approximations are the results of solving linear systems of equations formulated based on coefficients
calculated for all grid points along particular node lines. It makes the CD schemes much more accurate than FD methods.
The CD schemes have been successfully applied on non-uniform meshes and in irregular domains, e.g. see [11–16].
However, in these works, the CD schemes are implemented with an underlying structure (Cartesian or curvilinear
coordinate system) assumed. In the present work, we seek to extend the CD framework to fully unstructured grids,
containing quadrilaterals, triangles or mixed elements.

The paper starts with the mathematical formulation of the implicit gradient scheme. A detailed investigation of
the performance of the scheme to reproduce a known function on unstructured grids is then presented. Finally, some
conclusions are made with a proposed continuation of the work.

II. Compact Gradient Reconstruction
A compact finite difference Padé scheme for approximating a derivative on a 1D grid can be written [9, 10, 17] as
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where the coefficients {𝛽𝑖−1, 𝛽𝑖 , 𝛽𝑖+1, 𝛾𝑖+1, 𝛾𝑖 , 𝛾𝑖−1} will set the order of the scheme. To obtain an approximation for the
first derivative at node 𝑖, a polynomial can be fitted to pass through nodes 𝑖 − 1, 𝑖, 𝑖 + 1, where both the variable values
at nodes 𝑖 − 1, 𝑖, 𝑖 + 1 and the first derivatives at nodes 𝑖 − 1, 𝑖 + 1 will be used. Using this compact formulation as in
Eq. (1), a polynomial of fourth-degree can be constructed. Note that for a non-equidistant grid spacing, the coefficients
in Eq. (1) need to depend on grid metrics to maintain a high order. The gradient scheme in Eq. (1) can be written as

𝑃1𝐷
𝜕𝝓

𝜕𝑥
= 𝑄1𝐷𝝓, (2)

which has to be solved each iteration if not the inverse solution 𝜕𝝓
𝜕𝑥 = 𝑃−1

1𝐷𝑄1𝐷𝝓 can be easily found. To extend the
compact scheme for higher dimensions, Eq. (1) can readily be applied along grid lines if the grid is structured (see e.g.
Visbal et al. [11] for application in a curvilinear coordinate system). However, for an unstructured grid containing mixed
elements (quadrilaterals and triangles) considered in this work, Eq. (1) can not be applied in a straight forward manner.
In this work, we seek to derive an expression similar to Eq. (1) which is valid for higher dimensions on unstructured
grids.

The derivation is made in 2D, the extension to 3D is straight forward. Consider a node 𝑖 with a nearest neighbouring
node 𝑗 separated by a distance vector d𝑖 𝑗 , as shown in Fig. 1. Here, an unstructured grid containing mixed elements of
quadrilaterals and triangles is considered, where only nodes 𝑗 sharing an element with node 𝑖 are included to maintain
the compact formulation. The nodal value and the gradients of an arbitrary function 𝜙 at node 𝑗 can be expressed from a
polynomial expansion around node 𝑖:
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(3)

where 𝑎𝑘 is the unknown coefficients of the polynomial, 𝑘 = 𝑙 (𝑙+1)
2 + 𝑚 and 𝐾 is the polynomial order. 𝑀 is the number

of terms in the polynomial expansion, where the relation between 𝑀 and 𝐾 is 𝑀 = 𝐾 (𝐾+3)
2 in 2D. The normalized

distances are expressed as
Δ𝑥𝑖 𝑗 =

𝑥 𝑗 − 𝑥𝑖

𝐿𝑖,𝑥
, Δ𝑦𝑖 𝑗 =

𝑦 𝑗 − 𝑦𝑖

𝐿𝑖,𝑦
(4)
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𝜙 𝑗 ,∇𝜙 𝑗

𝜙𝑖, ∇𝜙𝑖

d𝑖 𝑗

Fig. 1 Notation for dual grid control-volumes for a finite-volume discretization. The dual grid is generated from
a node-centered unstructured grid.

where 𝐿𝑖,𝑥 , 𝐿𝑖,𝑦 are normalization factors for node 𝑖. The choice of these factors are crucial to avoid growth of the
condition number of the reconstruction matrix with grid refinement [18]. A natural choice is to choose the normalization
according to the maximum distance to a neighbouring node 𝑗

