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Abstract
The Finite Element Method (FEM) is a widely used computational tool in the mechanical engineering field
for computing stresses on objects and heat transfers. However, it comes with high computational demands,
especially in large-scale simulations. This project evaluates the efficiency of FEM calculations for stationary
heat flow across three platforms: a CPU, a local GPU, and a GPU cluster such as the Vera computing
cluster at Chalmers University of Technology. Benchmark tests were used to analyze the performance of
assemblers and solvers, focusing on speed with memory constraints in mind. The results show significant
improvements in speed with GPU acceleration, where the fastest GPU solver/assembly combination finished
its calculations well above three orders of magnitude faster than the slowest combination, and just below one
order of magnitude faster than the best CPU-only version.

The memory limitations of standalone GPUs caused some challenges, which were solved with specialized
algorithms together with extended RAM available on the Vera cluster. The findings highlight the potential
of GPU acceleration for FEM and its use in larger computational problems. Ideas for future improvements,
using multiple GPUs and continued optimization of assemblers, using different elements for the mesh, and
importing already-made mesh nets, are also presented.
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1 Introduction
A common issue in mechanical engineering is computing heat flow in objects. One common method to solve
this is with the so called the Finite Element Method (FEM). FEM breaks down the object into several
smaller elements which together are called a mesh. The mesh represents the object with a finite number of
elements. While FEM is a great method for calculating heat flow in objects, it also requires a great amount
of computational power. This becomes a significant challenge in large-scale problems.

Historically, FEM calculations were performed on Central Processing Units (CPUs). However, since the
mid-2010s, Graphics Processing Units (GPUs) have been the preferred Processing Unit due to their signifi-
cant performance advantages. GPUs can offer enormous speed increases for both the assembly and solving
processing thus enabling faster and more efficient computations, especially for large-scale and parallelizable
tasks [1], [2].

1.1 Aim of the Project
This project will evaluate and compare the performance of FEM calculations for stationary heat flow. The
project will compare calculations of calculations on a CPU, GPU, and the computer cluster Vera at Chalmers
University of Technology [3] with memory constraints in mind. The goal is to find which solvers and assem-
blers perform better in a 2D environment.

1.2 Limitations
Several factors limit this project. First, it focuses only on 2D FEM models, and not 3D simulations due to the
limited time frame. Second, the scope of the project was also limited to only focus on the linear stationary
model problem of heat flow. Third, GPU tests are conducted using quadrilateral mesh elements, chosen for
their scalability, with limited exploration of triangular elements. Finally, memory constraints on standalone
GPUs restrict the scale of certain simulations, although these challenges are alleviated in cluster-based tests.
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2 Theoretical Background
In this section the basis of the heat flow problem which is the problem to be solved using the FEM method
will be covered. Together with a simple introduction to GPU accelerated computation.

2.1 Stationary Heat Flow
Consider a two-dimensional surface Ω ∈ R2 with constant heat conductivity k being heated by a source
f : Ω → R. Let ∂Ω denote the boundary of Ω and let ΓN , ΓD be a partition of ∂Ω, such that ΓN ∪ ΓD =
∂Ω, ΓN ∩ ΓD = ∅. Along ΓN the temperature is kept constant according to T : R2 → R while along ΓD the
heat flux is zero which means that Ω is isolated along ΓD. In the stationary heat problem we are interested in
solving for the temperature distribution u : Ω → R when the system has reached equilibrium and is therefore
time-independent. The problem can be written as a partial differential equation according to,

∇ · (−k∇u(x, y)) = f(x, y), (x, y) ∈ Ω, (1)
u(x, y) = T (x, y), (x, y) ∈ ΓD, (2)

∇vu(x, y) = 0, (x, y) ∈ ΓN . (3)

which is known as the strong form. Here, ∇ denotes the gradient and ∇v the directional derivative. To
numerically solve (1)-(3) the system needs to first equivalently be rewritten on its weak form. We introduce
a so called test function δu(x, y), that satisfies δu(x, y) = 0 on ΓD. By multiplying (1) with δu and integrate
over the surface Ω we get, ∫

Ω

δu(∇ · (−k∇u)) dΩ =

∫
Ω

δuf dΩ. (4)

By Greens first identity, the left hand side of (4) can be rewritten as∫
Ω

δu(∇ · (−k∇u)) dΩ =

∫
∂Ω

δu(−k∇nu)dΓ +

∫
Ω

∇δu · k∇u dΩ, (5)

where Γ = ΓD ∪ ΓN . For the boundary integral in the right hand side of (5) we have∫
∂Ω

δu(−k∇nu) dΓ =

∫
ΓD

δu(−k∇nu) dΓ +

∫
ΓN

δu(−k∇nu) dΓ = 0 + 0, (6)

since δu = 0 on ΓD and ∇nu = 0 on ΓN . At last, by substituting (6) into (5) we arrive at the weak form∫
Ω

∇δu · k∇u dΩ =

∫
Ω

δuf dΩ. (7)

