
Using Machine Learning for Improving a
Non-Linear k − ε Model: A First Attempt

L. Davidson
Div. of Fluid Dynamics

Dept. of Mechanics and Maritime Sciences (M2)
Chalmers University of Technology, Gothenburg, Sweden

September 11, 2023

Abstract

Machine Learning (ML) is used for improving a non-linear k − ε model.
A developing boundary-layer flow is used to train train the model. In bound-
ary layer flow the model includes only two independent coefficients which
are taken as output in a Neural Network (NN) model. Different inputs are
evaluated including the velocity gradient and the square of the velocity gra-
dient. They were scaled with either the friction velocity and the viscosity or
the turbulence kinetic energy and its dissipation.

The input variables are computed using DNS of developing boundary
layer at Reθ = 8 180. The NN model is created using Python’s pytorch.
It turns out that the NN model acts as a low-Re model, replacing all low-Re
modifications which are present in non-ML non-linear eddy-viscosity turbu-
lence models.

After having trained the NN model in the boundary-layer flow, it is val-
idated in two channel flows at Reτ = 550 Hoyas and Jimenez (2008) and
Reτ = 5 200 Lee and Moser (2015). Good agreement is obtained.

1

Contents

1 Introduction 3

2 Non-linear algebraic models for the Reynolds stress tensor 4
2.1 Implicit and explicit algebraic stress models 4
2.2 Non-linear Eddy-viscosity Models 5
2.3 The low-Re number non-linear k − ε model of Craft et al. (1997) . 6

3 Improving a non-linear k − ε model using Machine Learning 7

4 Implementing the Neural Network model in Python 9

5 Conclusions 22

2

1. Introduction 3

1 Introduction

Ling et al. (2016) used neural networks for predicting the turbulent Reynolds stress.
They use a general non-linear Reynolds stress model in which the stresses are
expressed in ten tensors, Tnij and five invariants, i.e. (see Eq. 5)

bij =
10∑
n=1

G(n)Tnij , bij = v′iv
′
j −

2

3
kδij

where bij is the anisotropy tensor. They trained their neural network using the five
invariants as input and the 10 tensors as output. Six cases were used for training,
namely duct flow, channel flow, a jet in cross-flow, an inclined jet in cross-flow,
flow around a square cylinder and flow through a converging-diverging channel.
Two of the cases were used for testing, the duct flow and the flow over a wavy
wall.

The objective of Wu et al. (2018) was also to develop a model for the turbulent
stress tensor, v′iv

′
j . Contrary to the work by Ling et al. (2016), they include more

influence parameters. They include also the gradients of pressure and turbulent
kinetic energy, i.e.

bij = f
(
|s̄|, |Ω̄|, ∂p̄/∂xi, ∂k/∂xi

)
where s̄ = (s̄ij s̄ij)

1/2 and Ω̄ = (Ω̄ijΩ̄ij)
1/2. They propose another three influence

variables to account for viscous (low-Re number) effects near walls; they use local
Reynolds number, k1/2y/ν (y denotes wall-distance), turbulent kinetic energy and
the ratio of turbulent to mean flow time scales. They use a machine learning method
based on random forest regression.

Wang et al. (2017) use machine learning for improving the RANS-predicted
Reynolds stresses. They perform a RANS simulation and compare with DNS. In
their Machine Learning model they create a regression function which maps the
input vector which includes 10 features (pressure gradient, streamline curvature,
. . .). The output is the Reynolds stresses.

Duraisamy et al. (2019) gives a useful review on Machine Learning and tur-
bulence modeling. They survey recent developments in bounding uncertainties in
RANS models using physical constraints and they present methods how to use
machine learning to improve turbulence models.

In the present work, the non-linear k − ε model of Craft et al. is improved by
optimizing the coefficients using‘Machine learning.

2. Non-linear algebraic models for the Reynolds stress tensor 4

2 Non-linear algebraic models for the Reynolds stress ten-
sor

2.1 Implicit and explicit algebraic stress models

Many years ago, Rodi (1976) proposed an algebraic Reynolds stress mode (denoted
ASM, see also Section 11.11 in Davidson (2021))

v′iv
′
j =

2

3
δijk +

k

ε

(1− c2)
(
Pij − 2

3δijP
k
)

+ Φij,1w + Φij,2w

c1 + P k/ε− 1
(1)

Equation 1 is an implicit equation for v′iv
′
j , i.e. the Reynolds stresses appear both

on the left and the right side of the equation. It would of course be advantageous
to be able to get an explicit expression for the Reynolds stresses. Pope (1975)
managed to derive an explicit expression for ASM in two dimensions (later Wallin
and Johansson (2000) derived an explicit ASM in three dimensions). Pope assumed
that the Reynolds stress tensor can be expressed in the strain-rate tensor, s̄ij , and
the vorticity tensor, Ωij . Furthermore, he showed that the coefficients, G(n), in that
expression can be a function of not more than the following five invariants

τ2s̄ij s̄ji, τ2Ω̄ijΩ̄ji, τ3s̄ij s̄jks̄ki (2)

τ3Ω̄ijΩ̄jks̄ki, τ4Ω̄ijΩ̄jks̄kms̄mi (3)

where τ = k/ε (k − ε model) or ω (k − ω model). There are five invariants
because when s̄ij and Ωij are transformed to principal coordinates, there are three
eigenvalue for each of them. Furthermore, s̄ii = 0 which means there are only five
independent invariants.