𝐿𝑖,𝑥 = 𝐿𝑖,𝑦 = max
𝑗

𝑑𝑖 𝑗 (5)

where
𝑑𝑖 𝑗 = |d𝑖 𝑗 | =

√︃
(𝑥 𝑗 − 𝑥𝑖)2 + (𝑦 𝑗 − 𝑦𝑖)2 (6)

is the distance between node 𝑖 and neighbouring node 𝑗 . In the work by Lou et al. [18] they tested a different
normalization according to:

𝐿𝑖,𝑥 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)/2, 𝐿𝑖,𝑦 = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)/2, (7)

which uses the local grid spacing in each coordinate direction. Here, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛 and 𝑦𝑚𝑖𝑛 are the maximum and
minimum coordinates of node 𝑖 and neighbouring nodes 𝑗 in 𝑥− and 𝑦−direction, respectively. This is helpful and
important to remove the stiffness of the system matrices (Eqs. (9) and (13)) for higher-order approximations [18]. In
this work, we also investigate a slightly different formulation, which can be seen as a combination of Eqs. (5) and (7),
and is given by

𝐿𝑖,𝑥 = max
𝑗

|𝑥 𝑗 − 𝑥𝑖 |, 𝐿𝑖,𝑦 = max
𝑗

|𝑦 𝑗 − 𝑦𝑖 |. (8)

The coefficients 𝑎𝑘 in Eq. (3) are estimated by summing over 𝑗 ∈ {1, ..., 𝑁𝑏} nearest neighbours to node 𝑖. This
leads to the following set of equations:



Δ𝑥𝑖1 Δ𝑦𝑖1 Δ𝑥2
𝑖1 Δ𝑥𝑖1Δ𝑦𝑖1 Δ𝑦2

𝑖1 · · ·
...

...
...

...
...

. . .

Δ𝑥𝑖𝑁𝑏 Δ𝑦𝑖𝑁𝑏 Δ𝑥2
𝑖𝑁𝑏

Δ𝑥𝑖𝑁𝑏Δ𝑦𝑖𝑁𝑏 Δ𝑦2
𝑖𝑁𝑏

· · ·
1 0 2Δ𝑥𝑖1 Δ𝑦𝑖1 0 · · ·
...

...
...

...
...

. . .

1 0 2Δ𝑥𝑖𝑁𝑏 Δ𝑦𝑖𝑁𝑏 0 · · ·
0 1 0 Δ𝑥𝑖1 2Δ𝑦𝑖1 · · ·
...

...
...

...
...

. . .

0 1 0 Δ𝑥𝑖𝑁𝑏 2Δ𝑦𝑖𝑁𝑏 · · ·


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𝜕𝑥 (x1)
...
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𝜕𝑦 (x1)
...
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𝜕𝑦 (xNb )



(9)
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where 𝑎1 = 𝐿𝑖,𝑥
𝜕𝜙
𝜕𝑥 (xi) and 𝑎2 = 𝐿𝑖,𝑦

𝜕𝜙
𝜕𝑦 (xi) by construction. Equation (9) can be expressed as 𝐴𝑥 = 𝑏, where 𝐴 has

the size 3𝑁𝑏 × 𝑀 , 𝑥 has the size 𝑀 × 1 and 𝑏 has the size 3𝑁𝑏 × 1. The solution to Eq. (9) is found in a least squares
sense, since the local system may be overdetermined, upon the number of neighbours 𝑁𝑏 to node 𝑖 and the polynomial
order 𝐾 assumed. Note that for a quadrilateral grid where each interior node has 8 neighbours sharing an element, we
have 3𝑁𝑏 > 𝑀 for a fourth-order polynomial.

The least square solution for Eq. (9) is found by minimising | |𝐴𝑥 − 𝑏 | |22, where the matrix 𝐴 is decomposed using
QR factorization via the Householder transformation [19]:

𝐴 = 𝑄𝑅; 𝑄−1 = 𝑄𝑇 ; 𝐶 = (𝐴)−1 = 𝑅−1𝑄𝑇 , (10a)
⇒ 𝑥 = 𝐶𝑏, (10b)

where 𝑄 is an orthonormal matrix and 𝑅 is an upper triangular, non singular matrix. Since we are only interested in
the gradients, only the first two rows of 𝐶 are kept. The higher order terms contribute to an increased accuracy of the
gradients. The first two rows of 𝐶 now contains the connectivity coefficients between the gradient at node 𝑖, nodal
values at neighbouring nodes 𝑗 and gradients at neighbouring nodes 𝑗 . This can be seen from the the first two rows of
Eq. (10b): "
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#
(11)