2.2 Discretization
To solve (7) numerically, we introduce a discretization of the domain Ω. Let Ω be divided into Ne elements
Ω1,Ω2, ...,ΩNe such that Ω1 ∪ Ω2 ∪ ... ∪ ΩNe = Ω. Each element is corresponds to a set of nodes which are
the edges of the elements. The discretization is also known as a mesh. For simplification, we will consider
quadrilateral meshes where each element consist of four nodes. The theory can simply be extended to
triangular meshes as implemented in section 4.5. Let Ndof be the number of nodes in the mesh and therefore
the number of degrees of freedom (Ndofs) in the system. The solution can then be approximated according
to

u(x, y) ≈ uh(x, y) =

Ndof∑
i=1

Ni(x, y)ai, (8)

where ai are node values and Ni are basis function satisfying

δu(x, y) =

Ndof∑
i=1

Ni(x, y)ci, (9)
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with ci being arbitrary coefficients. The basis function are defined such as they take the value one on its
corresponding node and zero in every other node. Substituting (8) and (9) into the weak form (7) gives us
the approximation

∫
Ω

∇

Ndof∑
i=1

Ni(x, y)ci

 · k∇

Ndof∑
j=1

Nj(x, y)aj

 dΩ =

∫
Ω

Ndof∑
i=1

Ni(x, y)ci

 f dΩ. (10)

Since ci and ai are independent of x and y (10) can be rewritten as

Ndof∑
i=1

Ndof∑
j=1

ci

∫
Ω

∇Ni · k∇Nj dΩ ai =

Ndof∑
i=1

ci

∫
Ω

Nif dΩ. (11)

We identify (11) as a linear system of equations

cTSa = cT f ⇔ Sa = f, (12)

where

Sij =

∫
Ω

∇Ni · k∇Nj dΩ, (13)

fi =

∫
Ω

Nif dΩ. (14)

The matrix S ∈ RNdof×Ndof is called the stiffness matrix and the vector f ∈ RNdof is called the load vector.
Notice that if Ni and Nj corresponds to basis functions of non neighboring nodes the product of their
gradients becomes zero and thus also Sij . This means that the stiffness matrix will be sparse which is an
important property to keep in mind. Two other important properties is that S is symmetric and is known to
be semi-definite.

2.3 Assembly Process
The discretization of Ω can be represented with a so called adjacency matrix M ∈ NNe×4. Each row of M
corresponds to an element and stores the set of nodes the element corresponds to. For each element e, we
can calculate its contributions to the stiffness matrix and load vector independently. We denote these local
matrices and vectors by Se and fe, according to

Se
ij =

∫
Ωe

∇Ne
i · k∇Ne

j dΩe, (15)

fe
i =

∫
Ωe

Ne
i dΩe. (16)

Since quadrilateral elements are used, Se ∈ N4×4, and fe ∈ N4. The stiffness matrix (13) and load vectors
(14) can then be calculated according to

Sij =

Ndof∑
e=1

Se
ij , (17)

fi =

Ndof∑
e=1

fe
i . (18)

To simplify calculations further, each element can Ωe can be transformed to the square [0, 1]2 by a change
of variables. This introduces the calculation of the Jacobian determinant of the transformation. At last,
the integrals (15) and (16) can for example be approximated with Gaussian quadrature with some finite
number of weights. A common choice of basis functions are bilinear. Bilinear basis functions are one at their

6



corresponding node, decreases linearly to zero in the direction of its two neighboring nodes and are 0 in the
opposite node. The gradient of the basis functions will therefore be constant.

Once the stiffness matrix and load vector is assembled the boundary conditions can be imposed. Since the
temperature along ΓD are known, the corresponding rows and columns that corresponds to the nodes can be
removed from the stiffness matrix and load vector. This reduces the NDofs in the system but also makes the
stiffness matrix positive definite. Moreover, to impose some predetermined heat flux on ΓN . The heat flux
can simply be added to the load vector and since its 0 along ΓN for this specific problem, no changes needs
to be made. At last, (12) can be solved with an appropriate solver.

2.4 Solving Systems of Linear Equations
There are several different approaches for solving the linear system (12). The algorithms for solving linear
systems are either direct or iterative methods. Direct methods solves systems analytically by for example
Gaussian elimination or matrix decomposition. Iterative methods solve systems by given an initial guess,
generates a sequence of approximated solutions that converges to the analytic solution. This means that they
have some stopping criteria to determine when the solution has converged to stop iterating. The stopping
criteria may vary for different methods which may make comparing them unfair. Generally, direct solvers
needs more memory than iterative solvers which means iterative solvers could be more suitable for systems
with greater amount of NDofs. Moreover, iterative algorithms relies heavily on matrix multiplications which
may make them more favorable when being run on the GPU. A number of pre-written solvers used in the
benchmark is presented in 4.4.