In two dimensions the expression reads

v′iv
′
j =

2

3
kδij +G(1)τ2s̄ij +G(2)τ3(s̄ikΩ̄kj − Ω̄iks̄kj) (4)

In general three-dimensional flow, the Reynolds stress tensor depends on 10
tensors, Tnij (Pope, 1975), i.e.

v′iv
′
j −

2
3kδij =

∑10
n=1G

(n)Tnij

T 1
ij = s̄ij , T 2

ij = s̄ikΩ̄kj − s̄jkΩ̄ki, T 3
ij = s̄iks̄kj − 1

3δij s̄mks̄km

T 4
ij = Ω̄ikΩ̄kj − 1

3δijΩ̄ikΩ̄ki, T 5
ij = Ω̄iks̄kms̄mj − s̄ims̄mkΩ̄kj

T 6
ij = Ω̄imΩ̄mks̄kj + s̄ikΩ̄kmΩ̄mj − 2

3δijΩ̄pmΩ̄mks̄kp (5)

T 7
ij = Ω̄ims̄mkΩ̄knΩ̄nj − Ω̄imΩ̄mks̄knΩ̄nj , T 8

ij = s̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄kns̄nj

T 9
ij = Ω̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄knΩ̄nj − 2

3δijΩ̄pmΩ̄mks̄kns̄np

T 10
ij = Ω̄ims̄mks̄knΩ̄npΩ̄pj − Ω̄imΩ̄mks̄kns̄npΩ̄pj

where Tnij may depend on the five invariants in Eq. 2. Equation 5 is a general form
of a non-linear eddy-viscosity model. Any ASM may be written on the form of
Eq. 5.

2.2. Non-linear Eddy-viscosity Models 5

It may be noted that Eq. 5 includes only linear and quadratic terms of s̄ij and
Ω̄ij . That is because of the Cayley-Hamilton theorem which states that a second-
order tensor satisfies its own characteristic equation (see Section 1.20 in (Mase,
1970)); hence cubic terms or higher can recursively be expressed in linear (s̄ij) and
quadratic tensors (s̄iks̄kj). Furthermore, note that all terms in Eq. 5 are symmetric
and traceless as required by the left side, v′iv

′
j − 2δijk/3.

2.2 Non-linear Eddy-viscosity Models

In traditional eddy-viscosity models the turbulent stress v′iv
′
j is formulated from

the Boussinesq assumption, i.e.

aij = −2νt
s̄ij
k

s̄ij = 1
2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
(6)

where the anisotropy tensor is defined as

aij ≡
v′iv
′
j

k
− 2

3
δij (7)

The relation between the stress v′iv
′
j and the velocity gradient in Eq. 6 is, as can

be seen, linear. As shown above, one way to make eddy-viscosity models more
general is to include non-linear terms of the strain-rate (i.e. the velocity gradi-
ent) (Pope, 1975). In Craft et al. (1997) they use a slightly simplified expression
(see also see Section 13 in Davidson (2021))

aij = −2cµτ s̄ij (8)

+ c1τ
2

(
s̄iks̄kj −

1

3
s̄`ks̄`kδij

)
+ c2τ

2
(
Ω̄iks̄kj − s̄ikΩ̄kj

)
+ c3τ

2

(
Ω̄ikΩ̄jk −

1

3
Ω̄`kΩ̄`kδij

)
+ c4τ

3
(
s̄iks̄k`Ω̄`j − Ω̄i`s̄`ks̄kj

)
+ c5τ

3

(
Ω̄i`Ω̄`ms̄mj + s̄i`Ω̄`mΩ̄mj −

2

3
Ω̄mnΩ̄n`s̄`mδij

)
+ c6τ

3s̄k`s̄k`s̄ij + c7τ
3Ω̄k`Ω̄k`s̄ij

Ω̄ij =
1

2

(
∂v̄i
∂xj
− ∂v̄j
∂xi

)
The tensor groups correspond to a subset of Eq. 5:

Line 1: T 1
ij ,

Line 2: T 3
ij and T 2

ij

Line 3: T 4
ij and T 5

ij

2.3. The low-Re number non-linear k − ε model of Craft et al. (1997) 6

Line 4: T 6
ij

Line 5: T 1
ij multiplied by the invariants s̄k`s̄k` and Ω̄k`Ω̄k`

The constants are set to (Craft et al., 1997)

c1 = −0.05, c2 = 0.11, c3 = 0.21, c4 = −0.8 (9)

c5 = 0, c6 = −0.5, c7 = 0.5

The expression in Eq. 8 is cubic in ∂v̄i/∂xj . However, note that it is only quadratic
in s̄ij and Ω̄ij . As mention above, this is due to the Cayley-Hamilton theorem. aij
is symmetric and its trace is zero; it is easily verified that the right side of Eq. 8
also has these properties.

