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Abstract i

Abstract

This report forms a part of the project “Large Eddy Simulation (LES)
of Turbulent Flows Driven or Significantly Affected by Buoyancy”.

In this work we validate first the LES code by means of the simula-
tion of a fully developed turbulent horizontal channel flow with uniform
heating at the both walls. In this flow the buoyant force in the stream-
wise direction is zero and the Reynolds number,

�����
, based on friction

velocity and half channel width is ����� . The LES results are shown in
good agreement with DNS data.

Then, to study mixed convection flow, simulation of the fully devel-
oped turbulent vertical channel flow with prescribed wall temperatures
is done. In this flow the Reynolds number (

�����
) is 	
��� and the buoyancy

effect is significant.

The Smagorinski eddy-viscosity model was used to model the subgrid-
scales of turbulent motion with a van Driest type damping function
which account for viscosity effect near the walls.

All computations are performed using a finite volume code which
is second-order accurate with central differencing in space and Crank-
Nicolson scheme in time. The solution is processed using an implicit,
two-step time-advancement method. The code is parallelized on the
loop level using compiler directives (it works only on shared-memory
computers). For all computation uses 4 processors on Chalmers’ 64-
processor CRAY 2000 Origin machine.

Key Words: Large Eddy Simulation (LES), Turbulent flow, Buoyancy,
Heat transfer, Subgrid-scale (SGS) model, Channel flow.
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Notation

Symbols����� Boldface letters are used for vectors, matrices and tensors.��� Specific heat at constant pressure. �
	������������ Specific heat at constant volume. �
	������������
Grashof number, �������! #"%$�&(')+*� Gravitational acceleration, �-, �/.10 	 . � 2���3 " ���4 Gravitational vector, �546,87:9;�=< �>< �@? .A �
Prandtl number,

)BA �DC
Turbulent Prandtl number,

)%EB EF Pressure, � GH�I2 " ��
Total energy per unit volume,J�����KMLON" 7 J@P 4 P 4Q?R
The fluid entalpy,

R , � L � ST Heat flux �VUM�I2 " ����DW
Bulk Reynolds number, "YX�Z[$)��� �
Reynolds number based on friction velocity , \�] $)^ Time. �_3+�K Temperature. �_`ba��Kdc Temperature on the cooled wall.Kde Temperature on the heated wall.Kgf�h�i Reference temperature, �kjDl��Im"K � Friction temperature on each wall, nQoS cqp \�]r 4Vs Strain-rate tensor.tvu
Body forces (Buoyancy, etc.) per unit volume � GH�I2�w+� .x
Dissipation function, y 4_s{z \I|z+}Y~P 4 Velocity. � 2���3+�P � Friction velocity, � � oS � 2���3+� .P{�� Friction velocity calculated from the wall shear stress
averaged on the two walls. � 2���3+�� 4 Space coordinates. � 2��
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Greek�
Channel half width. � 2��� Thermal diffusivity, �S c p . �VUM�I2 " ���� C Turbulent (SGS) thermal diffusivity,

) E� f E . �VUM�I2 " ����
Volumetric expansion coefficient. N"�� w�� N
	 l������� <�� `b���J Density of the fluid. �_��>�I2 wb�� Dynamic viscosity. �_��>�I2 3D�� Molecular conductivity. �VUM�I2 ���� K Temperature difference, K!e 9 K c .� Dissipation rate. � 2 " ��3 w �� Kinematic viscosity. � 2 " ��3D�� C Turbulent (SGS) viscosity. � 2 " ��3+�y Shear stress. � A�� �� 4Vs Kronecker delta.

Superscripts76? � Normalized by

�
and P �� .76? l Normalized by local P � < � and local K � .76?�� Fluctuation component.76? Statistically averaged.76?���� Dimensionles variables.���

Averaged over the � 9! plane and time.

Subscripts76? f#"%$ Root-Mean-Square fluctuation.76?[4 Index for tensor notation, 	�<'& or � 7 � <)({<� �?76?�* Wall value.76? W Bulk value.76? C Turbulent value.76? f%h�i Reference value.76? � h[f Periodic value.76? � 4,+ Linearly value.
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1 Introduction 1

1 Introduction

1.1 The Turbulence

Turbulence is a phenomenon that occurs commonly in nature, and tur-
bulent modeling is one of the three key issues in Computation Fluid
Dynamics (CFD). The other two keys are numerical method where very
precise mathematical theories are developed and boundary conditions.

Turbulence is generally three dimensional and time dependent. For
a complete description of turbulent flows we need an enormous amount
of information. However in most practical applications, we only need to
know the mean flow properties. Simple applications may require only
the heat-transfer coefficient. More esoteric applications may need de-
tailed knowledge such as energy spectra, turbulence fluctuations and
flow structure.

Numerical or even analytical solution of turbulent flows may be
accomplished using different levels of approximations yielding more
or less detailed description of the state of the flow. One of the sim-
plest methods is to use semi-empirical correlations. More sophisticated
methods involving application of Reynolds averaging to the equations
of motion, the well-known Reynolds-averaged Navier-Stokes equations
(RANS) approach, which describes the evaluation of mean flow quan-
tities. A Reynolds stress term, P��4 P��s , appears as an effect of turbulent
fluctuations, and needs to be modeled to close the system of equations.
The principal drawback of this approach is that the model represent the
“mean” turbulence using averaged scales. While the small scales tend
to depend only on viscosity, and may be somewhat universal, the large
scales are affected very strongly by the boundary conditions. Thus,
there is no universal RANS model to accurately different turbulent
flows.

Direct numerical simulation (DNS) of turbulence is the most straight-
forward approach to the solution of turbulent flows. In DNS the govern-
ing equations are directly solved. If the mesh is fine enough to resolve
even the smallest scales of motion and the scheme is designed to mini-
mize the numerical dispersion and dissipations errors, then an accurate
three-dimensional, time-dependent solution of the governing equations
completely free of modeling assumptions can be obtained. The only er-
ror in this solution is that introduced by the numerical approximation.
With the DNS method it is possible to compute and visualize any quan-
tity of interest, including those that are difficult or even impossible to
measure in experiments.
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But there are some limitations of this method. If we resolve all scale
of motions well, we need a number of grid points G�� � � � , where

�
is di-

mension of computational domain, and � is the smallest scale of motion,
the Kolmogorov length scale. This ratio is proportional to

��� w ��� , which
gives a number of grid points ( G ) in 3D required by DNS proportional
to G��

����� ���
, and the time steps required to advance the computation

is of the order of
��� w ��� .

The total cost of a direct simulation is
��� w . Thus, to increase the

Reynolds number by a factor of two, the computational effort must in-
crease by at least a factor eight. This is a serious limitation for the use
of DNS.

The Large-Eddy simulations (LES) technique is a method in be-
tween DNS and RANS. In a LES the contribution of the large, energy-
carrying structures to momentum and energy transfer is computed di-
rectly, and only the effect of the smallest scale of turbulence is modeled.