By expanding the terms on the right hand side of Eq. (11) and moving the terms which contains coefficients from
neighbouring gradient values at nodes 𝑗 to node 𝑖 to the left hand side, we get the following linear system for node 𝑖:
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Equation (12) is then evaluated for all nodes 𝑁 in the grid, which results in the following global sparse block linear
system:

"
𝐶1,𝑑𝑥 𝐶1,𝑑𝑦

𝐶2,𝑑𝑥 𝐶2,𝑑𝑦

#
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expressed as

𝑃2𝐷
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#
= 𝑄2𝐷
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𝝓
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(14)

The order of the solution of Eq. (14), depend on the polynomial order 𝐾 in Eq. (3). In the current formulation, the order
of the scheme is increased by including connectivity from neighbouring gradients, allowing a higher polynomial order
𝐾 in Eq. (3) while maintaining the compact formulation of only including neighbours according to the stencil in Fig.
1. The effective stencil however, incurred in Eq, (13), then span over the entire grid. This method will be referred to
implicit LSQ (ILSQ).

The coefficients of 𝑃2𝐷 and 𝑄2𝐷 only depend on grid metrics, if the grid is stationary these can be computed in
preprocessing step. The appearance of the off-diagonal block elements 𝐶1,𝑑𝑦 ,𝐶2,𝑑𝑥 in Eq. (13) is a result due to the
formulation of the two-dimensional polynomial expansion in Eq. (3) and the solution of the least square system in
Eq. (10). For a uniform cartesian grid, the resulting coefficients in 𝐶1,𝑑𝑦 and 𝐶2,𝑑𝑥 are zero. The coefficients in 𝑃2𝐷
and 𝑄2𝐷 then reduce to the 1D case in Eq. (1) in each coordinate direction, with coefficients according to the classical
compact fourth-order formula [9, 10]
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A. Boundary Conditions
In this paper, the high-order compact gradient scheme is only considered for interior nodes. For a Neumann boundary

condition, the gradients are specified at the boundary and the coefficients in Eq. (14) may be moved to the right hand
side. For a Dirichlet boundary condition, the boundary nodes requires special care. According to Gustafsson [20], the
global order of the scheme is conserved if the boundary nodes are closed with one order less than the interior nodes. For
the ILSQ scheme with target fourth-order accuracy, the boundaries need to be closed with at least third-order accuracy.
Methods of deriving appropriate high-order boundary schemes are e.g. based on one-sided formulas [9, 10, 21] or the
so-called Summation-By-Parts [22] which can be also applied for high-order compact gradients schemes.

B. Solution of Linear System
The size of the matrices 𝑃2𝐷 and 𝑄2𝐷 in Eq. (14) are 4𝑁2, the corresponding system in 3D have size 9𝑁2. As

the compact discretisation leads to a non-symmetric matrix 𝑃2𝐷 for unstructured grids, Eq. (14) is solved with ILU
preconditioned biconjugate gradient stabilized method (BiCGStab) [23]. In the test cases considered in Section IV, the
BiCGStab solver requires only a couple of iterations to reach the set tolerance of 10−8 of the linear solver. If there is
enough memory space available the solution of Eq. (14), 𝑃−1

2𝐷𝑄2𝐷 , may be precomputed and stored in a preprocessing
step.

III. Explicit Gradient Reconstruction
The implicit gradient scheme is compared to an explicit LSQ (ELSQ), which for a second-order polynomial can be

formulated as



𝑤𝑖1Δ𝑥𝑖1 𝑤𝑖1Δ𝑦𝑖1 𝑤𝑖1Δ𝑥2
𝑖1 𝑤𝑖1Δ𝑥𝑖1Δ𝑦𝑖1 𝑤𝑖1Δ𝑦2

𝑖1
...

...
...

...
...