Examples of non-linear models (sometimes also called explicit algebraic Rey-
nolds stress models, EARSM) in the literature are the models presented by Gatski
and Speziale (1993); Shih et al. (1995); Craft et al. (1997); Wallin and Johansson
(2000).

Let’s take a closer look on Eq. 8 in fully developed channel flow (v̄2 = v̄3 =
∂/∂x1 = ∂/∂x3 ≡ 0); the terms T 2

ij = 0 (Line 2) and T 1
ij multiplied by the

invariants s̄k`s̄k` and Ω̄k`Ω̄k` (Line 5) are zero since c6 = −c7, see Eq. 9; we
obtain

a11 =
1

12
τ2

(
∂v̄1

∂x2

)2

(c1 + 6c2 + c3)

a22 =
1

12
τ2

(
∂v̄1

∂x2

)2

(c1 − 6c2 + c3)

a33 = −1

6
τ2

(
∂v̄1

∂x2

)2

(c1 + c3) (10)

a12 = −cµτ
∂v̄1

∂x2
+

1

4
τ3

(
∂v̄1

∂x2

)3

(−c5 + c6 + c7)

2.3 The low-Re number non-linear k − ε model of Craft et al. (1997)

The non-linear model in Eqs. 8 and 10 were adapted for low-Re numbers (i.e. using
the model also close to the wall down y+ < 1). For fully-developed channel flow
it reads

v′21 =
kνt
12ε̃

(
∂v̄1

∂x2

)2

(c0 + 6c2) +
2

3
k

v′22 =
kνt
12ε̃

(
∂v̄1

∂x2

)2

(c0 − 6c2) +
2

3
k

v′23 = −kνt
6ε̃

(
∂v̄1

∂x2

)2

c0 +
2

3
k

3. Improving a non-linear k − ε model using Machine Learning 7

Figure 1: Turbulent fluctuations in fully developed-channel flow at Reb = 13 750.
Lines: predictions taken from Craft et al. (1997); symbols: DNS data taken from
Craft et al. (1997)

v′1v
′
2 = −νt

∂v̄1

∂x2

ε̃ = ε− ν

(
∂k1/2

∂y

)2

, νt = cµ
k2

ε̃
(11)

cµ =
0.667rη

[
1− exp(−0.415 exp(1.3η5/6)

]
1 + 1.8η

η = rη
k

ε̃

∂v̄1

∂x2
, Rt =

k2

νε̃
A2 = a11a22 + a11a33 + a22a33 − 2a12a21

fµ = 1.1(ε̃/ε)1/2 1− 0.8 exp(−Rt/30))

1 + 0.6A2 + 0.2A3.5
2

rη = 1 + (1− exp(−(2A2)3))
[
1 + 4 (exp(−Rt/20))1/2

]
fq =

rη

1 + 0.0086η2)1/2

c1 = −0.05
fq
fµ
, c2 = 0.11

fq
fµ
, c3 = 0.21

fq
fµ

Craft et al. (1997) presents excellent agreement with DNS data, see Fig. 1.

3 Improving a non-linear k − ε model using Machine Learn-
ing

Instead of using the constant coefficients, c1 – c3 (see Eq. 9) or using low-Re
number modifications as in Section 2.3, I will here present a method how to make
the coefficients in Eq. 10 non-constant using Machine Learning.

3. Improving a non-linear k − ε model using Machine Learning 8

We find that the coefficients c0 ≡ c1 + c3 appear everywhere in Eq. 10. Hence,
we re-write the equation system as

v′21 =
k

12
τ2

(
∂v̄1

∂x2

)2

(c0 + 6c2) +
2

3
k (12)

v′22 =
k

12
τ2

(
∂v̄1

∂x2

)2

(c0 − 6c2) +
2

3
k (13)

v′23 = −k
6
τ2

(
∂v̄1

∂x2

)2

c0 +
2

3
k (14)

v′1v
′
2 = −cµτ

∂v̄1

∂x2

Equation 14 gives

c0 = − 6a33

τ2
(
∂v̄1
∂x2

)2 (15)

Inserting Eq. 15 into Eq. 12 gives

c2 =
2a11

τ2
(
∂v̄1
∂x2

)2 −
c0

6
=

2a11 + a33

τ2
(
∂v̄1
∂x2

)2 (16)

The objective is now to use Machine Learning to adapt the coefficients c0 and
c2 so that the normal stresses using Eqs. 12, 13 and 14 agree with DNS of develop-
ing boundary layer at Reθ = 8 180 (Eitel-Amor et al., 2014a). The mean velocity,
ū, k and ε in Eqs. 12 – 14 are taken from DNS (Eitel-Amor et al., 2014a). The
DNS data non-dimensional scaled with uτ and ν.

