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1 CFD course

1.1 Background

The traditional method for CFD in industry and universities is Reynolds-Averaged
Navier-Stokes (RANS). It is a fast method and mostly rather accurate. In every
industry which is working on fluid mechanics, CFD is used.

1.2 Aim

Unfortunately, most engineers and many researchers have limited knowledge of
what a CFD CFD code is doing. The object of this course is to close that
knowledge gap.

1.3 When?

This PhD course is given every second year (2015, 2017, 2019 ...) in Study
period 3. If you want to take part, register on the course by sending me an
Email. The course page can be found at PhD course in CFD

1.4 Lectures

There will be no lectures. There will be one meeting (1-2 hours) per week. In
these meetings the students have the opportunity for questions and discussion.
The first meeting will take place in week 1 (Study period 3).


http://www.tfd.chalmers.se/~lada
http://www.tfd.chalmers.se/~lada/phd-cfd/

2 Partl

Write a 2D Navier-Stokes solver for incompressible, laminar flow. Compute the
flow in a square lid-driven cavity at Re = UyquL/v = 1000; set Uyeu = L =1
and v = 1/Re. Compare with numerical simulations in [1]. A mesh with 12x12
nodes (constant size) should be used. Compare with data on the course www
page. Write a small report (max 10 pages). This gives 4 ETC credits.

e Collocated grid arrangement, i.e non-staggered

e The convection-diffusion can be treated as in assignment K2 in the MTF072
CFD course

The convection scheme for first-order upwind is derived in the Appendix A

A flow chart could look like this. You should first look at the book [6] as
well as the reports for CALC-BFC [3] and TEACHS3D [4]. The reports can be
downloaded here. You should also look at the lecture notes (Chapter 2-9).

1. Compute all geometrical quantities such as areas, volume, interpolation
factors. I recommend that you put the boundary nodes at the boundaries,
see Chapter 4, p. 10 in Lecture notes!

2. Set all variables (u, v, p) as well as the convections, 1. and 77, to zero.

3. Compute the coeflicients, aw, ag, as and ay. Use m. and m, in Eq. 2
(from the previous iteration) when computing the convective fluxes; the
first iteration they are zero. The coefficients are the same for v and v.
Initially you should use 1st-order upwind. Later on, you could try central
differencing or second-order upwinding.

4. Compute the source terms of u and v, i.e. —9p/0x and —9p/Jy and put
them in Sy; for u is reads Sy = —9p/0xAV. The boundary condition for
the pressure is Op/dn = 0 at all boundaries.

5. Introduce implicit under-relaxation (see pp. 52-53, Chapter 6 in Lecture
notes!), of say 0.5, and compute modified S{,’“’d and a}!wd.

6. Solve u and v (recall that Sy is different for v and v) . Use either TDMA
or Gauss-Seidel (G-S) If you use TDMA (see Chapter 7), use it along both
2 (I lines) and y (J lines) directions. Note that you must probably make
a couple of G-S sweeps for p’ (10 or more) in order to make the equations
converge, i.e.

do nn=1,nsweep(nphi)
do i= 2,niml
do j= 2,njmil

Thttp://www.tfd.chalmers.se/ lada/comp_fluid_dynamics/lecture notes.html
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10.

11.

12.
13.

14.

15.

rhs =ae(i,j)*phi(i+l,j,nphi)+aw(i,j)*phi(i-1,j,nphi)
+an(i, j)*phi(i,j+1,nphi)+as(i,j)*phi(i,j-1,nphi)
+su(i, )
phi(i,j,nphi)= rhs/ap(i,j)
end do
end do
end do

where nsweep (nphi) > 3 where nphi=u, v or p’.

Compute m} = 0.5(up + up)Acp and 7 with central differencing

Add Rhie-Chow as
dp = peE — 3pE + 3pp — Pw
dy = dpAc/4/ap, (1)
e =) + pAecd,

see p. 55 in Chapter 6 (collocated grid) in Lecture notes'. a%, denotes

ap for the velocity interpolated to face e; A, denotes the area of the east
face.

Compute the coefficients for the p’ equation. The boundary condition at
all boundaries is dp’ /On = 0. This is achieved by setting the corresponding
coefficient to zero (e.g. at the east boundary ap = 0).