2.4.1 Conjugate Gradient Method

To illustrate how iterative algorithms works, we will describe the conjugate gradient method in detail. Other
iterative methods later used in the benchmark will not be described as thoroughly but share similarities
with the method. The method assumes that the stiffness matrix is symmetric and positive definite to assume
convergence [4]. If the stiffness matrix is symmetric, then solving (12) is equivalent to solving the minimization
problem

min
1

2
aTSa− fTa, (19)

since taking the derivative of (19) gives us that the solution is given by solving

Su− f = 0, (20)

since we know S is positive definite. The algorithm is similar to gradient decedent method but instead of
moving in the direction of the negative gradient in each iteration we move in the so called conjugate direction
which improves convergence. Let ai denote the solution in iteration i. The initial residual r0 is given by

r0 = f − Sa0, (21)

given an initial solution a0. Moreover, the initial search direction p0 is simply set as r0. Then, in each
iteration i, the step size αi is calculated and the solution updated according to

αi =
rTi ri
pTi Spi

, (22)

ai+1 = ai + αipi. (23)

The residual ri can then be updated according to

ri+1 = ri − αiSpi. (24)

If ||ri||2 is sufficiently small, the algorithm terminates. At last the step direction pi is updated according to

pi+1 = ri+1 + βipi, (25)
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where

βi =
rTi+1ri+1

rTi ri
. (26)

It is the calculation of βi that ensures that the new search direction pi is so called S-conjugate to all previous
directions. Note that the method performs a lot of matrix and vector multiplications in each iteration which
has the potential of being speed up when being run on the GPU. Moreover, the amount of data being stored
is independent of how many iterations the algorithm performs.

2.5 GPU Acceleration & CUDA
While there are many similarities between CPUs and GPUs there are some differences that makes GPUs
extremely effective for some computationally intensive tasks. More specifically tasks that perform similar
operations to a wide range of values/variables that acts semi-independent and can thus be computed in
parallel. Such as matrix computations.

This is possible because GPUs consist of a higher number of Arithmetic Logic Units (ALUs), which are
the fundamental computing units in any processing unit, compared to CPUs, which allocate more space to
Control Units (CUs) and other components to handle the broader set of tasks that CPUs are designed to
perform. The GPU on the other hand were specifically designed to only perform computations and can thus
allocate (almost) all its available silicon for that specific task. It is not uncommon for a GPU to have above
a thousand ALUs.

In essence, this allows for the programmer to write well structured routines that can run in parallel on the
ALU units of the GPU to take full advantage of this processing power. To enhance the usability of GPUs
for a broader range of tasks, some manufacturers have developed APIs that can be easily integrated into
high-level programming languages. An example of this is the CUDA API which is available on all modern
NVIDIA GPUs which give the programmer access to the so called CUDA cores which each consists of a small
number of ALUs toghether with a shared memory.

2.6 The Vera Cluster
The Vera Cluster is a PC-cluster owned and managed by C3SE, which is the Chalmers e-Commons e-
Infrastructure group at Chalmers University of Technology in Gothenburg Sweden, and it serves researchers
at Chalmers.

The Vera cluster contains several hardware models. It runs Intel Xeon Gold 6130 (code-named "Skylake")
CPU’s and newer Intel(R) Xeon(R) Gold 6338 CPU and Platinum 8358 (code-named "Icelake") CPUs. All
nodes have dual CPU sockets. It has T4, A40, V100, A100 NVidia GPUs and Infiniband network.

The Vera Cluster also provides commonly used software like programming tools, simulation environments
and various python packages. We can access the hardware and software using command line tools and web
interface. The personal files on Vera can be accessed on the website with GUI or via command line tools like
scp.

For this project, we mainly want to accelerate the calculation with the help of Vera’s GPU resources using
CUDA.
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3 Problem Description
To be able to solve the stationary heat flow problem described by equations (1)-(3) the problem needs to
be further specified. For the results presented in 5 we have considered the square Ω = [−1, 1]2 with heat
conductivity k = 0.1. Moreover, ΓN consists of two of the opposite sides of the square, ΓN = {(x, y), y ∈
[−1, 1], x ∈ {−1, 1}} and ΓD is the other two opposite sides of the square, ΓD = {(x, y), x ∈ [−1, 1], y ∈
{−1, 1}}. We let the two partitions of ΓD have different constant temperatures according to

T (x, y) =

{
−1000, (x, y) ∈ {(x, 1), x ∈ [−1, 1]},
0, (x, y) ∈ {(x,−1), x ∈ [−1, 1]}.

(27)

The problem with its boundary conditions is shown in figure 1.

Figure 1: Illustration of the set and the boundary conditions.

At last, the heat source is given by,

f(x, y) =
1000

0.0001 + 10x6 + 10y6
. (28)

Notice that the heat source has it’s maximum in the center of the square with value 107 and decays rapidly
to approximately 50 on ∂Ω.

An initial code was given that solves the problem using a structured quadrilateral mesh which means that
all elements has the same size and dimensions. The integrals (15) and (16) were calculated using Gaussian
quadrature with two points and bilinear basis functions as described in section 2.3. The system (12) was
solved using numpy.linalg.solve. An example mesh with its corresponding solution is shown in figure
2. Notice that due to the relatively high maximum of f , the relative difference between the two constant
boundary temperatures described by (27) isn’t seen in figure 2b.
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(a) Structured mesh with quadrilateral elements. (b) Approximated solution of the temperature distribution.

Figure 2: A solution using 100 quadrilateral elements and 99 NDofs.
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4 Method
The following section will give an outline of the project structure. In particular the design of the test
environment and its most prominent features. This will be followed by information about the assemblers and
solvers that will be tested in section 4.3 and 4.4.