1.2 The Buoyancy Force

The presence of a temperature difference in a pressure-driven flow field
gives rise to density differences and thus a buoyancy force. The buoy-
ancy force influences the turbulent transport heat and momentum in
a mixed convection flow. The buoyancy-affected flow is referred to as
aiding or opposing flow, depending upon whether the buoyancy force is
acting to aid or to oppose the forced convection flow.
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2 Turbulence Models

2.1 The Navier-Stokes Equations

The LES and the RANS are similar to the DNS in that they provide a
three-dimensional, time dependent solution of the Navier-Stokes equa-
tions on a reasonably fine mesh.

The equations governing the conservation of mass, momentum and
energy in a Newtonian fluid are1:� J� ^ L �� � 4 7 J@P 4 ? , � (2.1)

�� ^ 7 J�P 4 ? L �� � s 7 J�P 4 P sk? , 9 � F� � 4 L
�� � s

� ��� & r s�4{9 &
�

� 4Vs r������
	 L tvu
(2.2)

� 7 J R ?� ^ L �� � s 7 J�P s R ?�,
�� � s

� � � � K� � s �
	 L r��
(2.3)

r�� , x L � F� ^ L � 7 P s F ?� � s (2.4)

r 4_s , 	
& � � P 4� � s L

� P s� � 4 � (2.5)

Assuming constant density and � , � � J for incompressible flows we
have:

� P 4� � 4 , � (2.6)

� P 4� ^ L �� � s 7 P 4 P s ?�, 9 	J � F� � 4 L � � " P 4� � s � � s L t u
(2.7)

� K� ^ L � 7 P s K ?� � s , � � " K� � s � � s L r��
(2.8)

1All equations are written in Cartesian tensor notation
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where the term zz+}Y~�� & r 4Vs�� , using continuity, zz+}Y~ � z \ ~z+} |�� , � , can be
written as:

�� � s �
� P 4� � s L

� P s� � 4 � , � " P 4� � s � � s (2.9)

2.2 The Reynolds Averaging

The Reynolds averaging operation results in the Reynolds stresses. The
Reynolds stresses are the unknowns in the governing equation and
represent the reason for a discipline called turbulence modeling. The
Reynolds decomposition splits each quantity ( P 4:< K < F < � ^ � . ) into its mean
and fluctuating parts:

x , x L�� � (2.10)

Note that the mean part is written with an over-bar
x

.

Applying the Reynolds averaging, the mean part is time-averaged
according to:

x 7
	 < ^ ?�, 	� K��
C
� l!� �C
�

x 7� < ^ L ^ � ?�� ^ � (2.11)

2.3 The Large-Eddy Simulation

A Large-Eddy Simulation is a technique in which we decomposite the
turbulent flow into two parts. The first one is large eddies which are re-
solved (computed) and the second one characterized by subgrid-scales
(SGS) eddies which are modeled.

The large eddies are directly affected by the boundary conditions
and they carry most of the turbulent energy. The small-scale turbu-
lence is relatively weaker and it contributes only to a small part of the
Reynolds stress and therefore is less critical.

LES involves modeling the small subgrid scale eddies and the small-
est finite-volumes cells can be much larger than the Kolmogorov length
[6] and time-steps can be much larger than in DNS. Hence, for a given
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computation cost, it is possible to achieve much higher Reynolds num-
bers with LES than with DNS.

A major difficulty in Large-Eddy Simulation is that near a solid sur-
face all eddies are small – to the extent that stress-bearing and dissipa-
tion ranges of eddy size overlap.

2.3.1 The Filtering Operation in LES

In LES the filtering operation is used, which filters out all scales smaller
than the filter size.

The simplest type of filter is the volume-average filter implemented
by Schumann [13]:

x 7
	 < ^ ?�, 	� w � } l��* � }} � �* � } � � l��* � �� � �* � � � � l��* � �� � �* � �
x 7� < ^ ?�� � � � ��� (2.12)

where
� w , � � � ( �  corresponding grid increments of the finite-volume

(or finite difference) equations.

Similar to RANS in a LES we decomposite
x

as:

x , x L � (2.13)

where filtered variables are function of space and time. The � denotes
a subgrid-scale component. Resolvable-scale component, or large-scale
variable, denoted by over-bar (

x
), is defined as:x 7
	 ?�, �	� x 7
	 � ? � 7
	 < 	 � ?�� 	 � (2.14)

where 
 is the entire domain and
�

is a low-pass filter function which
determines the size of the small scales.

The most commonly-used filter functions inslude the sharp Fourier
cutoff filter defined in wave space as [11]:

�� 7  ?�, � 	��������6���
� �����	������! "� < (2.15)

the Gaussian filter: � 7 � ?�,$# %�&� " �('*) � 9+% � "� " � (2.16)
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and top-hat filter:

� 7 � ? , � 	���� !��� � � � �H� &
� ����� ����� ! "� (2.17)

In practice, the Gaussian filter is used in conjunction with a sharp
Fourier cutoff filter in Fourier transforms and spectral methods. In this
work, we use the top-hat filter in real space.

2.3.2 Filtered Navier-Stokes Equations

In adopting the filtering (in LES) operation one can use the following
important properties:

� x� � 4 ,
� x� � 4 < x��, x < � �, �>< x � �, x�� ���	��
 x � �, � (2.18)

The filtering operation (2.17) and (2.18)2 applied on the governing equa-
tions (2.6-2.8) gives the filtered continuity equation and transport equa-
tion for momentum and thermal energy. These governing equations
take the following form: � P 4� � 4 , � (2.19)

� P 4� ^ L �� � s 7 P 4 P sk?�, 9 	J � F� � 4 L � � " P 4� � s � � s L t u
(2.20)

� K� ^ L � 7 P s K ?� � s , � � " K� � s � � s L r �
(2.21)

Equation 2.20 can be rewritten as:

� P 4� ^ L �� � s 7 P 4 P sk? L
� �� � s 7 P 4 P s�? 9

�� � s 7 P 4 P sI? 	 ,
9 	J � F� � 4 L � � " P 4� � s � � s L

� �� � s 7 P 4 P s ? 9
�� � s 7 P 4 P s ? 	 L tvu (2.22)

2For uniform filter width, � , the filters are mesh-preserving and commute with
differentiation.
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Equations (2.22) becomes:

� P 4� ^ L �� � s 7 P 4 P s ? , 9 	J � F� � 4 L � � " P 4� � s � � s 9 � yb4Vs� � s L tvu
(2.23)

where

yb4_s , P 4 P s;9 P 4 P s (2.24)

is the subgrid-scale (SGS) stress term, which must be modeled.

Equations (2.19), (2.21) and (2.22) can be non-dimensionized defin-
ing the dimensionless variables as:

� ���4 , � 4� P �'�4 , P 4P �� F ��� , FJ�P �� "^ ��� , ^ Pg��� K ��� , K 9 Kdc� K (2.25)

where P �� is the friction velocity.