Compute the source term in the p’ equation (i.e. net mass flux) as Sy =
7('”'7/6 - mw + mn - ms)

The initial conditions of p’ is zero, i.e. set p’ = 0 in all points (at every
iteration).

Solve p’ using TDMA

Since we have Neumann boundary conditions on p’ at all boundaries, the
level of p’ it not defined. Choose a cell (e.g. cell (2,2)), and make p’ =0

(ie. Phew =P = Pi—ye2):
Correct 1, and m,,. For m, it reads
1g ™ = e + ap(Pp — P) (2)
where ag is the coefficient in the p’ equation which is computed as
alhe = 0.5(alh oy +alhy),  ap = pA?/al,

Correct the velocities, u and v. For u, it reads

/ /
Pw —D

up =up + ——=<AV
Azat,



16. Correct p as (apr ~ 0.5)

new

PP =pp + appp
where ap is the under-relaxation coefficient (ap ~ 0.5).

17. Compute residuals for v and v as RHS minus LHS for each cell, i.e.

I=NI-1J=NJ-1

R = Z Z lapug + awuw + anun + asus + Sy — apup)|
= J=2

and scale it with an appropriate value (see Chapter 4, p. 15 in Lecture
notes?)

The residual for the continuity equation is simply the magnitude of the
net mass flux in each cell (which is the source term in the p’ equation).

18. If the residuals are larger than, say, 1073, go to Item 3 and repeat (next
iteration)

Compare your results with data on the course www page.

3 Part Ila: turbulence model

Here you should implement the two-equation k —w model of Wilcox [7]. It reads

0v;k 0 ok
2 (o 2) 28]

0x; O0x; o) 0z
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-0, 2P+ L2 e NS
paxi Clkz k+8xj Kquaw) axj] Cuzpro 3)
pk ov; [ O Z%j
= — P = R —
fe= g Tk oz (axj + Ox;

where g* = 0.09, c,1 = 5/9, 2 = 3/40 and o, = 0, = 2. The momentum
equation reads

o ,_ _ _10pp 0 aa} (4)

c’)T:j(vivj) = om +a?j [(VJFVt)axj

where the cross-diffusion term has been neglected. The turbulent kinetic energy
in the Boussinesq assumption is also neglected (or it can be assumed to be
incorporated in the pressure, i.e. pp = p+ 2k/3, see [2]).

The boundary conditions for the turbulent quantities are k = 0 at the wall
and w, = 6v/(cu2y?) for the cells adjacent to the walls. The w boundary
condition is set by using Sp and Sy as Sp = —1F10, Sy = 1F10 - w,,. You
need to use some reasonable initial conditions on k£ and w, otherwise the solution

2http://www.tfd.chalmers.se/ lada/comp_fluid_dynamics/lecture notes.html
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Figure 1: 1D grid with five cells (ni=5) using your own solver (e.g. Gauss-
Seidel or TDMA). The bullets denote where the dependent variables (including
the boundaries) are stored. Dashed lines denote control volume faces.

boundary boundary

— I

Figure 2: 1D grid with five cells (ni=5) using a sparse-matrix solved. The bullets
denote where the dependent variables are stored which are labeled 0—4. Dashed
lines denote control volume faces labeled 0-5.

may easily diverge. I recommend to use kjni;; = 1072 and winsi = 100. Under-
relaxate turbulent viscosity as v7¢” = av;+(1—a)v?!?. Note that you may need
to use rather strong under-relaxation on all variables (even down to ov = 0.1).

The Reynolds number is 100 000. A mesh with 66 x 66 nodes are used with
15% stretching from the walls to the center.

Compare your results with data on the course www page.

Write a short report (max 10 pages). This part gives an additional 3.5 ETC
credits.

4 Part IIb: Sparse-matrix Solver

In Part I, I assume that you use your own solver (Gauss-Seidel or TDMA). In this
case, the grid looks like that in Fig. 1. Then the length of the solution array ® is
seven, since ® is stored at the locations of the bullets including the boundaries.
However, if you would set-up the matrix system, the boundaries must not be
included because ® is not solved there. An example of the coefficient matrix
is given in Appendix B. In this case the grid is shown in Fig 2, i.e. ® is not
stored at the boundaries. Then the boundary conditions must be implemented
via source terms as shown below.
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Figure 3: 1D grid. Boundary conditions at z = 0.