4.1 Benchmark Environment
In order to perform reasonable tests on the variety of assemblers and solvers for the FEM -system a test
environment were set up that allows for any combination of assembler and solver to be tested. The timing
of the individual assembler and solver were then saved together with the profiling of the methods in order to
analyze potential bottlenecks in the functions. The environment was split into two parts, the first one was
for pre-compiling the assemblers and solvers that were going to be tested. And the second one is to time
their performance with different mesh sizes as input.

The benchmark environment has the following input flags to specify all necessary input variables for the
tests, together with some extra options such as plotting results and importing mesh files.

Flag Type Required Description
-s, –solver String Yes FEM solver to run, e.g., GPU_cg

-a, –assembler String Yes Assembler method to run, e.g., basic
-l, –linux Boolean No Specifies if the script is running on a Linux machine

-i, –iterations Integer Yes Number of test iterations
-s, –scaleFactor Integer Yes Scale factor between iterations

-d, –data String Yes Array of dimension data, e.g., [10,10]
-f, –figure Boolean No Specifies whether a figure should be plotted

-o, –onlyAssemble Boolean No Runs only the assembler without the solver
-e, –externalFigure Boolean No Imports a mesh file instead of creating a new one

Table 1: Input flags

4.1.1 Pre-Compiling

To ensure accurate results, it is essential to pre-compile the assemblers and solvers. This is because Numba
employs Just-In-Time (JIT) compilation, where functions are compiled at their first invocation [5]. With-
out pre-compilation, the compilation time would be included in the test timing results, leading to skewed
measurements for the first iteration of calculations. To achieve this, the test environment runs the assembler
and solver that are about to be tested with a very small input, eg a 2x2 element matrix, and ignores the
timing results. This ensures that all methods have been invoked before the first iteration of measurements is
recorded.

4.1.2 Timing Measurements

The timing measurements for the assembler and solvers performance are as previously mentioned measured
separately to enable deeper analysis of their performance. Except for the actual assemble and solver time
each individual measurement also includes the transfer time to the desired computational block. For instance,
if we use the GPU to assemble the S-matrix and f-vector, the transfer time needed to place the required data
into the GPU memory as well as the time to transfer the S, and f variables back into main memory will
be included. The reasoning for this is that if the GPU shall work as a viable option to the CPU the total
computational time from initiation until the results can be used by other methods or processes must be ac-
counted for in order to achieve a total time reduction of the system when compared to the CPU-only version.
In other words, it is not sufficient for the GPU assembly to be faster on its own if the results are delayed for
subsequent processes.
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4.2 Profiling
To identify what parts of the original code occupy most of the computing time, and thus being able to benefit
the most from parallel execution via GPU the program was profiled with the Line-Profiler package. This
enabled profiling of the entire code for each new version of the assembler and solver that were tested to
identify the system’s current bottleneck.

In the original code, the primary bottleneck was the solver, which occupied well above 70% of the total time
for large mesh sizes. By replacing the original solver, numpy.linalg.solve, the effect of this bottleneck
could be limited. For instance, by replacing the solver with a conjugate gradient solver its time share can
be limited to 1.2% without involving the CPU. This can most likely reduced further with GPU acceleration
which will be tested during the project. All solvers that will be tested as a replacement for the original one
will be able to run on the GPU which potentially can further improved their timings even more. More details
about the tested solvers will be presented in section 4.4.

With the new and more efficient solvers, a new bottleneck in the assembler was identified. With the conjugate
gradient solver presented in 4.4.3 the assembler now occupies well above 90% of the time. New assemblers
will thus also be tested in order to improve the time even more. More information about the specifics of
these new assemblers and solvers will follow in the next section.

4.3 The Assembler Functions
As mentioned earlier the assembler function were one of the major bottleneck of the system that were able
to benefit the most from GPU acceleration. And to address this problem a few different solutions were
tested. The first one was simply moving the original assembler function on to the GPU by using the Numba
decorator, which converts Python code into a GPU compatible machine code together with some alterations
to the code to match the Numba specific requirements. For instance, not using SciPy functions as well as
other math functions from the Math library. Furthermore, a more specialized assembler that takes advan-
tage of the fact that the data is represented by sparse matrices has been constructed. The main difference
compared with the original assembler is that the specialized assembler utilizes lists to store the data and the
corresponding x, y coordinates which are used to construct the matrix at the very end of the assembly. The
idea of the specialized assembler is built upon the same principals as Gustavssons algorithm [6]. In contrast,
the original assembly works directly with the stiffness matrix. This is cumbersome when the calculation is
off-loaded to the GPU since the entire matrix must be moved from main memory to the GPU memory, even
though all the information in the matrix are concentrated along its diagonal. This means that most of the
transferred data remain unused while still slowing down the transfer time and occupying valuable memory
on the GPU. This specialized assembly will be referred to as the Efficient assembler in the test data.

In order to conduct proper tests two more assemblers were constructed. Algorithmically these algorithms are
the same as the ones already mentioned, the difference is that they are pre-compiled with Numba which al-
lows them to run directly on the kernel without passing through the Python interpreter. This can potentially
speed them up and will make them more similar to the GPU version of the algorithms. The pre-compilation
will thus make the algorithms be closer to the peak optimization that is possible to achieve on the CPU and
will serve as a better comparison against the GPU versions when comparing CPU optimization against GPU
optimization.