Buoyancy is modeled using Boussinesq [2] approximation as3:

t u , 9;��4 � 7 K 9 K{f%h�i ? � N 4 (2.26)

The Grashofs number,
���

, is defined as:

� � , � K 7�& � ?:w� " � � (2.27)

Equations (2.26 – 2.27) with
��� �� , \��]b$) gives a buoyancy term in non-

dimensional form:

tvu , ���
0 ��� �� " 7 K ��� 9 K �'�f%h:i ? � N 4 (2.28)

3Note that � | is a vector ��� �����	�
��� and � |�%| ~ gives buoyancy contrubution only in the�
direction (or � ).
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Finally one has the governing equations in non-dimensional form
(superscript ��� will be dropped from the non-dimensional variables for
convenience):

� P 4� � 4 , � (2.29)

� P 4� ^ L �� � s 7 P 4 P sI? , 9 � F� � 4 L � � " P 4� � s � � s 9 � yb4Vs� � s 9� �
0 ��� �� " 7 K ��� 9 K ���f%h:i ? � N 4 (2.30)

� K� ^ L � 7 P s K ?� � s , 	A � ��� �� � K� � s � � s (2.31)

2.4 Subgrid-Scale (SGS) Modeling

To model the scales of turbulent motion which are not resolved, we need
a subgrid model. The main role of this model is to remove energy from
the resolved scales (associated with the energy cascade). It is thus nec-
essary to model the SGS stress so that the dissipative effect is well
captured.

2.4.1 Eddy Viscosity Models

Most subgrid scale models in use are eddy-viscosity models, based on a
gradient-diffusion hypothesis (similar to the Boussinesq hypothesis of
RANS turbulence models [2]), which take the following form:

yb4Vs;9 	
�
� 4VsDy ��� , 9 & � � r 4Vs (2.32)

where 9 Nw
� 4VsDy ��� is the trace to make the equation valid upon contraction

(i.e. setting the indices � ,�� ) and

� 4Vs is the Kronecker delta defined as:

� 4Vs , � 	����� ,��
� �����	����� ! �� (2.33)
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The subgrid-scale stresses, y+4Vs , are related to the large-scale strain-rate
tensor

r 4Vs , 	
& � � P 4� � s L

� P s� � 4 � (2.34)

The eddy viscosity, � � , is in most cases obtained algebraically to
avoid solving additional equations that could increase the cost of the
calculations. It is hoped that a simple, algebraic model can describe the
SGS physics reasonably, since the small scales tend to be more homo-
geneous and isotropic than the large ones. Modeling errors should not
affect overall accuracy of the results as much as in the RANS turbu-
lence modeling approach, since the subgrid-scale stresses only account
for a small fraction of the total stresses and turbulent transport.

By dimensional analysis, the eddy viscosity has dimensions 2 " ��3 ,
which can be expressed as the product of a length scale, ��7q2�? , and a
velocity scale, T������ 7q2���3�? where a is a dimensionless constant of pro-
portionality, i.e. [7]:

� � , a � � � T ����� (2.35)

Most of the kinetic energy of turbulence is contained in the largest
eddies and the turbulence length scale ( � ) is therefore characteristic of
these eddies which interact with the mean flow. The most active unre-
solved scales are those which are closest to the cutoff.

A resonable length scale of SGS turbulence is the filter width, which
is the size of the small structure in the flow, and is often proportional to
the grid size. The velocity scale is usually taken to be the square-root
of the trace of the SGS stress tensor, T "����� , y ��� .

The local equilibrium assumption is made to simplify the problem
further and obtain an algebraic model for the eddy viscosity so that we
do not need to solve a transport equation to determine T "����� . The equi-
librium assumption is based on the consideration that the small scales
of motion have shorter time scales than the large, energy-carrying ed-
dies; thus it can be hypothesized that they adjust more rapidly than
the largest scales to perturbations, and recover equilibrium nearly in-
stantaneously. Under this assumption the transport equation for SGS
kinetic energy is balanced by only two terms. The first one is the pro-
duction of SGS energy, � ����� , 9 yb4Vs r 4Vs , which actually represent the
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energy transfered from large scales. The second one is the viscous dis-
sipation of SGS energy, � � . This two terms are in balances, i.e. ( [11]):

� � , � ����������� � , 9 yb4Vs r 4_s (2.36)

2.4.2 Smagorinsky Model

The Smagorinsky model [14] is the eddy-viscosity model, and from his-
torical point of view is the progenitor of all subgrid-scale stress models.
The model is based on the equilibrium hypothesis (2.36). The viscous
dissipation is modeled as � �

�
T w����� � � with (2.36) using (2.32) and (2.35)

gives:

T �����
� � � r � (2.37)

where � r ��, � & r 4Vs r 4_s is the magnitude of the large-scale strain-rate
tensor. Letting � � �

and taking the filter-width as the local grid size,
one has:

� ,87 � }�� 4 � � � s � � � � ? N � w ,87 ������	 ? N � w (2.38)

where indices �Y< � and  denote cell-index in the three coordinate direc-
tions, and

�
����	
is the volume of the computational cell ��< � and  .

Now eddy viscosity can be written as:

� � ,87 a $ � ? " � r � (2.39)

where a $ is Smagorinsky constant. The model is absolutely dissipative:

� ����� , 7 a $ � ? " � r � w�� � (2.40)

The disadvantage of the Smagorinsky model is that the constant a $
is problem dependent. Usually, this constant varies in the range of
�>. � % � � a $ � �>. &�� . In the present work we use a value of a $ , �>. 	 .
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2.4.3 Damping Functions

To avoid some problems in the wall region the Smagorinsky model needs
special treatment. When one uses a subgrid scale model, the resolved
strain does not vanish on the wall, while the SGS stress does. Therefore,
the subgrid viscosity, � � , must be forced to vanish at the walls. Often
a damping function is applied to the turbulent viscosity to account for
viscous effects near walls. This function dampens the time scale � near
the walls.

A van Driest type damping function is usually used:

� , 	;9 �  ��� �� � & (2.41)

where
� l is a constant for which the value of 25 is used and ( l is the

distance from the nearest wall, given by:

( l , ( P �� (2.42)

Taking the near-wall damping into account, equation (2.39) can be rewrit-
ten as:

� � ,87 a $ � � ? " � r � (2.43)
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3 Test Cases

The general objective of the work is to explore and model turbulent
flows driven or significantly affected by buoyancy using large eddy sim-
ulation techniques. Two cases were selected for simulation in this work.
In both cases we investigate channel flow with almost the same geome-
try, as shown in Figures 3.1 and 3.2. A mesh with %�% � %�% � %�% nodes is
used for both cases.

3.1 The Horizontal Channel Flow

In this case we have a fully developed turbulent channel flow with uni-
form heat fluxes at both walls. The Reynolds number,

��� �
, based on

the friction velocity and the channel half with is ����� , and the molecular
Prandtl number is �>. � 	 . Channel length is &�� , height is &

�
,

� , 	 and
width is �6� & , .

In this case the temperature field is decoupled from the velocity field
and the buoyancy term (

tvu
) in the momentum equation (2.20) is ne-

glected.

