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1 Introduction

In this note accuracy and, to some degree, stability of discretised equations is discussed.

All analysis will be conducted using either the linearised Navier-Stokes (N-S) equation
ou n ou 0%*u
JR— C— =1V——
ot Oz 0z?

or the hyperbolic model equation

a—“+c@—0
ot or

(1)

(2)

The non-linearities of the N-S will complicate matters substantially, and hence it is chosen to

consider the linearised version.

All analysis will be made using finite differences (FD). The reason is that this is considerably
simpler than using the Finite Volume (FV) method. All schemes can be transfered between FD

and FV on structured grids anyway, which will be shown in section 5.

For further reading, the books by Vichnevetsky [1] and Hirsch [2] can be recommended.



2 The Nature of Spatial Derivatives

In order to understand the effect of truncation errors, it is necessary to understand the effect
various forms of spatial derivatives have in an equation. Consider the equation

ou 0"u
ot O‘axn (3)

Assume that an intermediate solution (or the initial condition) to this equation can be written
as a Fourier series, where each component is

u(z,t) =V (t)e* (4)

In order to obtain a well-defined solution, this component must not grow without bounds as
time progresses.

Inserting the component (4) into equation (3), and dividing by e***, yields

WO~ vyatiny )
Multiplication by the integrating factor e~ ()"t yields
d‘;it) e—a(ilc)"t _ V(t)a(ik)ne—a(ik)”t —0 (6)
which can be written as p
“ —a(ik)™t| _
- V(t)e | =0 (7)
Integrating this yields .
V(t) = V(0)er™® (8)

which can be inserted into (4) to get the solution

u(w, t) _ V(O)eikw+a(ik)"t (9)

The effect of spatial derivatives can now be examined. First, consider the first order derivative
(n = 1), which generates the solution

u(z,t) = V(0)e@tet) (10)
This corresponds to translation of the solution with the phase velocity a.
The second order derivative (n = 2) generates the solution

u(z,t) = V(O)e%“k%eikac (11)

Hence, for @ > 0 the solution will be damped in time with no translation, since the imaginary
part is constnat in time. The damping will affect short wave components (high wavenumber k)
more. For a < 0 the solution will grow without bounds.

The third order derivative (n = 3) generates the solution

u(z,t) = V(0)ek@—ak?®) (12)



This is translation with the phase velocity ak?, and hence the waves will propagate with a speed
that is a function of the wavenumber.

The fourth order derivative (n = 4) generates the solution
u(z,t) = V(0)e " teike (13)

which for ¢ < 0 means damping without translation, and for a > 0 means growth without
bounds.

Generally, odd order derivatives mean translation of waves, and even order derivatives mean
damping or amplification, depending on the sign.



3 Truncation Errors

Approximation of a derivative with a finite difference scheme introduces errors. One way of
analysing the errors is to look directly at the terms left out in the approximation.

Throughout this note, a scheme applied at node j will involve the nodes 5 + (.
3.1 Discretisation in space

Semi discretised equations will be studied, i.e. equations that are continous in time.

3.1.1 Taylor expansions and the modified equation

When either constructing a FD scheme, or analysing an existing one, one needs to write all
variables u;; in terms of the central one u;.

Ou; n (1Az)? %u;  (IAz)? Bu;

U =+ (A0 o+ e Y e e (14)
Multiplying by a; yields

Ou; (I1Az)? 8%u; (1Az)? 3u;

ajuj = agu; + ap(lAz) = % + q TR + aq TR (15)
Sum over all [ and divide by Az" yields a scheme and its Taylor expansion

Uiy ayl Bu] ail? 32’11,]' al3 (93uJ
= 1
2 a2 Re T 0r T 2 A Gar 2 A o T (19

Choosing a set of a; so that the first n terms on the right hand side cancel out will yield a finite
difference scheme for the nth derivative.

The effect that the truncated terms have on the equation is seen when the so called modified
equation is studied. When approximating the spatial derivatives in equation (1) with numerical
schemes of type (16), the equation solved in the code is

Ou;
3t] Az Zaluﬁ-l A A2 Zdluﬁrl (17)

Substituting the Taylor expansions of the schemes into the equation yields the modified equation

ou ou 0%
=v

E + c% w — cTconv + VTUiSC (18)

where T,y and Ty;sc are the truncation errors from the convective and viscous terms, respecti-
vely. It is now clear that the truncation errors affect the equation, and we will see how in the
following sections.