The assemblers that will be compared are thus the following:

Each assembler will be paired with a transformer capable of converting dense matrices to sparse ones and
vice versa. This is necessary in order to be able to test all assemblers with any type of solver indifferent of
the desired input of the solver.
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Version Hardware Precompiled
Original CPU No
Efficient CPU No
Original PreComp CPU Yes
Efficient PreComp CPU Yes
Original GPU GPU Yes
Efficient GPU GPU Yes

Table 2: List of Assemblers

4.4 Solvers
A number of different pre-written solvers were considered from the NumPy and SciPy libraries to solve the
linear system (12). Since the stiffness matrix is known to be sparse, solvers from the submodule scipy.sparse
were mainly considered. To run the solvers on the GPU their corresponding functions from the CuPy library
where used. Two different types of solvers where used, iterative and direct solvers as described in 2.4. Existing
solvers where used since they are well-written and optimized in contrast to if we where to implement our
own. However, one drawback becomes that we don’t know in-depth how they work and all their sub-routines
which makes analyzing them more difficult. All solvers used in the benchmark is presented in table (3).

Solver Type Method Stopping tolerance
linalg.solve Direct LU-decomposition -
sparse.linalg.spsolve Direct LU-decomposition -
sparse.linalg.lsqr Iterative LSQR atol = 10−6, btol = 10−6

sparse.linalg.cg Iterative conjugate gradient method (cg) rtol = 10−5

sparse.linalg.cgs Iterative conjugate gradient squared method (cgs) rtol = 10−5

sparse.linalg.minres Iterative minimal residual method (MINRES) rtol = 10−5

sparse.linalg.lsmr Iterative LSMR atol = 10−6, btol = 10−6

Table 3: Solver routines used in the benchmark

4.4.1 Linalg.solve

The solver used in the initial code described in 3 is NumPy’s direct solver linalg.solve. The method
uses the LAPACK routine _gesv which solves the system by LU-decomposition [7]. This is the only solver
considered that isn’t from SciPy’s Sparse submodule. The performance from this solver is expected to be
poor since it’s made to solve systems with dense matrices. Nevertheless it is still used as a indication of the
worst case scenario to emphasize the importance of choosing a somewhat optimized algorithm to increase
performance.

4.4.2 Sparse.linalg.spsolve

The other direct solver considered is sparse.linalg.spsolve. The complexity of the function heavily de-
pends on structure of the matrix. The method uses UMFPACK which solves the system by LU-decomposition
[8].

4.4.3 Sparse.linalg.cg

The function sparse.linalg.cg implements the iterative conjugate gradient method which is described in
2.4.1. The method assumes that the matrix is symmetric and positive definite to guarantee convergence.
The convergence rate of the conjugate gradient method relies on the condition number of S. To reduce the
condition number and also the convergence rate, preconditioning is often applied. The stopping criteria is
given by

||f − Sa||2 ≤ rtol||f ||2. (29)

13



4.4.4 Sparse.linalg.cgs

The function sparse.linalg.cgs implements the conjugate gradient squared method and unlike the conju-
gate gradient method S does not need to be symmetric or positive definite [9]. The method is also sensitive
for ill-conditioned S which affects the convergence rate. The stopping criteria is given by (29).

4.4.5 Sparse.linalg.lsqr

The function sparse.linalg.lsqr implements the LSQR algorithm which is an iterative method for solving
min ||Sa − f ||22 and hence also (12) [10]. The algorithm is based on bidiagonalization, which is a form of
matrix decomposition, using Lanczos algorithm. Unlike the conjugate gradient method, the LSQR algorithm
performs well when S is ill-conditioned and S doesn’t have to be symmetric or positive definite. The stopping
criteria is given by

||r||2 ≤ atol||S||2||a||2 + btol||f ||2, (30)

which means that if atol = btol = 10−6 then ||r||2 ∼ 10−6.

4.4.6 Sparse.linalg.minres

The function sparse.linalg.minres implements the iterative minimal residual method which solves (12)
by solving min ||Sa−f ||22 [11]. Unlike the conjugate gradient method, S does not need to be positive definite,
but still symmetric. The algorithm is based on Lanczos tridiagonalization. The stopping criteria is given by
(29).

4.4.7 Sparse.linalg.lsmr

The function sparse.linalg.lsmr implements the LSMR algorithm which solves the system by solving
min ||Sa − f ||22 [12]. The algorithm is like LSQR based on bidiagonalization but also uses regularization to
improve stability. The solver is therefore suitable for ill-condition S. The method doesn’t require S to be
symmetric or positive definite. The stopping criteria is given by (30).

4.5 Mesh with Triangular Elements
The mesh created with the triangular elements used the same solvers as the quadrilateral mesh net. However,
the assembler function used for this net had to be reworked since the assembly process differs when there
less amount of nodes per element. The chosen assemblers for the triangular elements were a subset of those
in the quadrilateral solution. The assemblers were:

Version Hardware Precompiled
Triangular Original CPU No
Triangular Original GPU GPU Yes
Triangular Efficient GPU GPU Yes

Table 4: List of Triangular Assemblers

4.6 Running on Vera
The assembler functions and solver found during this project that seem to work well with GPU acceleration
will be run in the Vera cluster in order to test their scalability in a larger system. One way to access Vera is
through SSH, we can use SSH to log in to the login nodes of Vera, then we can use Sbatch to submit a task
to the actual performing nodes that has the powerful GPUs.