In Davidson (2023), I used Support Vector Machines (SVR) in Python to pre-
dict the wall-shear stress, i.e. I had one output parameter. In this work I have two
output parameters, c0 and c2. SVR can handle only one output parameter. Hence,
in this work I will use Neural Network and I choose pytorch in Python.

The next question is which input variable should be used. Looking at Eq. 12 –
14, the square of the velocity gradient seems to be an obvious choice. Note that the
input variables should be non-dimensional so that the Neural Network Model can
be used to predict other flow cases and Reynolds numbers. As mentioned above,
the DNS data are already non-dimensional. Recall that the velocity gradients must
be taken with respect to y+ (not y) in order to get a non-dimensional velocity
gradient.

However, I did not manage to make the make Neural Network converge with
this input. Hence, I added one input variable. There are a number of different
suitable choices. Here are some of the combinations of input variables I tried

1. (∂U+/∂y+)
2 and (∂U+/∂y+)

−1

2. T 2 (∂U/∂y)2 and T (∂U/∂y)−1 , T = k/ε

4. Implementing the Neural Network model in Python 9

(a) Predicted Reynolds stresses. (b) Predicted c0 coefficient.

(c) Predicted c2 coefficient.

Figure 2: Developing boundary-layer flow at Reθ = 8 180.

3. (∂U+/∂y+)
2 and k+/ε+

The advantage of Option 2 is that the scaling is local; the other options depend on
scaling based on wall quantities which may be difficult to use in complex geome-
tries. Here I use Option 2 (Option 1 gives virtually identical results).

4 Implementing the Neural Network model in Python

As a start for my Python code, I started with the Python code in Batlouni et al.
(2023); this code was written in a BSc thesis project in Spring 2023 which I super-
vised.

First, I load the required Python packages

1 i m p o r t numpy as np
2 i m p o r t t o r c h
3 i m p o r t s y s
4 i m p o r t t o r c h . nn as nn
5 i m p o r t t o r c h . opt im as opt im
6 i m p o r t m a t p l o t l i b . p y p l o t a s p l t

4. Implementing the Neural Network model in Python 10

(a) Reynolds stresses. (b) Predicted c0 coefficient.

(c) Predicted c2 coefficient.

Figure 3: Channel flow at Reτ = 5 200.

4. Implementing the Neural Network model in Python 11

(a) Reynolds stresses. (b) Predicted c0 coefficient.

(c) Predicted c2 coefficient.

Figure 4: Channel flow at Reτ = 550.

4. Implementing the Neural Network model in Python 12

(a) Reynolds stresses. (b) Predicted c0 coefficient.

(c) Predicted c2 coefficient.

Figure 5: Developing boundary-layer flow at Reθ = 8 180. c0,max = 0.16,
c2,max = 0.11

4. Implementing the Neural Network model in Python 13

(a) Reynolds stresses. (b) Predicted c0 coefficient.

(c) Predicted c2 coefficient.

Figure 6: Channel flow at Reτ = 550. c0,max = 0.16, c2,max = 0.11

4. Implementing the Neural Network model in Python 14

(a) Reynolds stresses. (b) Predicted c0 coefficient.

(c) Predicted c2 coefficient.

Figure 7: Channel flow at Reτ = 5200. c0,max = 0.16, c2,max = 0.11

4. Implementing the Neural Network model in Python 15

(a) Boundary-later flow. Reθ =
8 180.

(b) Channel flow. Reτ = 5 200.

(c) Channel flow. Reτ = 550.

Figure 8: Reynolds stresses with c0 = c2 = 0.035.

4. Implementing the Neural Network model in Python 16

(a) Boundary-later flow. Reθ =
8 180.

(b) Channel flow. Reτ = 5 200.

(c) Channel flow. Reτ = 550.

Figure 9: v′1v
′
1

+
with c0 = c2 = 0.035. A zoomed-in view.

4. Implementing the Neural Network model in Python 17

7 from t o r c h . u t i l s . d a t a i m p o r t T e n s o r D a t a s e t , Da taLoader
8 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
9 from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler

10 from j o b l i b i m p o r t dump , l o a d
11

12 p l t . r cPa rams . u p d a t e ({ ’ f o n t . s i z e ’ : 22})
13 p l t . i n t e r a c t i v e (True)
14 p l t . c l o s e (’ a l l ’)

Next step is to load the DNS data (Eitel-Amor et al., 2014b)

1 # l o a d DNS d a t a
2 vel DNS=np . g e n f r o m t x t (” vel 11000 DNS no − t e x t . d a t ” , comments=”%”)
3

4 y DNS=vel DNS [: , 0]
5 yplus DNS=vel DNS [: , 1]
6 u DNS=vel DNS [: , 2]
7 uu DNS=vel DNS [: , 3] * * 2
8 vv DNS=vel DNS [: , 4] * * 2
9 ww DNS=vel DNS [: , 5] * * 2