Flow

x

z

y

q = const L

H

W
q = const

Figure 3.1. Computational domain for the horizontal channel flow

3.2 The Vertical Channel Flow

This flow is also a fully developed turbulent channel flow, but here we
prescribe the wall temperatures. The Reynolds number,

��� �� , based on
the friction velocity calculated from the wall shear stress averaged on
the two walls, Pg�� , and the channel half width, is 	
��� . The molecular
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Prandtl number is �>. � 	 . Channel length is ��� , height is &
�
, width is &�� ,�

is 	 and the Grashofs number,
� �

, is �/. % � 	 � 	 .
In this case the temperature field is coupled to the velocity field via

the buoyancy term (
tvu

) in the momentum equation (2.20), see equation
(2.30).

L

H
W

Opposing Flow

Cooled Wall

Heated Wall

Aiding Flow

g

xFlow

y

z

PSfrag replacements

Kde

K c

Figure 3.2. Computational domain for the vertical channel flow
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4 Numerical Procedure

The code is based on the finite-volume method for solving the incom-
pressible Navier-Stokes equations employing a non-staggered, collocated
grid arrangement. Several numerical schemes for discretizing the con-
vective term are incorporated into to code. In the present work we use
the second-order central differencing scheme [10]. For time integra-
tion we use the second-order Crank-Nicolson scheme. The momentum
and energy equations are solved with the point-wise symmetric Gauss-
Seidel relaxation method whereas a multigrid V-cycle is used for the
acceleration of convergence when solving the pressure equation. For
more details, see [15] and [3].

Parallelized computations were carried out for this flow on a % � -processor a � ����� ��� � � G &������ , the Silicon Graphics machine. The
��� r

code was paralleled by Zacharov [17]. Four processors are used in
present work.

The filter box is used to distinguish the small scales from the turbu-
lent motions. The width of the grid filter,

�
, is the same as the mesh

size.

4.1 The Finite Volume Method

The conservation law for the transport of scalar quantities in a un-
steady flow has the general form [16]:

�� ^ 7 J � ? L � � � 7 J
	 � ? , � � � 7��d� � � � � ? L r �
(4.1)

By using Gauss’ divergence theorem:

�
�� � � ��� � � , ����� � � � � (4.2)

where � is the vector normal to surface element � � .

By changing the order of integration in the time derivative term,
integrating of equation (4.1) over a control volume ( a � ) and a time step� ^ , we obtain:
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� �� � �
C l!� CC �� ^ 7 J � ?�� ^ 	 � � L �

C l!� CC � �
� � � 7 J�	 � ?�� � 	 � ^ ,
�
C l!� CC � � ��� � 7��d� � � � � ?�� � 	 � ^ L �

C l!� CC � � �� r�� � � 	 � ^ (4.3)

To demonstrate the integration we use one-dimensional equation.
This gives (see figure 4.1)

PSfrag replacements

Figure 4.1. Location of nodes and control volume faces.

�
h
*
� �

C l!� CC J � �� ^ � ^ 	 � � L �
C l!� CC � 7 J@P � � ? h 9 7 J@P � � ? * � � ^ ,

�
C l!� CC � � � � � �� � � h 9 � � � � �� � � * 	 � ^ L �

C l!� CC r � � � ^ (4.4)

where:

� �� � �
C l!� CC J � �� ^ � ^ � � � , J 7 x � 9 x �� ? � �

(4.5)

The source term
r

may be approximated by means of a linear form:

r � � , r \ L r � � � (4.6)

where
r � � � to increase the numerical stability. The diffusive flux

term are evaluated as:

� � � � �� � � h , � h � h � ��� 9 � �� � � � �
� � � � �� � � * , � * � * � � � 9 ���� ��� � � (4.7)
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Here the upper-case letter ( G������ � ^ R < � � � � 3 ^ < � ^ � . ) index indicates
node point and the lower-case letter ( � < � <Y3�< � ^ � . ) indicates face point, see
figure 4.1.

Face values of diffusion coefficients � are calculated as follows:

� * ,87 	;9 � � ? � � �OL � � � � � (4.8)

where the interpolation factor � � is given by:

� � ,
� ��� *� ��� * L � � * � (4.9)

4.2 Numerical Method

With equations (4.2 – 4.9) the filtered Navier-Stokes equation (2.30) is
integrated over a time step

� ^ and a control volume ( a � ) so that [16]:

� �� � �
C l!� CC � P 4� ^ � ^ � � � L �

C l!� CC � � �� �� � s 7 P 4 P s ?�� ^ � � � ,
9 �

C l!� CC � � �� 	J � F� � 4 � ^ � � � L �
C l!� CC � � �� � � " P 4� � s � � s � ^ � � �

9 �
C l!� CC � �
�� � yb4Vs� � s � ^ � � � L �

C l!� CC � � �� tvu � ^ � � �
(4.10)

Integration of each term
� � with respect to time:

� � , �
C l!� CC � � � ^ ,8� � � � L 7 	;9 � ? � �� � � ^ (4.11)

where
� �� refers to the value at time ^ , and

� � at time ^ L � ^ and where
the weighting parameter � is �>. � (Crank-Nicolson).

Finally eq. (4.10) may be discretized as:

P + l N4 9 P +4� ^ ,
�
� 9 �� � s 7 P + l N4 P + l Ns ? L � � " P + l N4� � s � � s 9 � y + l N4Vs� � s 9 	J � F + l N� � 4	�

7 	;9 � ? � 9 �� � s 7 P +4 P +s ? L � � " P +4� � s � � s 9 � y +4_s� � s 9 	J � F +� � 4 	
(4.12)
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which gives:

P + l N4 , P +4 L � ^ � \ � 
 +\ � c <�
 + l N\ � c � 9 � � ^J � F + l N� � 4 9 7 	;9 � ? � ^J � F +� � 4 (4.13)

where
� \ � 
 +\ � c <�
 + l N\ � c � represents the right-hand side in equation (4.12)

except the pressure gradient term or:

� \ � 
 +\ � c <�
 + l N\ � c � , �
� 9 �� � s 7 P + l N4 P + l Ns ? L � � " P + l N4� � s � � s 9 � y + l N4Vs� � s �

7 	 9 � ? � 9 �� � s 7 P +4 P +s ? L � � " P +4� � s � � s 9 � y +4Vs� � s 	
(4.14)


 \ � c denotes the central differencing approximation applied to these
terms, and � , 	�� & for the second-order Crank-Nicolson scheme. In
a similar way, the filtered energy equation (2.31) is represented in its
discrete form by:

K + l N4 , K +4 L � ^ � � � 
 +� � c <�
 + l N� � c � (4.15)

The standard form of the control volume formulation of eq. (4.13) is:
� � 7 P 4 ? + l N� , � � � + W 7 P 4 ? + l N+ W L��
� , 7 	;9 � ? � � + W 7 P 4 ? ++ W L�� � �� 9 7 	;9 � ? � � + W�� 7 P 4 ? + � L r

� � , � �� L � � � + W
� �� , � �

� ^
(4.16)

The source term
r

includes the pressure terms, the buoyancy term
(if appropriate) and one part of the subgrid stress given by zz+}Y~ � � � z \ ~z+} | � .