3.1.2 The viscous term

The most obvious choice of d; is a centred scheme. This is also the scheme that gives the highest
order truncation error. A centred scheme of an even derivative means that d; = d_;, i.e. that
the scheme is symmetric. Due to this symmetry, all odd derivatives in the Taylor expansion (16)
will disappear. For example, consider the 3 point central difference approximation

Uj—1 — 2uj + uj11 82’Uj Az? 6411] A
= 1
Ag? o7 T 1z gt T OB (19)
that generates a modified equation
ou ou 0%u Az? 0tu;
— tc— =v— — T, Z A 2
oi g = Vg~ Tem Ty G + O (20)

This scheme is second order, but what effect does the truncation error have? If only the leadlng
error term is considered, it is seen that this corresponds to equation (3) withn = 4 and a = I/Alg .
As was shown in section 2, this represents growth of the solution without translation. The
magnitude of this growth, however, is much smaller than the damping of the viscous term itself,

due to the factor Az?.

Since the errors introduced via the approximation of the viscous term are affecting the amplitude
of the solution, but much less so than the viscous term itself, only the order of the approximation
is normally considered.

3.1.3 The convective term

A centred scheme of an odd derivative will yield a; = —a_; and ag = 0, i.e. an anti-symmetric
scheme. This anti-symmetry will cancel out all even derivatives in the Taylor expansion (16).
For example, the 3 point central difference approximation

ujr1—uj—1 _ Ou;  Ax? Bu,
St bk 21
28z 5 " 6 o TOBT) )
will generate a modified equation
ou ou 82u Az? Bu; 4
E +CE)$ =V + UTyise — C—— g a$3] + O(Az") (22)

This is a second order scheme, and the truncation errors are all odd derivatives. Recall from
section 2 that this corresponds to translation of waves with a phase velocity that depends on
the wavenumber. This error, called dispersion error, can be dangerous, since it may mean that
different waves are superpositioned due to the non-constant phase velocity. This makes the
approximation of the convective term fundamentally different from that of the viscous term,
since the nature of the scheme may introduce instabilities.

When dispersion errors are present, some dissipation is needed to prevent build-up of waves.
There are essentially two ways of getting this dissipation, either by introducing it explicitly or
by introducing it via the convective scheme.



3.1.4 Upwinded convective schemes

Upwinded schemes for the convective terms in Navier-Stokes are known to enhance stability.
To see this, approximate the derivative using two schemes, one left (a_y = —1,a9 = 1) and
one right (a9 = —1,a; = 1) oriented. If the viscous term is left out, this yields the modified
equations

t+eAz Py + O(Az?) |, left oriented

Ox2

% + cg—z = (23)
—cAz LY 4 O(Az?) ,right oriented

Frel
For stability, a positive dissipative term is needed. Hence, the left oriented scheme should be

chosen for ¢ > 0, and the right oriented scheme for ¢ < 0, and hence the name upwinding.

The fact that the scheme is non-centred gives a dissipative truncation error, and the upwinding
(i.e. choosing the direction of the scheme) gives it a positive sign.

3.1.5 Jameson type artificial dissipation

An alternative way to obtain a dissipative term in the modified equation is to add it explicitly,
and to use a centred scheme for the convective term. This is normally called a Jameson type
scheme. Leaving out the viscous term, the equation being solved is

ou c Vnum
E + A_.’II ; alujH = A—:I;" ; dlujH (24)

where n is the order of the artificial dissipation. A centred approximation of the added term

yields
8_u + ca—u =—cT, + v @
8t 8$ - conv num 8{])”

where the truncation error from the added term has been left out, according to section 3.1.2.

(25)

3.1.6 Jameson versus upwinding

Are the dissipative terms yielded by upwinding and Jameson type schemes similar? Choosing
Vnum = €cAz™ 1 in the Jameson type equation (24), using a centred scheme for the convective
term, yields

ou c €c
ot + Az ;aluﬂl Az ; ditj+i (26)
which can be rewritten as
CCNCES < WP 27)
ot Az ; AL

where b; = a; — ed;. Since a; is anti-symmetric and d; is symmetric, the resulting scheme b; is
non-centred (which in turn means that the direction of the scheme is important). Since this
equation is linear, the modified equation becomes, as expected

ou  Ou no10"u

=—cT, A
¢ Leonw + €cAzx Oz"

E + C% = (28)



Equation (28) is similar to (25), but since the dissipative term involves ¢, the sign of € has to be
chosen so that the dissipative term is indeed dissipative. Choosing the sign of € is equivalent to
upwinding, as was shown in section 3.1.4.

Which is to prefer, Jameson type or upwinding? Both schemes will do essentially the same,
which is adding dissipation to the modified equation. There are, however, some differences.

e Computational efficiency. Upwinding involves checking the direction of propagation of
information at every node prior to applying the scheme. This means if or maz statements
for every node in the code, which is time consuming. The Jameson type implementation,
however, involves only central differences, and hence these checks are not needed. On the
other hand, extra lines of code are needed to compute the added term.

e Adaptive dissipation. The dissipative term in an upwinded scheme contains a factor
cAz™ 1, which means that the magnitude of the term is locally dependent on the so-
lution and the mesh. This is not the case with a Jameson scheme. For a scalar equation,
like the one studied here, it is straight forward to implement an adaptive coefficient vy,
(e.g. Vnum = |c|Az™ 1 ). For systems of equations, however, this might not be the case.
An example could be the compressible Euler equations, that support different kinds of
waves that travel with different wavespeeds.