𝑤𝑖 𝑗Δ𝑥𝑖 𝑗 𝑤𝑖 𝑗Δ𝑦𝑖 𝑗 𝑤𝑖 𝑗Δ𝑥2
𝑖 𝑗 𝑤𝑖 𝑗Δ𝑥𝑖 𝑗Δ𝑦𝑖 𝑗 𝑤𝑖 𝑗Δ𝑦2

𝑖 𝑗
...

...
...

...
...

𝑤𝑖𝑁𝑏Δ𝑥𝑖𝑁𝑏 𝑤𝑖𝑁𝑏Δ𝑦𝑖𝑁𝑏 𝑤𝑖𝑁𝑏Δ𝑥
2
𝑖𝑁𝑏

𝑤𝑖𝑁𝑏Δ𝑥𝑖𝑁𝑏Δ𝑦𝑖𝑁𝑏 𝑤𝑖𝑁𝑏Δ𝑦
2
𝑖𝑁𝑏





𝐿𝑖,𝑥
𝜕𝜙
𝜕𝑥 (xi)

𝐿𝑖,𝑦
𝜕𝜙
𝜕𝑦 (xi)
...


=



𝑤𝑖1(𝜙𝑖 (xi) − 𝜙(x1))
...

𝑤𝑖 𝑗 (𝜙𝑖 (xi) − 𝜙(xj))
...

𝑤𝑖𝑁𝑏 (𝜙𝑖 (xi) − 𝜙(xNb ))


(16)

where Δ𝑥𝑖 𝑗 ,Δ𝑦𝑖 𝑗 are given in Eq. (4). The explicit least-squares problem in Eq. (16) is solved using QR-decomposition
according to Eq. (10). We investigate two different variants of Eq. (16). The first one is according to the standard
distance weighted LSQ [24–26] (WLSQ) scheme, where the following weights and normalization factors are chosen as:

𝑤𝑖 𝑗 =
1
𝑑𝑖 𝑗

, 𝐿𝑖,𝑥 = 1, 𝐿𝑖,𝑦 = 1 (17)

where 𝑑𝑖 𝑗 is defined in Eq. (6). It is shown in Section IV that the order and accuracy of this formulation deteriorates on
grids with high-aspect-ratio. In order to alleviate this problem, we propose a similar but different variant by choosing
the following weights and normalization factors:

𝑤𝑖 𝑗 = 1, 𝐿𝑖,𝑥 , 𝐿𝑖,𝑦 (18)

where 𝐿𝑖,𝑥 , 𝐿𝑖,𝑦 can be either of the normalization methods defined by Eqs. (5), (7) or (8). This method will be
referred to as modified LSQ (MLSQ). By choosing normalization method according to Eq. (7) or (8), the local grid
spacing in each coordinate direction is used instead of the maximum length method given by Eq. (5), which should
intuitively be more valid in regions with high-aspect-ratio elements. In order to increase the order and accuracy of an
ELSQ gradient reconstruction scheme, one can increase the amount of node candidates by including neighbours to
nearest neighbours. However, the compact formulation is then lost and the implementations on an unstructured grid may
become increasingly complicated.

IV. Analysis and Assessment of Gradient Reconstruction
In order to assess the order, accuracy and robustness of the gradient reconstruction schemes, the numerical gradient

of a known smooth test function is compared to its analytical value on consecutively refined meshes [6, 8]. The
function is evaluated for each interior node repeatedly through several refinement levels for a set of different structured,
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unstructured, isotropic and high-aspect-ratio grids. The 𝐿1 and 𝐿2 errors in the resulting numerical gradient are
calculated as

𝐿1 =

Í𝑁
𝑖 |∇𝜙𝑖,𝑛𝑢𝑚 − ∇𝜙𝑖,𝑎𝑛𝑎 |

𝑁
, 𝐿2 =

 Í𝑁
𝑖 |∇𝜙𝑖,𝑛𝑢𝑚 − ∇𝜙𝑖,𝑎𝑛𝑎 |2

𝑁

!1/2
, (19)