First, equation (4.13) is solved with the symmetric Gauss-Seidel
method. To reinforce the velocity-pressure coupling, an approach sim-
ilar to the Rhie-Chow interpolation [12] in the RANS computation is
employed. An intermediate velocity field, P!�� , is computed by subtract-
ing the implicit part of the pressure gradient from equation (4.13) giv-
ing:
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P �4 , P + l N4 L � � ^J � F + l N� � 4 (4.17)

Note that the intermediate velocity does not satisfy the continuity equa-
tion. To satisfy continuity a divergence is made for equation (4.17),

where the velocity field is taken at the volume faces, P + l N4 � i , i.e., z \�� � �| � �zD} | .
This divergence leads to a Poisson equation for the pressure:

� " F + l N� � 4 � � 4 , J
� � ^ � Pg�4 � i� � 4 (4.18)

In equation (4.18), the velocity divergence is calculated using the in-
termediate velocity at the control volume faces obtained through lin-
ear interpolation from neighboring intermediate nodal velocities. This
equation is solved with a multigrid method [4]. The resulting pres-
sure field, together with the intermediate velocities, is then employed
to obtain the velocity field which satisfies the continuity:

P + l N4 � i , P �4 � i 9 � � ^J � � F + l N� � 4 � i (4.19)

The resulting face velocity P + l N4 � i , is then used to compute the mass
fluxes at cell faces. Then we can solve the energy equation (4.15). The
SGS eddy viscosity and diffusivity are subsequently computed.

4.3 The Numerical Algorithm

The solution procedure can be summarized as follows:

1. Solve P 4 from eq. (4.13).

2. To obtain the intermediate velocity fields P!�4 , solve eq. (4.17).

3. Solve the Poisson equation (4.18).

4. Compute the face velocities P �4 � i using eq. (4.19).

5. Repeat step 1 to 4 until convergence is reached

6. Use Pg�4 � i to compute the mass fluxes at cell faces.

7. Solve the energy equation (4.15).

8. Compute turbulent viscosity � � and diffusivity.

9. Go to next time step ( ^ L � ^ ).
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4.4 Periodic Flow Condition

The cases examined here have a geometrical and flow pattern which
identically repeats itself after a certain distance in the stream-wise ( � )
and in the spanwise (  ) direction, i.e. the flow is periodic. These ge-
ometrical modules have identical inlet and outlet flow except for the
pressure and the temperature field (in a case with constant heat flux).
The reason why the pressure and the temperature do not repeat them-
selves in each module is that they continuously decay/increase along
the stream-wise direction.

4.4.1 Pressure

To make the pressure periodic we do decomposition into a periodic term
and a linearly varying term in the stream-wise direction, i.e.:

F 7 � <� < ^ ? , F � hQf 7 � <� < ^ ? L � F � 4 +� � � (4.20)

where � � � | �� } , 9 	 . Then, the z �z+} term in the momentum equation (2.30)
can be written as:

9 � F� � 4 , 9 � 7 F � h[f L � � � | �� } � � 4 N ?� � 4 , 9 � F � h[f� � 4 L � 4 N (4.21)

Note that the non-dimensional term, � � � | �� } , 	 because it balances the
wall shear stresses 7 y * � L y * f ? .
4.4.2 Temperature

To make the temperature periodic (in the case with constant heat flux)
we need to do some modifications in the governing equation (2.31). In
a periodic flow regime, the temperature, K , can be decomposed, like
pressure above, into a periodic term and a linearly varying term in the
stream-wise direction, i.e.:

K 7 � <� < ^ ? , K � hQf 7 � <� < ^ ? L � K � 4 +� � � (4.22)

where the periodic term, K 7 � <� < ^ ? , identically repeats it self in each
module, and the linear temperature increase4 is given by the heat flux
and mass flow:

4The linear temperature term can be decreasing if it is a cooling case.
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� K � 4 +� � , & T * U
�2 � � (4.23)

where T * is (constant) wall heat flux on one side and U is channel
width.

The J z  \�| �{&z+} | term in equation 2.31 with periodic condition can be
written as:

J P 4 � K� � 4 , J P 4 � K � hQf� � 4 L J P 4 & T * U�2 � � � N 4 (4.24)

4.5 The Boundary Conditions

4.5.1 Cyclic (Homogeneous) Boundary

The inlet and outlet have periodic boundaries, as noted above, with the
identity given as:

x 7 � �:? , x 7�&�?x 7 	�?�, x 7 � �!9 	�? (4.25)

where
x

will be the velocity components, P 4 , pressure, F � h[f and tem-
perature, K � hQf . From here on, subscript � hQf will be dropped from the
periodics variables for simplicity.

4.5.2 The Wall

At the walls no-slip condition were set and the Neuman condition is
used for the pressure.

To reduce the turbulent viscosity, � � , near the wall we use a damp-
ing function which was described in detail in Subsection 2.4.3.

4.6 The Time Advancement

The physical constraint requires
� ^ to be less than the time scale of the

resolved scale of motion, y � � � � � c (where
� c is convective velocity).

We use an implicit scheme in the present work. For values of time
step see Table 5.1.
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4.7 The Initial Conditions

For flows that are statistically steady, the initial condition are unimpor-
tant and the final steady state is not sensitive to the initial conditions.
The vertical channel case requires a longer time than the horizontal
one for the flow to develop, probably due to the buoyancy term which
imposes a strong coupling between the temperature and the vertical
velocity component.

To speed up the calculation, the initial conditions for the horizontal
channel case were adopted from the isothermal simulation (fully devel-
oped channel flow). The temperature field for horizontal channel was
started from scratch ( K , � , see fig. A.4) and for the vertical channel it
was generated linearly through (see fig. A.11):

K , 9 7 � 9 	�? � � K� � 9 	
L K�� (4.26)

where � is index for node point, 	 � � � � � , and � � denotes number of
nodes. Statistics are accumulated in time and homogeneous direction
( � and  ) when steady state is reached, see fig. A.1 - A.14 in Appendix
A.
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5 Results

Two different cases are simulated in the present study.

The first case has prescribed constant wall heat flux on both walls,
top and bottom (horizontal channel flow) with friction Reynolds number
����� . The second one (vertical channel flow), where the wall tempera-
tures are constant but different, has the cold wall to the right ( ( ,O9 	 )
and the hot wall to the left ( ( , 	 ). In this case the friction Reynolds
number is 	
��� and the Grashof number is �/. % � 	 � 	 .

The results are compared with the DNS results. Note that, in the
vertical channel case, all quantities with superscript l are normalized
by the friction velocity, P � , (or/and the friction temperature K � and the
temperature difference

� K ) calculated on each wall.