10 uv DNS=vel DNS [: , 6]
11 dudy DNS = np . g r a d i e n t (u DNS , yplus DNS)
12 k DNS = 0 . 5 * (uu DNS+vv DNS+ww DNS)
13 DNS RSTE = np . g e n f r o m t x t (” bud 11000 no − t e x t . p r o f ” , comments=”%”)
14 eps DNS = −DNS RSTE [: , 4]
15

16

17 # f i x w a l l
18 eps DNS [0] = eps DNS [1]

Near the wall, the velocity gradients become very large which hampers the con-
vergence of the Neural Network. Furthermore, the Reynolds stresses are negligible
in the viscous sub-layer. Hence, the DNS data for y+ < 9 are omitted. Also, at
the edge of the boundary layer the velocity gradients go to zero. To promote the
convergence rate I set a lower limit on the velocity gradient (4 · 10−4).

1 #−−−−−−−−−−−−−−−−− D a t a m a n i p u l a t i o n −−−−−−−−−−−−−−−−−−−−
2 # choose v a l u e s based on y+
3 i n d e x c h o o s e =np . nonze ro ((yplus DNS > 9) & (yplus DNS< 2200))
4

5 # s e t a min on dudy
6 dudy DNS = np . maximum (dudy DNS , 4 e −4)
7

8 uv DNS = uv DNS [i n d e x c h o o s e]
9 uu DNS = uu DNS [i n d e x c h o o s e]

10 vv DNS = vv DNS [i n d e x c h o o s e]
11 ww DNS = ww DNS[i n d e x c h o o s e]
12 k DNS = k DNS [i n d e x c h o o s e]
13 eps DNS = eps DNS [i n d e x c h o o s e]
14 dudy DNS = dudy DNS [i n d e x c h o o s e]
15 yplus DNS = yplus DNS [i n d e x c h o o s e]
16 y DNS = y DNS [i n d e x c h o o s e]
17 u DNS = u DNS [i n d e x c h o o s e]
18

4. Implementing the Neural Network model in Python 18

a
(0)
1

a
(0)
2

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

a
(3)
1

a
(3)
2

input
layer

hidden layers

output
layer

Figure 10: The Neural Network with two inputs variables and two output variables.
There are five neurons in this figure; in the simulations I have 50, see Code listing 1.

19 tau DNS = k DNS / eps DNS

The Neural Network Machine is set-up using two hidden layers and 50 neurons.
The two input variables rn Fig. 10 are

a
(0)
1 =

(
∂U+

∂y+

)2
T 2 (17)

a
(0)
2 = 1

T

(
∂U+

∂y+

)−1

where T = k/ε

a
(3)
1 = c0

a
(3)
2 = c2.

As you see in Eq. 17, I use the inverse of the velocity gradient as the second input
variable. I think it works with ∂v̄+

1 /∂x
+
2 as well.

1 # Let ’ s s e t up a n e u r a l ne twork :
2

3 c l a s s T h e P r e d i c t i o n M a c h i n e (nn . Module) :
4

5 d e f i n i t (s e l f) :
6

7 s u p e r (T h e P r e d i c t i o n M a c h i n e , s e l f) . i n i t ()
8

9 s e l f . i n p u t = nn . L i n e a r (2 , 50) # a x i s 0 : d imens ion o f X

4. Implementing the Neural Network model in Python 19

10 s e l f . h idden1 = nn . L i n e a r (5 0 , 50)
11 s e l f . h idden2 = nn . L i n e a r (5 0 , 2) # a x i s 1 : d imens ion o f y
12

13 d e f f o r w a r d (s e l f , x) :
14 x = nn . f u n c t i o n a l . r e l u (s e l f . i n p u t (x))
15 x = nn . f u n c t i o n a l . r e l u (s e l f . h idden1 (x))
16 x = s e l f . h idden2 (x)
17

18 r e t u r n x

Listing 1: The Neural Network

I have tried up to eight hidden layers, but when I increase the number of hid-
den layers the convergence rate deteriorates. Two hidden layers seem to give best
convergence rate.

The input, X, and the output variables, y, are in pytorch setup as:

1 c = np . a r r a y ([c 0 DNS , c 2 DNS])
2

3 # t r a n s p o s e t h e t a r g e t v e c t o r t o make i t a column v e c t o r
4 y = c . t r a n s p o s e ()
5

6 dudy squared DNS = (dudy DNS **2)
7 # s c a l e wi th k and eps
8 # dudy [1 / T]
9 # dudy **2 [1 / T**2]