Suitable sparse-matrix solvers are found in Python, e.g. linalg.lgmres,
linalg.gmres or the algebraic multigrid solver pyAMG [5].

4.1 Inlet boundary conditions using source term

Since we do not have any cells at the boundaries, the boundary conditions must
be prescribed through source terms. By default, there is no flux through the
boundaries and hence Neumann boundary conditions are set by default. Here,
we describe how to set Dirichlet boundary conditions.

Consider discretization in a cell, P, adjacent to an inlet, see Fig. 3. Consider
only convection. For the v equation at cell i+ = 0 we get

apvp
ap
Cu

ap

awbw + agip + Su (5)
aw +ag — Sp, aw =Cy, ag=—-0.5C,

ow Ay

C, — 0.5C,

Note there’s no 0.5 in front of C,, since the west node is located at the inlet.
Since there is no cell west of i = 0, Eq. 5 has to be implemented with additional

source terms

For v it reads

aw = 0 (6)
Stada = Cuwlin
S}Lzadd = —Cy

aw = 0 (7)
S;},add = Cyin (8)
Szvﬂ,add = —Cy



The additional term for the diffusion reads

Viot Aw _

SUadd,diff = Ap Ui (10)
Vtot Aw _
S[U],add,diff = OAxw Vin
VtotAw
Spadd,diff = — As

where Sp add,qaifs is the same for v and v.

4.2 'Wall boundary conditions using source term

We use exactly the same procedure as in Section 4.1. At walls, there is no
convection and the velocity is zero. Hence we simply use Eq. 10 with v = v = 0,
i.e. (for west wall)

VA,
Spadd,diff = “As

Note that we use v instead of vy since the turbulent viscosity is zero at the
wall.

A First-order upwind

The convective term reads S0
v
2= =0 11
5 (1)

We integrate and get

Qe - Qw =0 (12)

where the fluxes are @,, (north face) and Qs (south face). First-order upwind
gives

Qs = max(Cs,0)Ps — max(—Cs, 0)Pp

13
Q. = max(Cy,0)®p — max(—C,,0)Py (13)

where Cs = (vA), and Q, = (VAD),. We get

Qs - Qn
= max(Cy, 0)®gs — max(—Cy, 0)®p — max(Cy, 0)®p + max(—C,,0)®yn (14)
= max(Cs, 0)®g + max(—C,,0)® 5 — (max(—Cs, 0) + max(C,,,0))Pp

which can be written

Qs_Qn:Cs(I)S_Cn(I)Pa Csvcn >0
Qs - Qn = CnCDN - CS(I)P, CS,Cn <0



(note that — max(—C,,0) = C,, if C,, <0)
Add the continuity equation times ®p , i.e (Cs — C,,)®Pp, to the last line of
Eq. 14 so that

Qs - Qn
= max(Cy, 0)®gs + max(—C,, 0)®y — (max(Cs, 0) + max(—C,,0))Pp (16)
= max(Cs, 0)(Ps — Pp) + max(—C,,0)(dy — Pp)

The first line is obtained because
max(—z,0) + z = max(z), max(x,0) —x = max(—x) (17)

Equation 16 (using Eq. 12) can now be written

Qs — Qn = as(®s — ®p) +an(®y — Pp) =0 (18)
where
as = max(Cy, 0
s = max(Cs, 0) (19)
ay = max(—C,,0)
Equation 18 can be written on usual SIMPLE finite volume form as
ap®Pp =anPy +asd
rop N®N s®s (20)

ap =ag+an



B Example of a coefficient matrix

B.1 2D grid, ni x nj = (3,2)
jand N

0 1
2 3
iand E
4 5
[ Cco C1 C2 Cc3 C4 C5 |
L0 : ap.o —an,o —ag,o 0 —aw,o 0
Ll: —agy ap 0 —agq 0 —awn
L2: —aw,2 —as2 ap2 —aN2 —AE?2 0 (21)
L3: 0 —aw,3 —as,3 ap;3 0 aE.3
L4 —Aag 4 0 —aw,4 0 ap 4 —anN,4
L L5: 0 —AaEg5 0 —aw,s 0 aps i

Figure 4: Matrix, A, for 2D flow. ni x nj = (3,2). Cyclic in . The coefficients
due to cyclic boundary conditions are colored in blue.
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