For convenience, we write the commands in a shell file so that we can easily run them again and replicate
the tests if needed.
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4.7 Imported Mesh Nets
The original mesh net with quadrilateral elements was built by this project code, however, there is a solution
to import triangular mesh nets via the GMSH python library and a .msh file. The smallest triangular mesh
net used was simple and consisted of 4 equilateral triangles joined into a square. While this mesh was simple
the implications of the ability to import mesh nets means that more complex mesh nets could be used as
well. The project currently only supports importing mesh nets with triangular elements, however allowing it
to import mesh nets with quadrilateral elements would be a trivial improvement.

4.8 Hardware Specifications
The benchmarks were run on a system with the following specifications:

OS: Linux Ubuntu
CPU: 12th Gen Intel(R) Core(TM) i5-12500
GPU: NVIDIA GeForce RTX 3070
RAM: 32GB

We used the following specifications of Vera:

CPU: ’Skylake’ 16 cores
GPU: NVIDIA A40 48GB * 1
RAM: 128GB
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5 Results & Analysis
The following comparisons is based on the above-mentioned assemblers and solvers. Although here might be
functions that are better optimized for both GPU and CPU for this specific type of FEM simulations the
functions tested during this project should give an indication of the capabilities for each respective hardware.

5.1 Assembler Comparisons
In figure 3 it is clear that some assemblers perform much better than others. What’s more interesting is what
specific assemblers perform the best and its increase in performance compared to the others. Its clear that
the most optimized GPU assembler, named assemblyEfficientGPU in the graph, has a significantly lower
time complexity compared to its peers. The second-best performer is the same pre-compiled algorithm, with
the only difference being that it is running on the CPU instead of the GPU. With both of the algorithms
running at sub-second times for all tested inputs with a time complexity between O(n) and O(logn), where
n is the number of NDofs in the simulation. The time measurements includes the transfer time between
GPU and main memory which indicates that the possible parallelization available on the GPU outweighs the
drawbacks created by data transfers.

Figure 3: Assembler Execution Time

Another noteworthy conclusion that can be drawn from the test data is that all of the original assemblers
crashes due to memory limitations. This is visible in figure 3 where none of assemblyGPU, assemblyCPU
and assemblyPreComp are able to reach the same level of NDofs as the efficient solvers under the same set
of tests. This limitation is even more severe on regular GPUs, which often have smaller on-board memory
than what is available to access the CPU on the main memory. This effect can be seen in the data for
assemblyGPU which aborts the test far earlier than all other assemblers. This problem could be avoided on
larger GPU clusters which often have more on-board memory available for its GPUs, such as the Vera cluster
discussed in section 2.6.

There were also indications that the transformation between sparse and dense matrices that were discussed in
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the end of section 4.3 could greatly affect the assembler time when an assembler that created a sparse matrix
were paired with a solver that required a dense input. In some cases this transformation could occupy above
85% of the time needed to assemble the matrix. For the comparison in the above figure, the transformation
time for between matrix types are excluded. The graph therefore displays the optimal assembly time for
each algorithm on the set hardware. For the assembler, it appears to be a combination of GPU acceleration,
together with an as efficient assembler algorithm as possible, which also matches the desired input type of
the solver that performs the best.

5.2 Solver Comparisons
The results from all the tested solvers are presented in figure 4. The original solver (linalg.solve), together
with the GPU version of the conjugate gradient square implementation (cgs) shows the worst performance
with an approximate time complexity similar to O(n).

Figure 4: Solver Execution Time

While Figure 4 illustrates the scale of differences between the various solvers, a logarithmic scale graph is
needed to highlight performance variations among the sparse solvers. The result of this can be found in
figure 5. We note that all solvers perform better when being runned on the GPU with the expection being
the MINRES implementation. As evident in the graphs, most of the sparse solvers perform better than
the general LU-decomposition algorithm for dense matrices (linalg.solve), independent of CPU or GPU
implementation and is as expected. Moreover, the sparse LU-decomposition method spsolve outperforms
some of the iterative sparse solvers. The reason could be that the stiffness matrix S having a simple structure
which the method could make use of. Note that a relatively high tolerance of 10−5 or 10−6 where used for
the iterative solvers. Using a higher tolerance would make each iterative solver slower, but the order of the
result would remain which we are more interested in. The best-performing solvers are the GPU implementa-
tions of the cg method (not cgs) and the MINRES method aswell as the CPU implementation of MINRES.
Remember that the stiffness matrix S is symmetric and semi-positive definite. The reason of the MINRES
implementation is the fastest could be that the method requires S to be symmetric but not positive definite,
which are properties the system satisfies. The method makes use of these properties which may lead to
quicker convergence. Other methods, such as the cgs, LSQR and LSMR implementations does not have the
same requirements for convergence which may make them more suitable for more general sparse systems.
Quite surprisingly, the conjugate gradient squared method (cgs) performs considerable poorly. The reason
being unknown but could be that the method is not as efficiently written or more suitable for systems with
different properties. Remember that the inner workings of each method is unknown and their performances
depend on how they are implemented. Note also that the cg method assumes the stiffness matrix S is positive
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definite, which the stiffness matrix satisfies.