10 T = tau DNS
11 d u d y s q u a r e d D N S s c a l e d = dudy squared DNS *T**2
12 dudy DNS inv = 1 / dudy DNS / T
13 # re − shape
14 d u d y s q u a r e d D N S s c a l e d = d u d y s q u a r e d D N S s c a l e d . r e s h a p e (−1 ,1)
15 d u d y D N S i n v s c a l e d = dudy DNS inv . r e s h a p e (−1 ,1)
16 # use MinMax s c a l e r
17 s c a l e r d u d y 2 = MinMaxScaler ()
18 s c a l e r d u d y = MinMaxScaler ()
19 X=np . z e r o s ((l e n (dudy DNS) , 2))
20 X [: , 0] = s c a l e r d u d y 2 . f i t t r a n s f o r m (d u d y s q u a r e d D N S s c a l e d) [: , 0]
21 X [: , 1] = s c a l e r d u d y . f i t t r a n s f o r m (d u d y D N S i n v s c a l e d) [: , 0]

There are three main input parameters to the Neural Network Model, namely

1 # Let ’ s s e t up a n e u r a l ne twork :
2

3 # S e t up h y p e r p a r a m e t e r s
4 l e a r n i n g r a t e = 9e −1
5 m y b a t c h s i z e = 5
6 epochs = 40000

The learning rate is some sort of under-relaxation; the larger, the faster
the model converges, but if it is too large the residual does not decrease but it starts
to oscillate. My experience is that the number of batches should be fairly small.
It is imperative to drive down the residual to a small value. For this choice of
input variables, the MSELoss() error is 1.26 · 10−6. This is an error which is

4. Implementing the Neural Network model in Python 20

not normalized and it depends on the magnitude of the output variables. Hence its
magnitude is rather useless for estimating the level of convergence. A much better
estimate is to normalize the error as

1 # compute t h e e r r o r
2 c 0 s t d =np . s t d (c0 − c 0 D N S t e s t) / (np . mean (c0 . f l a t t e n () **2)) **0 .5
3 c 2 s t d =np . s t d (c2 − c 2 D N S t e s t) / (np . mean (c2 . f l a t t e n () **2)) **0 .5

The errors for the training in Fig. 2 are 4.5 · 10−2 and 1.6 · 10−2, respectively.
When I tested other input variables these error had to be smaller than 1·10−3; if they
were larger, the Neural Network Model predicted too large v′21 values near the wall
(maybe 30% too large) and the model could also give a few negative samples of
v′22 . But when I managed to drive down the residuals (by tuning learning rate
and/or my batch size and increasing epochs) the non-physical samples dis-
appeared. I found that it is more difficult to converge the NN model when Option
2 for scaling is used, see p. 8 (hence the large number of epochs, see above). The
convergence with Option 1 is much better.

The training loop of the Neural Network model reads

1 # I n s t a n t i a t e a n e u r a l ne twork
2 n e u r a l n e t = T h e P r e d i c t i o n M a c h i n e ()
3

4 # I n i t i a l i z e t h e l o s s f u n c t i o n
5 l o s s f n = nn . MSELoss ()
6

7 # Choose l o s s f u n c t i o n , check o u t h t t p s : / / p y t o r c h . o rg / docs / s t a b l e /
op t im . h tml f o r more i n f o

8 # In t h i s c a s e we choose S t o c a s t i c G r a d i e n t Descen t
9 o p t i m i z e r = t o r c h . opt im .SGD(n e u r a l n e t . p a r a m e t e r s () , l r =

l e a r n i n g r a t e)
10

11

12 f o r t i n r a n g e (epochs) :
13 p r i n t (f ” Epoch { t +1}\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”)
14 t r a i n l o o p (t r a i n l o a d e r , n e u r a l n e t , l o s s f n , o p t i m i z e r)
15 t e s t l o s s = t e s t l o o p (t e s t l o a d e r , n e u r a l n e t , l o s s f n)
16 p r i n t (”Done ! ”)
17

18 # make t h e t e s t i n g (i . e . p r e d i c i o n)
19 p r e d s = n e u r a l n e t (X t e s t t e n s o r)
20

21 # t r a n s f o r m from t e n s o r t o numpy
22 c NN = p r e d s . d e t a c h () . numpy ()
23

24 c0=c NN [: , 0]
25 c2=c NN [: , 1]

Finally, the Neural Network model is saved to disk

1 t o r c h . s ave (n e u r a l n e t , ’ model . p t h ’)
2 dump (s c a l e r d u d y 2 , ’ model − s c a l e r −dudy2 . b i n ’)
3 dump (s c a l e r d u d y , ’ model − s c a l e r −dudy . b i n ’)

4. Implementing the Neural Network model in Python 21

Listing 2: Saving the model

The numpy arrays c0 and c2 are the predicted coefficients which are then
used in Eqs. 12, 13 and 14 to compute the Reynolds stresses v′21 , v′22 and v′23 , see
Fig. 2a. The agreement is – as can be seen – excellent. But this is to be expected
since the c0 and c2 where trained on the DNS data in Fig. 2a

A better test is to apply the model to boundary flow at different Reynolds num-
bers. When I make predictions with the NN model I have to load the NN model
(Python script predict.py) which I saved in Code listing 2 as

1 l o a d p y t o r c h model
2 f o l d e r = ’ . / ’
3 f i l e n a m e = s t r (f o l d e r) + ’ model . p t h ’
4 n e u r a l n e t = t o r c h . l o a d (f i l e n a m e)
5 s c a l e r d u d y 2 = l o a d (s t r (f o l d e r) + ’ s c a l e r −dudy2 . b i n ’)
6 s c a l e r d u d y = l o a d (s t r (f o l d e r) + ’ s c a l e r −dudy . b i n ’)

Listing 3: Loading the model

The ThePredictionMachine is also included in predict.py. The pre-
diction is coded in exactly the same way as when doing the testing, see below.

