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Abstract 
 

This report describes the detailed study of Computational Fluid Dynamics(CFD) algorithms implemented 

to use NVIDIA GeForce RTX 3070  General Purpose GPU for performance improvement. Acceleration is 

achieved by using methods of CUDA  implemented via python Cupy API’s to offload the vectorized 

parallel processing into many core GPU architecture. 

This paper focuses upon using different CFD solvers like Jacobi method & Gauss-Seidel and describes the 

benefits of GPU acceleration. By utilizing vectorization and the Jacobi solver to parallelize the 

computations on the GPU, a speedup of over 400 times was reached compared to an unoptimized code 

being run on the CPU. 

 

 

 
 

Introduction 
Graphics Processing Units (GPUs) are specialized hardware engineered to enhance the 

processing of graphics and visualizations. Beyond their traditional use, GPUs have gained 

traction in computational mechanics applications, serving tasks like scientific computing and 

data analysis. This shift is driven by the parallel processing capabilities of GPUs, significantly 

boosting the speed of specific computations. 

Programming for the GPU typically involves languages such as CUDA C/C++, Python, Fortran, or 

C#, utilizing bindings to the CUDA API. In this report, we specifically delve into the use of GPU-

accelerated Python code for computational fluid dynamics in non-compressible flow 

applications. The report provides a brief survey of the tools and libraries accessible for GPU 

programming in Python and addresses challenges encountered when incorporating CUDA code 

to expedite the performance of pre-existing Python CFD code within these specialized domains. 

Background 

Finite volume method (FVM) 
As the basis for the project, a Finite Volume Method (FVM) code that solves the momentum 

 equations using the SIMPLE algorithm for a co-located grid is used.  

SIMPLE is a common algorithm used to solve the conservation of momentum equations. The 

conservation of momentum equations cannot be solved directly using an iterative solver due to 

the pressure gradient acting as a source term. The pressure field needs to be solved which in 

turn gives the pressure gradient. This is called pressure-velocity coupling. To do this an equation 



called the pressure correction equation is solved, which is an equation that is derived from 

conservation of mass. The SIMPLE algorithm works the following way: 

1. Guess a pressure field 

2. Solve velocity fields using some iterative solver, a direct solver cannot be used due to the 

system of equations being non-linear and coupled. 

3. Calculate the pressure correction field using some iterative solver 

4. Use the pressure correction field to correct the velocities and the pressure field 

5. Use the corrected pressure field as new guess 

6. Iterate from step 2 until convergence is reached 

An issue with pressure-velocity coupling is a numerical phenomenon called checkerboarding in 

which unphysical oscilations of the pressure can be observed. This is due to the pressure in the 

odd and even cells being uncoupled. This is primarily solved in two different ways: using a 

staggered grid or by using Rhie & Chow interpolation. In a staggered grid the velocities are 

calculated on the cell faces instead of the centers, while pressure is still calculated at the cell 

centers. Rhie & Chow interpolation is an interpolation scheme specifically designed to mitigate 

checkerboarding. Rhie & Chow therefore makes it possible to have a co-located grid where all 

fields are calculated at the cell centers. This method is more often used in commercial solvers 

due to its ability to easily handle unstructured grids. 

Iterative solvers 
The two iterative solvers used in the project are: the Gauss-Seidel method and the Jacobi 

method. Through discretization the following equation for an arbitrary two-dimensional field is 

found: 

𝜙𝑃   =  
1

𝑎𝑝
(𝑎𝐸𝜙𝐸   +  𝑎𝑊𝜙𝑊   +  𝑎𝑁𝜙𝑁   + 𝑎𝑆𝜙𝑆  +  𝑆𝑢) 

Where the subscripts show in which cell the value is stored (except for Su which is always stored 

in the current cell), P is the current cell, E is the east cell, W is the west cell and so on. For both 

methods, an initial field is guessed, and 𝜙𝑃 is calculated for each cell using the cells located right 

next to it. The difference between Gauss-Seidel and Jacobi is that in Gauss-Seidel 𝜙𝑃 is 

calculated sequentially for each cell and updated right after being calculated, which means that 

the value calculated in a cell will be dependent on the value calculated in the previous cell. The 

Jacobi method works by calculating all cells using the guessed field and only updating after all 

cells are calculated. This means that the Jacobi method converges more slowly than Gauss-

Seidel. It is however significantly more suitable to parallelization due to Gauss-Seidel being fully 

sequential. 

Computational Techniques & High Performance with GPU 
NumPy and Numba are two great Python packages for matrix computations. Numpy is a Python 

library that provides a multidimensional array object, various derived objects, and an 

assortment of routines for fast operations on arrays, including mathematical, logical, shape 

manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic 

statistical operations, random simulation and much more.  

 



CuPy is an open-source  NumPy/SciPy-compatible array library for GPU-accelerated computing 

with Python. CuPy acts as a drop-in replacement to run existing NumPy/SciPy code on NVIDIA 

CUDA or AMD ROCm platforms. 

CuPy utilizes CUDA Toolkit libraries to make full use of the GPU architecture. 

 

The foundation of the CUDA architecture revolves around a scalable array of multithreaded 

Streaming Multiprocessors (SMs). When a kernel grid is invoked by a CUDA program on the host 

CPU, the blocks within the grid are systematically enumerated and assigned to multiprocessors 

with available execution capacity. On each multiprocessor, the threads belonging to a specific 

thread block execute in parallel. Furthermore, multiple thread blocks can concurrently execute 

on a single multiprocessor. As thread blocks complete their tasks, new blocks are initiated on 

the now available multiprocessors. 

