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Tensors (February 5, 2011)

The convection-diffusion equation for temperature reads

∂

∂x
(ρUT ) +

∂

∂y
(ρV T ) +

∂

∂z
(ρWT ) =

∂

∂x

(

Γ
∂T

∂x

)

+
∂

∂y

(

Γ
∂T

∂y

)

+
∂

∂z

(

Γ
∂T

∂z

)

Using tensor notation it can be written as

∂

∂xj

(ρUjT ) =
∂

∂xj

(

Γ
∂T

∂xj

)

The Navier-Stokes equation reads (incompr. and µ =

const.)

∂

∂x
(UU) +

∂

∂y
(V U) +

∂

∂z
(WU) =

− 1

ρ

∂P

∂x
+ ν

(

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

)

∂

∂x
(UV ) +

∂

∂y
(V V ) +

∂

∂z
(WV ) =

− 1

ρ

∂P

∂x
+ ν

(

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

)

∂

∂x
(UW ) +

∂

∂y
(V W ) +

∂

∂z
(WW ) =

− 1

ρ

∂P

∂x
+ ν

(

∂2W

∂x2
+

∂2W

∂y2
+

∂2W

∂z2

)

Using tensor notation it can be written as

∂

∂xj

(UjUi) = −1

ρ

∂P

∂xi

+ ν
∂2Ui

∂xj∂xj

(62)
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a: A tensor of zeroth rank (scalar)

ai: A tensor of first rank (vector) ����* ai =





2
1

0





aij: A tensor of second rank (tensor)

A common tensor in fluid mechanics (and solid mechan-

ics) is the stress tensor σij

σij =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33





It is symmetric, i.e. σij = σji. For fully, developed flow in a

2D channel (flow between infinite plates) σij has the form:

σ12 = σ21 = µ
dU1

dx2

(= µ
dU

dy
)

and the other components are zero. As indicated above, the

coordinate directions (x1, x2, x3) correspond to (x, y, z), and

the velocity vector (U1, U2, U3) corresponds to (U, V, W ).

What is a tensor?

A tensor is a physical quantity. Consequently it is indepen-

dent of which coordinate system. The tensor of rank one

(vector) bi below

����*
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is physically the same whether expressed in the coordinate

system (x1, x2)

-
6

x1

x2

where bi = (2, 1, 0)T

or in the coordinate system (x′
1
, x′

2
)

��*A
AK x′

1

x′
2

where bi′ = (
√

5, 0, 0)T . The tensor is the same even if its

components are different.

The stress tensor σij is a physical quantity which ex-

presses the stress experienced by the fluid (or the solid);

this stress is the same irrespective of coordinate system.

Examples of equations using tensor notation

• Newton’s second law

m
d2~x

dt2
= ~F

which on component form reads

m
d2x1

dt2
= F1

m
d2x2

dt2
= F2

m
d2x3

dt2
= F3.

(63)
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On tensor notation:

m
d2xi

dt2
= Fi

When an index appears once in each term (a free index) it

indicates that the whole equation should be applied in each

coordinate direction, cf. Eq. 63.

• Divergence ∇ · U = 0

The equation above reads

∂U1

∂x1

+
∂U2

∂x2

+
∂U3

∂x3

= 0 ⇔
3

∑

i=1

∂Ui

∂xi

= 0 (64)

In tensor notation the following rule is introduced: if an

index appears twice (a dummy index) within a term, we

should apply summation over this index. Normally the

summation is taken from 1 to 3 (the three coordinate di-

rections). If our coordinate system is 2D, the summation

goes, of course, only from 1 to 2.

Equation 64 is thus written as

∂Ui

∂xi

= 0. (65)

Alternative notations for a derivative are Ui,i or ∂iUi, so that

Eq. 64 can be written as

Ui,i = 0 or ∂iUi = 0

Note that, since the dummy index implies a summation

over each term, it can be interchanged against any index,

i.e.

∂Uk

∂xk

= 0.
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is exactly the same equation as Eq. 65. Equation 62 can,

for example, be written as

∂

∂xℓ

(UℓUm) = −1

ρ

∂P

∂xm

+ ν
∂U 2

m

∂xk∂xk

where different dummy indices have been used (ℓ and k);

this is perfectly correct, because the summation is carried

out for each term separately. What is not allowed, however,

it to choose the dummy index same as the free index, i.e.

for the equation above we are not allowed to use m as a
dummy index.

• The left-hand side of Navier-Stokes Uℓ∂Um/∂xℓ

For simplicity, let’s assume 2D. The left-hand side of the

equation above includes both a free index (m) and a dummy
index (ℓ). Let’s first write out the summation on component

form so that

U1

∂Um

∂x1

+ U2

∂Um

∂x2

.

The free index indicates that the equation should be writ-

ten in each coordinate direction (x1 and x2 in this case, since

we have assumed 2D flow), cf. Eq. 63, i.e.

U1

∂U1

∂x1

+ U2

∂U1

∂x2

U1

∂U2

∂x1

+ U2

∂U2

∂x2

Contraction

If two free indices are set equal, they are turned into dummy

indices, and the rank of the tensor is decreased by two. This
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is called contraction.If the tensor equation

aij = bjcdi − fij

is contracted, the result is

aii = bicdi − fii.

For a tensor of rank two, aij, contraction is simply summa-

tion of the diagonal elements, i.e. a11 + a22 + a33.