where ∇𝜙𝑖,𝑛𝑢𝑚 and ∇𝜙𝑖,𝑎𝑛𝑎 are the numerical and analytical gradients, respectively. The implicit (ILSQ) scheme is
evaluated for a polynomial order 𝐾 = 4 in Eq. (3) using the normalization given by Eq. (8), unless otherwise stated. We
set the tolerance of the BiCGStab solver to 10−8 measured in the 𝐿2 norm of the residual. Since the accuracy of interior
nodes of in the scope of this work, it is assumed that the gradient values at the boundary are known. The compact
implicit gradient scheme is compared to the standard distance weighted explicit LSQ (WLSQ) gradient reconstruction
scheme (Eq. (16)), with weighting and normalization factors according to Eq. (17). The modified LSQ (MLSQ) scheme
is also considered, with weighting and normalization factors according to Eq. (18). We consider only neighbours
included in the LSQ formulation according to Fig. 1. This limits the ELSQ schemes to maximum second-order schemes.
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(a) Uniform quadrilaterals.
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(b) Error on grid Fig. 2(a).
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(c) Perturbed quadrilaterals.
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(d) Error on grid Fig. 2(c).

Fig. 2 Error convergence of gradient reconstruction of the function given by Eq. (20), using WLSQ (red), MLSQ
(black) and ILSQ (blue) gradients on isotropic quadrilateral grids.

A. Isotropic Grids
The test function is given by:

𝑓 (𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦) (20)

Function (20) is evaluated on a rectangular domain given by [0, 1] × [0, 1], discretized with quadrilaterals or mixed
elements (quadrilaterals and triangles).

Results on the isotropic quadrilateral set of grids are shown in Fig. 2. Error convergence results for the interior
nodes are given in Figs. 2(b) and 2(d). The ILSQ scheme yields fourth-order accuracy on both the uniform and the
perturbed quadrilateral grids. The vertices of the grid in Fig. 2(c) are randomly disturbed compared to the grid Fig.
2(a), and as a result, the underlying structure is lost. This produces a one order of magnitude larger error level for the
ILSQ scheme, however, the fourth-order scaling is still preserved. The two different ELSQ schemes show the expected
second-order accuracy on both grids, where the two different formulations show a negligible difference in error.
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We consider uniform and perturbed mixed element grids for the same function. The two different grids are shown in
Figs. 3(a) and 3(c). The grids are generated from a quadrilateral grid, where for each element, there is a 50 % probability
that the quadrilateral element will be split into two triangles. The error convergence are given in Figs. 3(b) and 3(d).
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(a) Uniform mixed elements.
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(c) Perturbed mixed elements.
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(d) Error on grid Fig. 3(c).

Fig. 3 Error convergence of gradient reconstruction of the function given by Eq. (20), using WLSQ (red), MLSQ
(black) and ILSQ (blue) gradients on isotropic mixed element grids.

All methods yield the prescribed accuracy, the ILSQ shows fourth-order convergence and the two different ELSQ
schemes show second-order convergence, on both the uniform and perturbed grids. The error levels are comparable
to the quadrilateral grids considered in Fig. 2, which indicates that the LSQ gradient reconstruction formulation is
insensitive to grids with mixed quadrilaterals and triangles.

B. High-aspect-ratio-grids
The test function is given by:

𝑓 (𝑥, 𝑦) = sin(𝜋𝑥) sin(4000𝜋𝑦) (21)

Equation (21) is evaluated on a rectangular domain given by [0, 1] × [0, 0.0005]. Using this domain size, elements with
aspect-ratio of 2000 is considered. This setup models a typical boundary layer problem [8], where the solution variation
is predominant in the direction of small grid spacing and an anisotropic grid is specifically tailored to represent the
solution anisotropy. Five types of grids are considered: uniform quadrilateral, perturbed quadrilateral, uniform mixed
elements, perturbed mixed elements and perturbed fully triangular grids.

The quadrilateral grids are shown in Figs. 4(a) and 4(c), error convergence results on these grids are shown in Figs.
4(b) and 4(d). The error convergence results are similar to the isotropic quadrilateral grids, the ISLQ scheme yields
fourth-order accuracy, the two ELSQ schemes yield second-order accuracy. However, on the perturbed quadrilateral
grid, the WLSQ method breaks down and even yields larger errors with increased grid refinement. On the same grid,
the ILSQ and MLSQ methods yield the prescribed accuracy, fourth-order for ILSQ and second-order for MLSQ.