1 dudy squared DNS = dudy DNS**2
2 # re − shape
3 # s c a l e wi th k and eps
4 # dudy [1 / T]
5 # d2udy2 [1 / (LT)] L = k * * 1 . 5 / eps , LT =
6 T = tau DNS
7 d u d y s q u a r e d D N S s c a l e d = dudy squared DNS *T*T
8 dudy DNS inv = 1 / dudy DNS / T
9 # re − shape

10 d u d y s q u a r e d D N S s c a l e d = d u d y s q u a r e d D N S s c a l e d . r e s h a p e (−1 ,1)
11 d u d y D N S i n v s c a l e d = dudy DNS inv . r e s h a p e (−1 ,1)
12 X=np . z e r o s ((l e n (dudy DNS) , 2))
13 X [: , 0] = s c a l e r d u d y 2 . t r a n s f o r m (d u d y s q u a r e d D N S s c a l e d) [: , 0]
14 X [: , 1] = s c a l e r d u d y . t r a n s f o r m (d u d y D N S i n v s c a l e d) [: , 0]
15

16 X t e n s o r = t o r c h . t e n s o r (X, d t y p e = t o r c h . f l o a t 3 2)
17

18 p r e d s = n e u r a l n e t (X t e n s o r)
19 # t r a n s f o r m from t e n s o r t o numpy
20 c NN = p r e d s . d e t a c h () . numpy ()
21

22 c0=c NN [: , 0]
23 c2=c NN [: , 1]

Listing 4: Predicting the coefficients

Figure 3a presents the predicted stresses in channel flow at Reτ = 5 200 and
it is seen that at y+ ' 1000 the streamwise stress is somewhat underpredicted
and the other two stresses exhibit a small local maxima at y+ ' 1000. Looking

5. Conclusions 22

at the predicted coefficients in Figs. 3b and 3c it seems that the poor predictions
at y+ ' 1000 are related to local minima in c0 and c2. The predicted stresses for
Reτ = 550 in Fig. 4a are in much better agreement with DNS than those in Fig. 3a.
The coefficients in Figs. 4b and 4c do not exhibit any local minimum. However, in
the outer region they increase strongly.

The fact that the coefficients increase strongly in the outer region where the
velocity gradient goes to zero could cause problems when the model is used in
general flows including re-circulations regions. One obvious remedy for the large
c0 and c2 in the outer region is to introduce an upper limit. The upper limit is taken
as the constants used by Craft et al. (1997), i.e. c0 = 0.16 and c2 = 0.11, see
Eq. 9. Figure 5a presents the Reynolds stresses for the boundary layer using the
upper limits. They do not seem to be affected at all (cf. Fig. 2a). For the channel
flow at Reτ = 550, the Reynolds stresses are not affected by the limit because the
maximum limits of c0 and c2 are not reached. The Reynlds stresses for the channel
flow at Reτ = 5 200 are also not modified by the upper limit, see Fig. 7a.

We can see in Figures 2, 3 and 4 that if we would choose a constant value for
c0 and c2, a value of 0.035 seems rather good. Figure 8 presents the Reynolds
stresses using constant c0 = c2 = 0.035 and it seems that better agreement is
obtained for all three cases. However, the peak values of the streamwise stress are
much overpredicted. Figure 9 shows that they are at least three times larger than
the DNS values. This shows that the present NN model is essentially a low-Re
number extension of Eq. 10.

5 Conclusions

A Neural Network (NN) model has been used to improve the non-linear k − ε
model of Craft et al. (1997) for predicting the normal stresses. The NN model
has been trained in developing boundary layer flow using DNS data. Then the NN
model was used for predicting normal stresses in channel flow at and channel flow.
Fairly good agreement was obtained. It is found that the best agreement is obtained
by using the NN model near the wall (e.g. n y+ < 100) and new constant values
on c0 and c2 (both equal to 0.035) further away from the wall.

Acknowledgments

This study was partly financed by

• Chalmers University of Technology Foundation for the strategic research
project Hydro- and aerodynamics, and

• The NFFP8 E-WMLES project

5. Conclusions 23

References

F. Batlouni, B. Elm Jonsson, O. Fjeldså, N. Persson, and L. Ånestrand. Utveckling
av turbulensmodeller med hjälp av maskininlärning i Python (Eng.: development
of turbulence models using machine learning in Python). Bsc thesis, Division
of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers
University of Technology, Göteborg, Sweden, 2023.