The general matrix solvers displays a similar behavior as the general assembler by interrupting its test exe-
cution due to memory limitations. For intstance the CPU implementation of linalg.solve aborts its execution
at 1.9 × 109 NDofs with a execution time of 212s. The MINRES solver has a execution time of 0.018s for
the same number of NDofs. That is a 11777x speed-up factor compared to the general matrix solver.

Figure 5: Solver Execution Time

The solver’s behavior displays the same characteristics as the asssemblers where a combination of GPU
acceleration and a carefully chosen algorithm that is tailored towards the specific matrix structure (in this
case sparse, symmetric and semi-positive definite) outperforms the others by a large margin.

5.3 Combined Metrics
When comparing the best-performing assembler/solver combination against its original counterpart it is clear
that the best-performing combination, the assemblyEfficientGPU combined with the MINRES solver, has
a greatly improved assembly time and a close to non-existent solve time. When compared to its original
counterpart which both lacks efficient assembly and solver. Notice that the CPU MINRES solver performs
as well as the GPU version for the tested input sizes, both of these might thus be utilized. Furthermore,
the best-performing combination can handle heavier loads without exhausting its memory and thus compute
a more fine-grained solution. The optimal combination thus utilizes both the memory and computational
resources far better than its original counterpart.
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Version NDofs ×109 Assembler(s) Solver(s) Total(s)
Original 1.9 3.687 212.22 215.907
Original 7.2 - - -

Optimal CPU 1.9 0.251 0.019 0.270
Optimal CPU 7.2 0.483 0.033 0.516
Optimal GPU 1.9 0.012 0.018 0.030
Optimal GPU 7.2 0.022 0.032 0.054

Table 5: Best Performing Combinations

5.4 Performance on Vera cluster
Running the GPU-compatible algorithms on the Vera cluster shows a similar trend to the single GPU work-
station in the original test. The original assembly method failed quite early due to memory limitations, even
with the extended memory available in the cluster. The assembler optimized for sparse matrices scales well
with the increasing size and successfully completes the test with a NDof size up to 350 ∗ 109. This is well
above 200× the size in the original test which clearly shows the computational capabilities of a GPU cluster
with extended memory when combined with an efficiently structured algorithm.

Figure 6: Assembly Time On Vera Cluster

The solvers show a similar scalability in the Vera cluster which can be observed in Figure 7. Where the
MINRES solver scales exceptionally well with a time complexity close to O(log(n)). This is similar to the
scalability shown in the non-cluster test seen in Figure 5 extended to far greater NDofs sizes.
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Figure 7: Solver Time On Vera Cluster

It is thus clear that the best-performing algorithms tested in this project scale well with increasing mesh sizes
without exhausting too much of the underlying resources. This is in comparison to the original assembly and
solver methods which require far greater memory sizes and computational resources as presented in section
5.3.

5.5 Triangular Elements
While the project’s main focus was mesh nets with quadrilateral elements, there was also an implementation
for triangular elements. This implementation did not have the same number of assemblers or its own solvers
but rather used the solvers used in the quadrilateral calculations. This part of the project was used as a
control group and a foundation for future work.

5.5.1 Triangular Element Assembler Comparisons

Three different assemblers were implemented that could handle triangular elements. These assemblers,
tri_assembly, tri_assemblyGPU , and tri_assemblyEfficientGPU , were based on the corresponding as-
semblers from the previous part of the project but slightly reworked to handle triangular objects.
Figure 8 shows how the three different assemblers performed and it shows that tri_assemblyEfficientGPU
was the fastest and the only assembler which could compute up to at least 7.9∗109 Ndofs, ultimately making
it the optimal choice of assembler. The assemblers also perform very similarly to their counterparts in the
quadrilateral solution, as seen in Figure 8 and Figure 3. However, mesh nets with triangular elements have
higher connectivity, and the assemblers for the triangular elements were slightly less optimized than those
for the quadrilateral making these assemblers marginally slower.
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Figure 8: Logarithmic Graph of Triangular Assembler Execution Times

5.5.2 Triangular Element Solver Comparisons

Like in the quadrilateral calculations, the speed between the solvers varied greatly. Four solvers underper-
formed greatly. The solvers in question are, CPU_linalg, GPU_linalg, CPU_lsmr, and CPU_lsqr. The
first was the original solver and this nor its GPU counterpart could handle 7.2 ∗ 109 NDofs. The latter
two were significantly slower than the other solvers, around 5x and 2.5x that of the fifth slowest solver
(GPU_lsmr). The complete results of every solver can be seen in Figure 9 and 10, and the result without
the top 4 worst solvers can be seen in Fig 11. The results of the triangular element mesh are similar to those
of the quadrilateral mesh. The main difference, however, is the overall increase in speed for all solvers. This
was an expected result since a triangular mesh net should be faster to calculate [13] because there is one less
node and Guass integration point per triangular element compared to the quadrilateral elements.