The time per iteration and number of iterations for each time step
are given in a table 5.1. One to two iterations per time step are required
to reach convergence.

a � 3 � ^ 4 C h[f �_3 � � � G 4 C hQf time step,
� ^ mesh DNS mesh LES

hcf � � . � 	 � & 	�. % 0�� � 9 � � 	 & % � � ����� � % � & %�% � %�% � %�%vcf � 	�	�. & � & �/. � � & � 9 � � 	 &50 � � % � 	 &50 %�% � %�% � %�%
Table 5.1. Horizontal channel =

�����
, Vertical channel = � ��� , time per itera-

tion, �	��
��� on 1 CPU, number of iterations, ����
��� , per time step, time step, ���
and mesh size.

5.1 Horizontal Channel Flow

5.1.1 Velocity Field and Shear Stress

The mean velocity field is shown and compared with DNS data [1] in
figure 5.1, normalized by the maximal (channel-center) velocity and in
figure 5.2, normalized with P � , to examine the obtained velocity field.
The

� 2 3 velocity fluctuation are shown and compared with DNS data
in figure 5.3.

The velocity field shows a small disagreement with the DNS data
in logarithmic region ( 	 � N 9 	 � " ) in wall coordinates (figure 5.2) and in
global coordinates ( �>. � � 9 �>. � ), figure 5.1 , but agreement is good in gen-
eral.

In figure 5.2 we can clearly see two regions:
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Figure 5.1. Mean velocity profile in
comparison with DNS data [1], ���������� �
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Figure 5.2. Normalized mean velocity
profile in comparison with DNS data
[1], ���"�#� ���

.

In the
� 2 3 of velocity components (figure 5.3), the LES data have a

slightly over-predicted ( P lf#"%$ ) and under-predicted ( � lf#" $ and � lf#" $ ) peak
value respectively in comparison with DNS data but show good agree-
ment in the region outer. The stream-wise velocity fluctuation, P lf�" $ ,
in the near-wall region is much higher than the other two, and in the
region outer their differences is much smaller. It means that the turbu-
lent production mainly creates the stream-wise component, P lf#"%$ , which
means that the turbulence is anisotropic in the near-wall region and
in the region outer, where values are almost the same, the turbulence
structures becomes more isotropic.

Distribution of the resolved Reynolds shear stress is shown in figure
5.4, where the LES gives slightly under-predicted values in the near-
wall region and slightly over-predicted values in the outer region.

The largest velocity gradient is in the near-wall region where also
the largest values of the

� 2 3 velocity fluctuations, P l4 f�" $ , and the Reynolds
shear stress are found,

� P � � l , (see figure 5.3 and 5.3), which means that
the turbulence production is high in the near-wall region.

5.1.2 Mean Temperature and Temperature Variance

The mean temperature in wall coordinates is given in figure 5.5 in com-
parison with DNS data [1] and we can see a very good agreements in
almost all regions. The

� 2 3 of the temperature variance is shown in
figure 5.6 and there is a large peak in the near-wall region. Values of
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Figure 5.3. � ����� velocity profile in
comparison with DNS data [1], ���������� �
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Figure 5.4. Resolved Reynolds shear
stress in comparison with DNS data
[1], ��� � � ���
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the K f#"%$ decrease in the outer region and becomes much smaller than
in the near-wall region.
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Figure 5.5. Mean temperature pro-
file in comparison with DNS data [1],
���"� � ��� �
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Figure 5.6. ���! of the temperature
profile in comparison with DNS data
[1], ���"�#� ���

.

5.1.3 Turbulent Heat Flux

The stream-wise turbulent heat flux component is shown in figure 5.7
and the wall-normal component in figure 5.8.

The stream-wise heat flux has a peak closer to the wall than the
heat flux in the wall-normal direction. This can be explained by the
velocity fluctuations, where the wall-normal velocity fluctuation damp-
ens strongly by the wall and have maximum value farther away than
the velocity fluctuation in the stream-wise direction. The peak in the
stream-wise direction is much steeper. Note that in region, ( l#" 	�	 � ,
the heat flux decreases with a very small gradient.
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Figure 5.7. Turbulent heat flux vector
in the stream-wise direction in compar-
ison with DNS data [1], ����� � ��� �
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Figure 5.8. Turbulent heat flux vector
in the wall-normal direction in compar-
ison with DNS data [1], ��� �#� ��� �

.

5.2 Vertical Channel Flow

Before showing and analyzing the results in this case we would like
to point out some problems which explain the following discussion and
differences between the LES and the DNS data.

For comparison of our results with the existing DNS data ([5]) we
choose to compute the fully developed channel flow with

��� �� , 	
��� ,
where

��� �� is calculated as:
��� �� , P �� � � � . We choose P �� , 	 which gives� , 	�� ��� �� (with

� , 	 ).

The friction velocity, P �� , and the wall shear stress, y �* , are calculated
by:

P �� , # y �*J < y �* , 	
& � � � �� ( 





 ��� � N L � � �� ( 





 �� N � (5.1)

Then, the force balances gives5 9 z �z+} , y �* , J�P �� " � , 	 .

The present results show that the value of the friction velocity is
actually below one ( , �>.10�� ). The reason is that the net buoyancy force
is not zero (see Section 5.2.4). So in our case the Reynolds bulk num-
ber (

����W , � � � � ) is actually higher than in the DNS data (
� � � � ). This

means that we calculate a case with larger bulk velocity, and smaller

5Note that the friction velocity is averaged on the two walls.
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��� �� ( � 	
��� ). Thus our buoyancy term in the momentum equation (2.30)
is smaller because in the buoyancy term which includes 	�� ��� �� " we have
used

��� �� , 	
��� and this is one reason why the present results are dif-
ferent than DNS data.

It is interesting to note that the calculated buoyancy term have
negative values of the net buoyancy (negative direction in figure 5.27)
which is probably related to the larger bulk velocity.

Possible correction of this problem are shown in Section 7.

In this work the focus was not on the discussion about the difference
in values between the LES and the DNS, but rather on the behavior of
the buoyancy and its effect on the flow.

A low-frequently oscillation in the bulk velocity profile was observed6

which causes problem with choosing when the flow is in fully devel-
oped state (see figure A.13) and when the averages over space and time
should take place. The averages process was starting a couple of times
but every time in the averages process the bulk velocity drifted away
from the “steady-state” value.

To reduce effect by the low-frequent oscillation in the bulk velocity
the averages value was taken over a long time (over &�������� time steps)7.
That should gives a better mean values8.

5.2.1 Velocity Field and Shear Stress

The mean velocity profile which is affected by buoyancy is shown in
global coordinates (figure 5.9) and in local (wall) coordinates (figure
5.10).

The predicted P � at the hot and the cold wall are P � e , �>. ����� � andP � c , �>. � % � �
respective and Pg�� , �>.105050 , calculated from the wall shear

stress averaged on the two walls. Data from the present LES calcula-
tion are over-predicted as compared with the DNS data. The velocity
profile in figure 5.9 is asymmetric because the temperature difference
between the walls produces a positive buoyancy contribution on one side
(hot-left) and negative buoyancy contribution on the other side (cold-

6This is probably related to the computational domain, which is not large enough to
contain more than two flow modes in the assumed homogeneous directions.