3.1.7 Choosing the amount of added dissipation

How can the correct amount of added dissipation be chosen, i.e. how can the value of € be
decided? One way to estimate this value is by comparing the amount of dissipation added to
the viscous dissipation in N-S.

The added term in equation (28) is

0"u
Az — 29
eccAz” o (29)
Recall from section 2 that this term yields solutions on the form
u(w, t) — V(O)efccAw“_lk“teikw — V(O)efDateik:c (30)
where
D, = ecAz™ k" (31)
Also, recall from section 2 that the viscous term in N-S yields solutions on the form
u(z,t) = V(0)e ke = v (0)e~Drteike (32)
where
D, = vk? (33)
Comparing the amounts of dissipation yields the normalised added dissipation
_ D cAzx _
D, = D—Z =e— (kAz)" 2 (34)

When using a high order scheme, at least 6 computational points per wavelength are normally
required to resolve a wave properly. One guideline for choosing € could be that the dissipation of



waves with at least 6 points per wavelength should be much smaller than the viscous dissipation
of these waves. Hence, D, = 0.1 for kAz = /3 yields

v
=0.0832—— 35
¢ cAx (35)

3.2 Discretisation in time

Discretisation of the time derivative introduces errors as well. In this section, the explicit Euler
and the midpoint rule will be studied, using the model equation (2) as a base.

Using the explicit Euler scheme means that the equation solved in the code is

ntl _ ,n c

Tt Ay =0 (36)
l

where superscript 7 now denotes timestep. Substituting for the Taylor expansions in time gives

the modified equation as

ou ou At 0%u

g .7 37

ot Vo T T2 e T e (37)
Since the dissipative error term is negative, explicit Euler will diverge unless the spatial discre-
tisation of the convective term adds enough dissipation.

When using the midpoint rule to approximate the time derivative, the equation solved is

ntl _ m

J J ¢ nts _
At + A_.T ;aluﬂ_l =0 (38)
Substituting for the Taylor expansions in time gives the modified equation as

ou  Ou At? 93u

— 40— =————— +O(AtY + T, 39

at+ca$ 24 8t3 + ( )+ conv ( )
The error in time is dispersive and of order At?. As for the explicit Euler, the midpoint rule
will need some dissipation from the spatial discretisation to converge, but less so since there is
no direct amplification.



4 Fourier Analysis of Errors

A different way of studying numerical errors is by studying how a test function is affected by the
discretisation, in a very similar way to what was done in section 2. Assume that the solution to

the model equation (2) can be written as a Fourier series, where each component is

u(z,t) = V(t)e*®
Following section 2, the analytical solution to this is

u(z, ) = V(0)e(=l)

4.1 Semi discretisation

Discretising in space only leads to the semi discretised equation at node j

du;
J C— Z QU4 =
Inserting the test function (40) and dividing by e**%i yields

dV zkAwl
et eV

V(t) is unaffected by the sum and can be moved out, which yields

d(V (t)
dt

A(k) — Aix ZaleikAzl
l

A(k)t

+V@)AKk) =0

where

Multiplication with the integrating factor e

% [V(t)ed®t] =0

yields

which can be integrated to )
V(t) = V(0)e AR

This yields the solution X
u;(t) = V(0)e ARtk

Splitting the real () and imaginary () parts of (48) yields

u;(t) = V(O)e’%“i(k)tei(kwjf%fi(k)t)

(40)

(41)

(42)

(43)

(47)

(48)

(49)

When comparing this form of the solution to the analytical solution (41), two kinds of errors

are present.



4.1.1 Amplitude errors

The amplitude of the analytical solution is constant at V(0), but the amplitude of the solution

to the semi discretised equation will not be constant. Instead, it will change as e~ RAR)E,

If RA(K) is negative, the wave will grow in time and finally diverge. If RA(k) is positive, the
wave will dissipate in time.

The real part of A(k) can be written as

RA(K) = Aix S~ ay cos(kAxl) (50)
!

The amplitude errors for some schemes are shown in figure 1(a). The schemes are a first order
upwind, a second order central, a third order upwind, and the Dispersion Relation Preserving
(DRP) scheme by Tam [3] with a 6th order derivative added for stability according to sec-
tion 3.1.6. The coefficients of the schemes are listed in the appendix 6.