 

Efficient data transfer between the CPU and GPU is essential. Minimizing unnecessary data 

movement is crucial for optimal performance. 

 

Debugging 
NVIDIA Nsight Compute is an interactive kernel profiler for CUDA applications. It provides 

detailed performance metrics and API debugging via a user interface and command line tool. 

Other debugging tool used is line_profiler in python giving a detailed view of the time spent 

running each line of code 

 

Methodology 
The code used for this project solves a two-dimensional lid-driven flow using SIMPLE and Rhie & 

Chow interpolation. The original code is taken from an assignment in the course MTF073 

Computational fluid dynamics (CFD). The original code uses Gauss-Seidel to solve all equations. 

The code also uses a large number of for-loops, making the entire code wholly sequential. 

The initial part of the project consisted of vectorizing the code in order to make it more suitable 

for parallelization. Further, the Jacobi method was implemented which allowed Cupy to be used. 

Without vectorization and with Gauss-Seidel, Cupy is very inefficient due to all operations being 

sequential. 

The following GPU was used in the project: NVIDIA GeForce RTX 3070 having CUDA cores 5888 

and total memory of 8192 MB. 

Listing out some of the Python libraries used in the project 

- Linear algebra (cupy.linalg) 

- Sparse matrices (cupyx.scipy.sparse) 

- Matplotlib (Visualization with Python) 

 

 



Results 
Below is the code displaying the implementation of GPU acceleration through CUDA and CuPy. 

We highlight the utilization of a line profiler for debugging purposes. 

https://github.com/ritobanbiswas/TRA220_GUP-

accelerated_CFD/blob/d496067feb87a10999521dc5d9c9057c4f19c660/CFD_notebook_update

d_solver.ipynb 

 

Implementation of the Jacobi solver has been shown to be problematic for solving the pressure 

correction equation. As can be seen in the figure below, when solving the pressure correction 

equation using the Jacobi method, conservation of mass does not converge, it does however 

converge when using Gauss-Seidel for pressure correction. 

 
Figure 1. Conservation of Mass and Momentum, convergence 

 

 

https://github.com/ritobanbiswas/TRA220_GUP-accelerated_CFD/blob/d496067feb87a10999521dc5d9c9057c4f19c660/CFD_notebook_updated_solver.ipynb
https://github.com/ritobanbiswas/TRA220_GUP-accelerated_CFD/blob/d496067feb87a10999521dc5d9c9057c4f19c660/CFD_notebook_updated_solver.ipynb
https://github.com/ritobanbiswas/TRA220_GUP-accelerated_CFD/blob/d496067feb87a10999521dc5d9c9057c4f19c660/CFD_notebook_updated_solver.ipynb


 
Figure 2. Run-time, Original Code vs Optimized code 

 

The figure above shows four different simulations, one for the original unaltered code 

and three using the vectorized code (labeled as optimized) using different solvers and 

packages. The x-axis shows the number of nodes in each dimension of the mesh, while 

the y-axis shows total runtime for 10 SIMPLE iterations.  

Conclusion 
Figure 1 shows that using the Jacobi method to solve the pressure correction equation does not 

converge. The reason for this is unknown and a solution to this problem was not found. 

Therefore, it was decided that the results of the project should exclude convergence. Instead, 10 

SIMPLE iterations were used for different mesh sizes in order to compare the different solvers 

and codes. As can be seen in Figure 2, the optimized code using Gauss-Seidel is roughly twice as 

fast as the original code, this is due to vectorization. It can also be seen that using the Jacobi 

method is significantly faster than using Gauss-Seidel. For a small mesh size, using Numpy is 

faster than Cupy, but around roughly 170 nodes in each dimension (around 30000 cells), the two 

packages perform the same with Cupy being more efficient for larger mesh sizes. Initial startup 

is slow for Cupy because Python code transformed into C language and compiled before started 

running on every startup, but this can be avoided by hooking compiled Cupy scripts. 

The project has shown that harnessing the parallelization capabilities of a GPU for CFD 

simulations yields evident advantages. Substantial improvements in simulation time were 

reached by implementing a solver that parallelized well together with using Cupy. 

In conclusion, this report explored the performance of a Computational Fluid Dynamics (CFD) 

solver implemented in Python, initially using the NumPy library and subsequently transitioning 

to CuPy for GPU acceleration. The advantages and challenges encountered in this transition 

underscored the impact of utilizing specialized hardware for parallel processing. 



  

The initial implementation with NumPy provided a baseline for the CFD solver, highlighting the 

capabilities of a conventional CPU-based approach. While satisfactory for smaller-scale 

simulations, the need for enhanced computational speed prompted the exploration of GPU 

acceleration using CuPy. 

  

Upon implementing CuPy, a distinct acceleration in the solver's performance was observed, 

particularly for computationally intensive tasks such as matrix operations. The parallel 

processing capabilities of the GPU significantly reduced simulation times, demonstrating the 

potential for substantial speedup in large-scale simulations. It can be seen in Figure 2 that a 

speedup of over 400 times was achieved for a very fine mesh, showing the potential in speedup 

using GPU acceleration. 

 

Issues related to using the Jacobi method for the pressure correction equation were found but 

due to insufficient time a solution was not reached. Further improvements to the code could be 

made by making sure that the solution converges for solvers other than Gauss-Seidel. The 

boundary conditions in the code are set explicitly at nodes on the boundary, changing this 

implementation by including the effects of the boundary conditions in the source term and 

removing the nodes on the boundary should make it possible to structure the system of 

equations of the standard form given as: 𝐴𝑥  =  𝑏  

Doing this should make it possible to implement more sophisticated solvers included in Cupy 

that should significantly speed up the convergence of the solution 

 

  