7Corresponding to �
� ��� ��� � in dimensionless time or �

� ���	��
 ������
.

8Here is noted that only mean velocity profile and all velocity quantities is sensitive
to change in bulk velocity. All temperature quantities are much less sensitive and gives
almost the same profile, see figures B.1 – B.11 in Appendix B.
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right).

Figure 5.10 shows the velocity profile in the wall coordinates for op-
posite (negative buoyancy) and aiding (positive buoyancy) flow. Here we
can see clearly the difference between aiding and opposing sides where
opposing side has smaller values than the aiding side. It is also noted
that a logarithmic region in aiding flow does not exist any longer, which
is consistent with DNS data [5].
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Figure 5.9. Mean velocity profile in
global coordinates in comparison with
DNS data [5], ���"� ��� ��� .
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Figure 5.10. Mean velocity profile in
wall coordinates in comparison with
DNS data [5], � � � �*� ��� .

The
� 2 3 velocity fluctuations near the walls are shown in local (wall)

coordinates, figure 5.11 - 5.13 and in global coordinates, figure 5.15 -
5.17. The P f#"%$ velocity profile has a peak near the walls, larger for op-
posing flow. The values of � f#"%$ and � f�" $ are much smaller than P f�" $ .
In comparison with isothermal (without buoyancy) flow, figure 5.3, we
can see the similar behavior with more anisotropic turbulence in the
near-wall region and the flow is more isotropic in the outer region. It is
interesting to note that the LES gives much larger values of the fluctu-
ation in the stream-wise direction (factor of & ) in the opposing flow and
under-predicts values for the other velocity fluctuations (in comparison
with the DNS). But always, the opposing flow fluctuations have larger
values than the aiding flows (this does not depend on normalization,
see figure 5.15 - 5.17).

The resolved Reynolds shear stress is shown in local (wall) coordi-
nates, figure 5.14 in the near-wall region and in global coordinates, fig-
ure 5.18. It can be seen that the Reynolds shear stress, if we compare
the aiding and the opposing side, at the opposing side have larger val-
ues (more than a factor of & ). This asymmetric behavior of the Reynolds
shear stress can be clearly seen in figure 5.18 where zero value of

� P � � �>7 P!�� ? "
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Figure 5.11. � � � � velocity profile in
comparison with DNS data [5], �������
� �� . For legend, see figure 5.10
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Figure 5.12. � � � � velocity profile in
comparison with DNS data [5], ����� �
� �� . For legend, see figure 5.10
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Figure 5.13. � ����� velocity profile in
comparison with DNS data [5], �������
� �� . For legend, see figure 5.10
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Figure 5.14. Resolved Reynolds shear
stress in comparison with DNS data
[5], ���"� � � �� . For legend, see figure
5.10

is shifted to the left, which is discussed in section 5.2.4.

5.2.2 Temperature and Temperature Variance

The mean temperature profile is shown in global coordinates, figure
5.19 and in wall coordinates, figure 5.20. Agreement between the LES
and the DNS data is much better than for the velocity components. It
seems that the temperature distribution over the cross section is less
sensitive to the bulk velocity. The temperature increase is the same on
both sides in the near-wall region, see figure 5.20, and it is noted that
the mean temperature

� K � l on the aiding flow side increases twice as
much in comparison with the opposing side in region ( l " 	 � .

The
� 2 3 fluctuation of the temperature is shown in local coordi-
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Figure 5.15. � � � � velocity profile in
global coordinates in comparison with
DNS data [5], ��� � � � �� . For legend,
see figure 5.9
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Figure 5.16. � � � � velocity profile in
global coordinates in comparison with
DNS data [5], � � � � � �� . For legend,
see figure 5.9
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Figure 5.17. � ����� velocity profile in
global coordinates in comparison with
DNS data [5], ���"� � � �� . For legend,
see figure 5.9
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Figure 5.18. Resolved Reynolds shear
stress in global coordinates in compari-
son with DNS data [5], ����� �*� ��� . For
legend, see figure 5.9

nates, figure 5.21 and in global coordinates, figure 5.22. The temper-
ature fluctuations increase in the near-wall region for the opposite and
the aiding flow. Even in the outer region the aiding flow temperature
fluctuation increases while the opposing decreases. In global coordi-
nates, see figure 5.22, can be seen that the LES give more obvious peak
values on the aiding side than the opposing side in comparison with
DNS.

5.2.3 Turbulent Heat Flux

The turbulent heat flux in the local and the global coordinates are
shown in the stream-wise direction, figure 5.23 and 5.25 respective and
in the wall-normal direction, figure 5.24 and 5.26 respective. In the
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Figure 5.19. Mean temperature pro-
file in comparison with DNS data [5],
��� � �*� �� .

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

PSfrag replacements

���

� �
��

Figure 5.20. Mean temperature pro-
file in wall coordinates, ����� � � ��� . For
legend, see figure 5.10
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Figure 5.21. ���  temperature pro-
file in comparison with DNS data [5],
��� � �*� �� . For legend, see figure 5.10
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Figure 5.22. ���  temperature pro-
file in global coordinates in comparison
with DNS data [5], � � � ��� �� . For leg-
end, see figure 5.9

stream-wise direction the flow has the same behavior with steep in-
creasing in the near-wall region and then decreasing. It was also ob-
served that the LES gives a good agreement in the near-wall region but
in the region out-of-wall the LES gives larger values than the DNS. In
the wall-normal direction the heat flux increase in the near-wall region
and then becomes asymptotic (both for the opposite and the aiding side).

5.2.4 Balances of Transport Equations

By integrating the momentum equation (in the stream-wise direction)
(2.30) with (4.20) from the hot to the cold wall ( � � ( � & �

�
), we obtain

the equation for the stress balance in the stream-wise direction:
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Figure 5.23. Turbulent heat flux vec-
tor in a stream-wise direction in com-
parison with DNS data [5], ��� � ��� �� .
For legend, see figure 5.10
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Figure 5.24. Turbulent heat flux vec-
tor in a wall-normal direction in com-
parison with DNS data [5], � � � ��� �� .
For legend, see figure 5.10
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Figure 5.25. Turbulent heat flux vec-
tor in global coordinates in a stream-
wise direction in comparison with DNS
data [5], ��� � � � ��� . For legend, see
figure 5.9
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Figure 5.26. Turbulent heat flux vec-
tor in global coordinates in a wall-
normal direction in comparison with
DNS data [5], � � � � � �� . For legend,
see figure 5.9
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(5.2)

where the terms on the left-hand side are the Reynolds shear stress,
the viscous stress, the SGS stress and the buoyant force, respectively.
The terms on the right-hand side are the wall shear stress and the pre-
scribed driving force.

The force balance, see figure 5.27, in the � 9 direction:
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Figure 5.27. Force balance

� F� � � � }�� � � � 9 & � y * � � }�� � L tvu � � }�� � � � , � (5.3)

with
� }�� � � � , &

� � � � U ,
� }�� � , � � U , z �z+} , 	 and y * , J�P{�� " givestvu , P{�� " 9 	 . Since Pg�� � 	 , the net buoyancy force has a negative

value, which can be seen in figure 5.29.