T. J. Craft, B. E. Launder, and K. Suga. Prediction of turbulent transitional phe-
nomena with a nonlinear eddy-viscosity model. International Journal of Heat
and Fluid Flow, 18:15–28, 1997.

L. Davidson. Fluid mechanics, turbulent flow and turbulence modelingÃ. eBook,
Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences,
Chalmers University of Technology, Gothenburg, 2021.

L. Davidson. Using machine learning for formulating new wall functions for de-
tached eddy simulationÃ. In 14th International ERCOFTAC Symposium on
Engineering Turbulence Modelling and Measurements (ETMM14), barcelon-
a/Digital, Spain 6–8 September, 2023.

K. Duraisamy, G. Iaccarino, and H. Xiao. Turbulence modeling in the age
of data. Annual Review of Fluid Mechanics, 51(1):357–377, 2019. doi:
10.1146/annurev-s̄fluid-s̄010518-s̄040547. URL https://doi.org/10.
1146/annurev-s̄fluid-s̄010518-s̄040547.

G. Eitel-Amor, R. Orlu, and P. Schlatter. Simulation and validation of a spatially
evolving turbulent boundary layers up to Reθ = 8300. International Journal of
Heat and Fluid Flow, 47:57–69, 2014a.

G. Eitel-Amor, R. Orlu, and P. Schlatter. Simulation and validation of a spa-
tially evolving turbulent boundary layers up to Reθ = 8300, DNS Data
base. 2014b. URL https://www.flow.kth.se/flow-s̄database/
simulation-s̄data-s̄1.791810.

T. B. Gatski and C. G. Speziale. On explicit algebraic stress models for complex
turbulent flows. Journal of Fluid Mechanics, 154:59–78, 1993.

S. Hoyas and J. Jimenez. Reynolds number effects on the reynolds-stress budgets
in turbulent channels,http://torroja.dmt.upm.es/channels/. Physics of Fluids A,
20(101511), 2008. doi: http://dx.doi.org/10.1063/1.3005862.

M. Lee and R. D. Moser. Direct numerical simulation of turbulent channel flow up
to Reτ ≈ 5200. Journal of Fluid Mechanics, 774:395–415, 2015. doi: 10.1017/
jfm.2015.268. URL https://doi.org/10.1017/jfm.2015.268.

http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/paper-davidson-etmm14.pdf
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://www.flow.kth.se/flow-database/simulation-data-1.791810
https://www.flow.kth.se/flow-database/simulation-data-1.791810
https://doi.org/10.1017/jfm.2015.268

5. Conclusions 24

J. Ling, A. Kurzawski, and J. Templeton. Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. Journal of Fluid Me-
chanics, 807:155–166, 2016. doi: 10.1017/jfm.2016.615.

G. E. Mase. Continuum Mechanics. Schaum’s Outline Series. McGraw-Hill, 1970.

S. B. Pope. A more general effective-viscosity hypothesis. Journal of Fluid Me-
chanics, 472:331–340, 1975.

W. Rodi. A new algebraic relation for calculating the Reynolds stresses. ZAMM,
56:T219–T221, 1976.

T.-H. Shih, J. Zhu, and J. L. Lumley. A new Reynolds stress algebraic equation
model. Comput. Methods Appl. Engng., 125:287–302, 1995.

S. Wallin and A. V. Johansson. A new explicit algebraic Reynolds stress model for
incompressible and compressible turbulent flows. Journal of Fluid Mechanics,
403:89–132, 2000.

J.-X. Wang, J.-L. Wu, and H. Xiao. Physics-informed machine learning approach
for reconstructing reynolds stress modeling discrepancies based on dns data.
Phys. Rev. Fluids, 2:034603, Mar 2017. doi: 10.1103/PhysRevFluids.2.034603.
URL https://link.aps.org/doi/10.1103/PhysRevFluids.2.
034603.

J.-L. Wu, H. Xiao, and E. Paterson. Physics-informed machine learning ap-
proach for augmenting turbulence models: A comprehensive framework. Phys.
Rev. Fluids, 3:074602, Jul 2018. doi: 10.1103/PhysRevFluids.3.074602.
URL https://link.aps.org/doi/10.1103/PhysRevFluids.3.
074602.

https://link.aps.org/doi/10.1103/PhysRevFluids.2.034603
https://link.aps.org/doi/10.1103/PhysRevFluids.2.034603
https://link.aps.org/doi/10.1103/PhysRevFluids.3.074602
https://link.aps.org/doi/10.1103/PhysRevFluids.3.074602

	Introduction
	Non-linear algebraic models for the Reynolds stress tensor
	Implicit and explicit algebraic stress models
	Non-linear Eddy-viscosity Models
	The low-Re number non-linear k- model of craft:launder:suga:97

	Improving a non-linear k- model using Machine Learning
	Implementing the Neural Network model in Python
	Conclusions