Two Tensor Rules

• The summation rule

A summation over a dummy index corresponds to a scalar

product or a divergence; it should not appear more than

twice. The following expressions are not valid:

akkk = 0, aiikbij = dkj, aibici = d

• Free Index

In an expression the free index (indices) must be the

same in all terms The following expressions are not valid:

aikk = bj, ciaibj = dk, aijdjk = cim

Special Tensors

• Kroenecker’s δ (identity tensor)

It is defined as

δij =

{

1 i = j
0 i 6= j
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Contraction of δij yields

δii = δ11 + δ22 + δ33 = 3

Another example of contraction can now be given. We

have the expression for the turbulent stress tensor based

on the Boussinesq hypothesis (see Section 2.2 in LD)

ρuiuj = −µt

(

∂Ūi

∂xj

+
∂Ūj

∂xi

)

+
2

3
δijρk. (66)

Contraction gives

ρuiui = −2µt

∂Ūi

∂xi

+
2

3
δiiρk = −2µt

∂Ūi

∂xi

+ 2ρk.

For incompressible flow the first term on the right-hand

side is zero (due to continuity) so that

uiui = 2k,

which actually is the definition of k. Thus Eq. 66 is valid

upon contraction; this should always be the case. As can be

seen, contraction of Eq. 66 corresponds simply to the sum

of the diagonal components (elements 11, 22 & 33).

• Levi-Civita’s εijk (permutation tensor)

It is defined as

εij =







1 if (i, j, k) are cyclic permutations of (1, 2, 3)
0 if at least two indices are equal

−1 otherwise

(67)

Examples:

ε123 = 1, ε132 = −1, ε113 = 0

ε312 = 1, ε321 = −1, ε233 = 0
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Symmetric and antisymmetric tensors

A tensor aij is symmetric if aij = aji.

A tensor bij is antisymmetric if bij = −bji. It follows

that for an antisymmetric tensor all diagonal components

must be zero (for example, b11 = −b11 ⇒ b11 = 0).

The (inner) product of a symmetric and antisymmetric

tensor is always zero. This can be shown as follows:

aijbij = ajibij = −ajibji = −aijbij,

where we first used the fact that aij = aji (symmetric),

then that bij = −bji (antisymmetric), and finally we inter-

changed the indices i and j, since they are dummy indices.

Thus the product must be zero.

This can of course also be shown be writing out aijbij on

component form, i.e.

aijbij = a11b11 + a12b12 + a13b13 + . . . + a32b32 + a33b33 = 0

By inserting

a12 = a21, a13 = a31, a23 = a32

b11 = b22 = b33 = 0

b12 = −b21, b13 = −b31, b23 = −b32

the relation above, i.e. aijbij = 0, is verified.

Vector Product

The vector cross product

~c = ~a ×~b

Tensors
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is on tensor notation written

ci = εijkajbk. (68)

This is easily shown by writing it on component form. Us-

ing Sarrus’ rule we get

~c =





~x ~y ~z

a1 a2 a3

b1 b2 b3



 = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T

We find that the first component of Eq. 68 is

c1 = ε1jkajbk =

= ε111a1b1 + ε112a1b2 + ε113a1b3

+ ε121a2b1 + ε122a2b2 + ε123a2b3

+ ε131a3b1 + ε132a3b2 + ε133a3b3

= ε123a2b3 + ε132a3b2 = a2b3 − a3b2.

Recall that εijk is zero if any two indices are equal (see

Eq. 67, p. 65).

Derivative Operations

• The derivative of a vector ~B:

Tensor notation

∂Bi

∂xj

or Bi,j

Vector notation

grad( ~B) or ∇ ~B

The result is a tensor of rank two (rank of Bi plus one)

• The gradient of a scalar a:
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Tensor notation

∂a

∂xj

or a,j

Vector notation

grad(a) or ∇a

The result is a vector.

• The divergence of a vector ~B:

Tensor notation

∂Bj

∂xj

or Bj,j

Vector notation

div( ~B) or ∇ · ~B

The result is a scalar.

• The curl of a vector ~B:

Tensor notation

εijk

∂Bk

∂xj

or εijkBk,j

Vector notation

rot( ~B) or ∇× ~B

The result is a vector.

• The Laplace operator on a scalar a:

Tensor notation

∂2a

∂xj∂xj

or a,jj

Vector notation

∇ · (∇a) = ∇2a

The result is a scalar.
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Integral Formulas

Stokes theorem
∮

C

~B · d~x =

∫

S

(∇× ~B) · d~S,

where the surface S is bounded by the line C. On tensor
notation:

∮

C

Bidxi =

∫

S

εijkBk,jdSi or

∫

S

εijk

∂Bk

∂xj

dSi.

Gauss theorem
∫

S

~B · d~S =

∫

V

∇ · ~BdV,

where the volume V is bounded by the surface S. On tensor
notation:

∫

S

BidSi =

∫

V

Bi,idV or

∫

V

∂Bi

∂xi

dV

Multiplication of tensors

Two tensor can be multiplied in two ways: either the num-

ber of free indices is reduced by two (inner product), or it is

unchanged (outer product). The product

aijkbkℓ = cijℓ

represents an inner product; the rank of the product is the

sum of the rank of the two tensors (3 + 2 = 5) on the left-

hand side minus two (5− 3 = 2). An outer product between
the two tensors reads

aijkbmℓ = dijkℓm.

Now the rank of the resulting tensor dijkℓm (rank 5) is the
sum of the rank of the two tensors (3 + 2 = 5).

Tensors