For isothermal flow (i.e. with no buoyancy) the integrated momen-
tum equation (5.2) gives that the pressure gradient balances the sum of
the Reynolds shear stress, SGS stress and the viscous stress and they
are all symmetrical with different sign for the opposing and the aiding
side, see figure 5.28.

The asymmetric behavior of the Reynolds shear stress in figure 5.14
can be explained by the influence of the buoyancy force on the mean
flow.

The buoyancy force is not zero and it has a positive sign over almost
the whole region. This leads to an increase of the magnitude of the
Reynolds shear stress on the opposing side and a decrease on the aiding
side, see figure 5.29 .

The budget equation of the resolved turbulent kinetic energy,
�  � ,N" � P 4 P 4 � , is given as:
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Figure 5.29. Stress balance in a
wall-normal direction (vertical chan-
nel), � � � �*� ��� .
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� \ ` � � + c � � f ` � \ c C 4 ` +
(5.4)

where each term from equation 5.4 are shown in figure 5.30.9 As noted
in [5], the shear production term is clearly different from the opposite
to the aiding side and it is twice as large on the opposing than on the
aiding flow. All other terms shows the same behavior with decreasing
in the aiding and increasing in the opposite flow. Note that the buoyant
production is much smaller than the buoyancy term in the momentum
equation, 5.2.

The budget equation of the temperature variance,
� K " � , given as:

9Note thet the dissipation term is computed as the balance term.
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Figure 5.30. 243,5 balances, ( ����� �*� ��� ).
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(5.5)

Each term from equation 5.5 is shown in figure 5.31. There is no big
difference between the opposing and the aiding side. Only production
by the temperature gradients term is slightly different but it has the
same peak value. All other terms have almost the same values on the
opposite and the aiding side.
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6 Conclusions

The LES of the fully developed turbulent channel flow with scalar trans-
port and combined force and natural turbulent convection was performed.
The molecular Prandtl number is �>. � 	 and Reynolds numbers are

����� ,
����� and

��� �� , 	
��� . The following conclusions have been made:

� The LES gives a very good results in comparison with the DNS
and can be used for simulation of the fully developed turbulent
channel flow with uniform heating.

� The buoyancy force has significant effect on the mean flow causing
remarkable changes in the near-wall region.

� The asymmetrical behavior of the Reynolds shear stress can be
explained and understod in a better way by influence of the buoy-
ancy force.

� The remarkable, opposite effect of decreasing buoyancy term on
the mean flow was noted.

� The LES simulation can be used with much coarser grid size than
the DNS.
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7 Future Work

Next step should be that to increase/decrease the pressure gradientz �z+} L a with the some constant values, a , until we obtain the required
wall shear velocity, P �� 7 , 	�? .

Some refinement of the mesh can be attempted to check if that can
be reason why the LES and DNS do not agree.

One more calculation may be done with longer channel length to
check if periodical conditions are the reason for some disagreements in
comparison of the LES results with the DNS data.

The balances for more quantities should be calculated for better un-
derstanding of buoyancy influence on the channel flow.

The simple Smagorinsky model is tested in the present cases and
another SGS method (dynamics) should be tested, see [8, 9]. Or maybe
try to test the channel flow without SGS model at all since the subgrid-
scales stresses only account for a small fraction of the total stresses
when the grid is fine enough.

Then, two purposes should be done:

� To numerical explore (in detail) the buoyancy-driven or signifi-
cantly affected turbulent flow and heat transfer features.

� To analyze the subgrid-scale motion in such flows and to model
its behavior and effects on resolved large scales so as to improve
and expand the capability of present LES methods to handle such
flows.
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Appendix A:

The time history and the CFL number in the middle of channel for the
horizontal flow ( �-, � &/< � , � &/<� , � & ) and near-wall for the vertical
channel ( � , � < � , 	D0/<� , �

).

0 10 20 30 40 50 60
17

18

19

20

21

22

23

24

PSfrag replacements

	 ��� �

�

Figure A.1. Time history for � , ��� � ���� �
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Figure A.2. Time history for � , ��� � ���� �
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Figure A.3. Time history for � , ����� ���� �
.
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Figure A.5. Time history for � , ���������� �
.
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Figure A.6. Time history for ��� , ���"������ �
.
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Figure A.7. Time history for �
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Figure A.8. Time history for � , ��� � �
� �� .
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Figure A.9. Time history for � , ��� � �
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Figure A.10. Time history for � ,
���"� �*� �� .
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Figure A.11. Time history for
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,
��� �#�*� ��� .

0 20 40 60 80 100 120 140
−8

−6

−4

−2

0

2

4

6

8

PSfrag replacements

^ � 2 �

�

Figure A.12. Time history for � , ��� � �
� �� .
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Figure A.13. Time history for � � ,
��� � �*� ��� .
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Appendix B:

Comparison between the averaged values taken in a different time in-
tervals (see figure A.13) where:

� dashed line (ts2) is in the interval between 0/. ����� – 	 % . ����� time steps,

� dot line (ts3) is in the interval between 	 % . ����� – & � . ����� time steps
and

� solid line (ts1) is in the interval between &��>. ����� – � �/. ����� time steps.
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Figure B.1. Mean velocity profile in
global coordinates in different time in-
tervals, ��� � �*� �� .
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Figure B.2. Mean velocity profile in
wall coordinates in different time inter-
val, ���"�#� � ��� .
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Figure B.3. � � ��� velocity profile in dif-
ferent time interval, ��� � � � ��� . For
legend, see figure B.2
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Figure B.4. � ����� velocity profile in dif-
ferent time interval, ��� � � � ��� . For
legend, see figure B.2
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Figure B.5. � � ��� velocity profile in
different time interval, ��� � � � �� . For
legend, see figure B.2
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Figure B.6. Reynolds shear stress in
different time interval, ��� � � � �� . For
legend, see figure B.2

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

Figure B.7. Mean temperature profile
in different time interval, � ��� � � �� .
For legend, see figure B.1
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Figure B.8. Mean temperature profile
in wall coordinates in different time in-
terval, ���"� �*� ��� .
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Figure B.9. Turbulent heat flux vector
in a stream-wise direction in different
time interval, ��� � � � �� . For legend,
see figure B.2
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Figure B.10. Turbulent heat flux vec-
tor in a wall-normal direction in differ-
ent time interval, � ��� � � ��� . For leg-
end, see figure B.2
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Figure B.11. Rms temperature profile in different time interval, � � � � � �� .
For legend, see figure B.2
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Averaged velocity fields and isothermal contours for the horizontal and
the vertical channel.

Figure C.1. Isothermal contour in the horizontal channel.

Figure C.2. Velocity field in the horizontal channel.
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Figure C.3. Isothermal contour in the
vertical channel.

Figure C.4. Velocity field in the verti-
cal channel.