4.1.2 Phase velocity errors

The phase velocity ¢ of the analytical solution (41) is constant, i.e. not dependent on the
wavelength. Rewriting the solution to the semi discretised equation (49) as

SA

uj(t) = V(0)e RA® gik(z; - (51)

shows clearly that the phase velocity is dependent on the wavelength. Define this phase velocity
as

o
k) = 2 (52)
k
and simplify to
* _ ¢ .
c'(k) = TAm ;al sin(kAxl) (53)

The dispersion relation for some schemes are shown in figure 1(b). The schemes are a first order
upwind, a second order central, a third order upwind, and the DRP scheme with a 6th order
derivative added for stability. The coefficients of the schemes are listed in the appendix 6.

4.2 Full discretisation

When using the Crank-Nicolson scheme to discretise the time derivative, the model equation (2)

becomes )
u?th —n

J J cl +1| _
X + Az zl: aug g + zl: auugy | =0 (54)
Inserting the test function (40), simplifying, and defining the amplification function G(k) yields

V() — LAtA(K)

Gk) = V) T 1+ LAtA(k)

(55)

10
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Figure 1: Relations for semi discretisation

where A(k) is given by (45). The solution at time "1 can now be written
ui (1) = GR)V (t")e'*e (56)

Setting " = 0, using G(k) = |G (k)| €£G®), and rewriting the equation yields

) . -/
wj(At) = V(0)G (k)™ = V(0) |G(k)] e @i~ Tar A0 (57)

Comparison between the expressions (57) and (41) shows directly what the errors are.

4.2.1 Amplitude errors

When scaled with the C'F'L number as a nondimensional timestep, the amplitude error is defined
as

_|G(K)| -1
CA= T AL
Azx

The amplitude error for the DRP scheme with a 6th order derivative added for stability together
with the Crank-Nicolson scheme in time is shown in figure 2(a). The error is now dependent on
the timestep, and it is seen that the difference between different timestep sizes is fairly small.

(58)

4.2.2 Phase velocity errors

The normalised phase velocity is

¢t —/G(k) —/G(k)
¢ keAt kAw%Awt (59)

The dispersion error for the DRP scheme with a 6th order derivative added for stability together
with the Crank-Nicolson scheme in time is shown in figure 2(b). The dependence on timestep
size is now more apparent. For waves with 4 points per wavelength, i.e. kAz = n/4, a CFL
number below approximately 0.5 gives good results.

11
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5 Finite Difference - Finite Volume

Finite volume (FV) schemes on structured meshes have direct equivalents in finite difference
(FD) schemes. Consider the equation

ou Ou
e e 60
ot T ar " (60)
which in FV, on a structured cartesian mesh, becomes
oUu 1
= 4= — = 1

where U is the volume average of u and u, and u,, are the values of u at the east and west faces,
respectively. Note that this is an exact relation.

Consider solving equation (60) on the meshes in figure 3 with FD and FV.

U_s3 U_s U_1 Uy Ui Us Us
[ [ [ [ [ [ [
U_s3 U_s U_1 Uy Us Us Us

Figure 3: Corresponding FV and FD meshes

5.1 Finite differences

Using a finite difference scheme with coefficients a_3 — as to solve equation (60), the semi
discretised equation becomes

%+Liau—0 (62)
ot Aml:73ll_

5.2 Finite volume

In finite volume, the face values of u, and u,, need to be approximated. If this is done with a 6
point scheme with coefficients ¢; — cg, the the face velocities become

3
ue =Y cjt3U; (63)
j=——2

and )
ty = Y ¢j+alj (64)
j=—3

Inserting these expressions into the FV equation (61) yields

ou 1 2
—+ — |- U_3+ Z (Cj+3 — Cj_|_4)Uj +cgUs+| =0 (65)
ot Az =2

13



5.3 Comparison

Comparing equations (62) and (65) shows that they are similar, and the coefficients are related
as

a3 = —C

a_9 = C1 —Cy

a1 — €2 —C3

a = 3 —C (66)
a1 = €4 —Cy

a9 — €5 —Cg

as = Cp

14



6 Appendix

The coefficients for the first order upwind scheme are

a_3
a g
a_1
ao
a1
ap
a3

OO O == OO

The coefficients for the second order central scheme are

a_3
a g
a_1
ao
a1
ay
a3

0
0
—1/2
0

1/2

The coefficients for the third order upwind scheme are

a3
a_g
a1
ao
a1
ap
a3

0
1/6
~1
1/2
1/3

0

0

The coefficients for the DRP scheme by Tam [3] are

a_3
a_g
a_1
ao
a1
as
a3

—0.02651995
0.18941314
—0.79926643
0

0.79926643
—0.18941314
0.02651995

15



The coefficients for a central approximation of a 6th order derivative are

ds = 1
dy = —6
dy, = 15
dy = -20
d = 15
do = —6
dy = 1
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