Results for the mixed element grids are shown in Figs. 5(a). and 5(c), error convergence results on these grids
are shown in Figs. 5(b) and 5(d). The error convergence results are similar to the isotropic mixed element grids,
the ISLQ scheme yields fourth-order accuracy, the two ELSQ schemes yield second-order accuracy. Similar to the
high-aspect-ratio uniform quadrilateral grid, the WLSQ method fails to recover second-order on the perturbed mixed
element grids, as can be seen in Fig. 5(d). On the same grid, the ILSQ and MLSQ methods yield the prescribed
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(a) Uniform quadrilaterals.
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(c) Perturbed quadrilaterals.
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(d) Error on grid Fig. 4(c).

Fig. 4 Error convergence of gradient reconstruction of the function given by Eq. (21), using WLSQ (red), MLSQ
(black) and ILSQ (blue) gradients on high-aspect-ratio quadrilateral grids.

accuracy, fourth-order for ILSQ and second-order for MLSQ. Remarkably, the accuracy is preserved for the ILSQ and
MLSQ although these grids are irregular and involve two different types of cell stencils.

Finally, the effects of using different normalization given by Eqs. (5), (7), (8) are investigated for the ILSQ and the
MLSQ. A perturbed triangular grid is considered (Fig. 6). Results for the error convergence are shown in Figs. 6(b),
6(c) and 6(d). Similar to WLSQ, the ILSQ using the length based normalization according to Eq. (5) completely fails to
reconstruct the gradients. However, this is not observed for the MLSQ using the same normalization method. This can
be attributed to that the MLSQ only assumes a second-order polynomial, whereas the ILSQ assumes a fourth-order
polynomial, which should be more sensitive to specific choice of normalization. The ILSQ is able to recover the
fourth-order accuracy by using the normalization according to Eqs. (8) or (7). These methods take the local grid spacing
in each direction into account and is thus more accurate and robust compared to the length based approach given by
Eq. (5) on grids with high-aspect-ratio.
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(a) Mixed elements.
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(c) Uniform quadrilaterals.

10
1

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2nd Order

4th Order

L2 Explicit

L1 Explicit

L2 Explicit Alt

L1 Explicit Alt

L2 Implicit

L1 Implicit
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Fig. 5 Error convergence of gradient reconstruction of the function given by Eq. (21), using WLSQ (red), MLSQ
(black) and ILSQ (blue) gradients on high-aspect-ratio mixed elements grids.
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(a) Perturbed triangles.
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(b) Normalization given by Eq. (5).
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(c) Normalization given by Eq. (8).
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(d) Normalization given by Eq. (7).

Fig. 6 Error convergence of gradient reconstruction of the function given by Eq. (21), using WLSQ (red), MLSQ
(black) and ILSQ (blue) gradients on high-aspect-ratio triangular grids. Effects of using different normalizations
given by Eqs. (5), (7) or (8).
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V. Conclusions and future work
An implicit least squares gradient reconstruction scheme with a compact formulation is derived and compared with

a standard distance weighted explicit least squares scheme. Additionally, a modified explicit least squares scheme is
formulated, which uses different weighting compared to the standard method. The schemes only use neighbouring
nodal values and can be viewed as unstructured finite difference schemes. A detailed study of gradient calculation for
node-centered unstructured data on regular, highly irregular and high-aspect-ratio (𝐴𝑅 = 2000) grids is presented.

Compared to a standard distance weighted LSQ scheme, which uses only nodal values of nearest neighbours in the
stencil, the implicit scheme also includes information from neighbouring gradient values, leading to a linear system to
be solved. This allows the assumed polynomial or Taylor expansion in the least squares approach to be of higher order.
In this study, a fourth-order polynomial is assumed for the implicit LSQ scheme, and a second-order polynomial is
assumed for the explicit LSQ schemes.

The schemes are assessed in the capability of reconstructing the gradient of a known analytical function. The implicit
LSQ shows a fourth-order scaling on all grids considered, including highly irregular quadrilateral grids, triangular grids,
mixed element grids and high-aspect-ratio grids. The standard distance weighted LSQ scheme, on the other hand, fails
to achieve the prescribed second-order accuracy on high-aspect-ratio grids, where even the error is increased with grid
refinement. The modified explicit least squares scheme, which uses the local grid spacing in each coordinate direction
in the weighting procedure, is able to achieve second-order accuracy on high-aspect-ratio grids.

The current study is planned to be followed up by an implementation of the new scheme in an unstructured
compressible finite-volume flow solver, where the accuracy, feasibility and robustness will be investigated on relevant
flow cases.
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