Figure 9: Linear Graph of All Triangular Solver Execution Times
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The MINRES solver had an execution time of 0.009s at 1.9 ∗ 109 Ndofs, this is a speed increase of 22458x
compared to the slowest solver, linalg.solve (CPU_linalg) which ran for 197.518s. It’s also a speed increase
of 2x compared to the same number of Ndofs with the MINRES solver used on a mesh net with quadrilateral
elements.

Figure 10: Logarithmic Graph of All Triangular Elements Solver Execution Times

Figure 11: Logarithmic Graph of the Top 10 Triangular Elements Solver Execution Times

5.5.3 Combined Triangular Element Comparisons

The optimal combined solution was to use the tri_assemblyEfficientGPU assembler along with the MINRES
solver, which was the same result as the quadrilateral tests. The combined result for this configuration was
slower than that for the quadrilateral even though the solver was twice as fast. The culprit for this result
was the assembler which was slower on the triangular solution. The results can be seen in Figures 12, 13, 14,
Table 6.
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Figure 12: Linear Graph of All Triangular Elements Combined Execution Times

Figure 13: Logarithmic Graph of All Triangular Elements Combined Execution Times
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Figure 14: Logarithmic Graph of the Top 10 Triangular Combined Execution Times

Version NDofs ×109 Assembler(s) Solver(s) Total(s)
Original 1.9 4.800 197.518 202.317
Original 7.2 - - -

Optimal GPU 1.9 0.133 0.009 0.142
Optimal GPU 7.2 0.250 0.015 0.265

Table 6: Best Triangular Performing Combinations

5.6 Imported Mesh Nets
The imported mesh net performed significantly worse than the other solutions. This was because of how
the scaling for the imported elements behaved. There was a necessary step where the new mesh net had to
be saved to an intermediate temporary file. This file ended up being several million lines long, slowing the
operations down and eventually forcing the process to kill itself. The results of some imported mesh nets can
be seen in Figures 15, 16, and 17 which shows the assembly, solver and combined times respectively.

Figure 15: Logarithmic Graph of the All Imported Elements Assembler Execution Times
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Figure 16: Logarithmic Graph of All Imported Elements Solver Execution Times

Figure 17: Logarithmic Graph of All Imported Elements Combined Execution Times
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6 Conclusion
We improved the original FEM code on both CPU and GPU side, on the GPU side, we used CUDA to
accelerate the assembler and the solver by using cupy and numba. Moreover, we further explored the mesh
net shape from Quadrilateral to Triangular.

From the performed tests in this project, it is clear that GPU acceleration are applicable to computer-aided
FEM simulations independently of the mesh size. As can be seen in figure 7 where the optimal GPU imple-
mentation outpaces its competitors. However, it is worth noting that an optimized CPU algorithm performs
much closer to the optimal GPU implementation, with a one-order-of-magnitude difference. Compared to a
two-order-of-magnitude difference to the original implementation.

Version Assembler Solver Performance Gain
Original Original Linalg.solve 1x
Optimal CPU Efficient PreComp Minres CPU 800x
Optimal GPU Efficient GPU Minres GPU 7197x

Table 7: Comparison of versions and their performance

Even for small meshes the overhead of transferring data between main memory and GPU is a minor part of
the total time for the simulation. It is also clear that the applied algorithms have a large implication for the
possible optimization. It is thus the case that moving any slow/complex algorithm onto the GPU will not
guarantee a speed-up in the needed computing time. In some cases, it might even make the available scope
smaller due to other limitations such as memory. This was the case with the assembly and assemblyGPU
algorithms presented in the project, see Figure 2.3.

A conclusion drawn from this may thus be that it requires some "algorithmic know-how" and knowledge of
the GPUs resources to take full advantage of the available CUDA interface. However, when done correctly
and applied to the correct underlying algorithms the time complexity can be reduced greatly.

6.1 Future Improvements
When profiling the best solution achieved in this project there is a somewhat even split between the time
needed for the assembler and solver. With the assembler occupying 40% of the total time, and the solver
needing the other 60%. Even though the solver occupies more time it is most likely the assembler that could
be improved a bit more in the future. The reasoning for this is that the solver is a pre-constructed function
from the scipy library and is most likely already optimized, while the assembler is custom-made for this
specific project. It is thus more likely that we missed some possible minor optimization steps compared to
the possibility that the sparse solvers available in Scipy are badly optimized. Another important optimization
would be to look further into the triangular assemblers, and see where they could be optimized.

The solvers used during the project could be considered tailored towards the specific mesh and matrix
structure that are solved for in this FEM problem. And it is not certain that the same structure would be
used in other FEM models which could make other FEM problems considerably slower to solve compared to
the results achieved in this project.

Another possible improvement is to utilize multiple GPUs of Vera to further accelerate the process. Our
current tests are run on a single GPU, but the Cupy library has multiple GPU support which could be used
in the Vera cluster. For example the cupy.cuda.nccl module is designed for communication between GPUs,
when we use iterative solvers. Theoretically, we can use more GPUs to solve even larger problems when
distributing the calculations onto multiple GPUs which not only boosts the number of cores but also the
available memory. With proper partitioning of the algorithm, this could allow for faster calculations of a
FEM (or similar) problem.

It would also be interesting to develop different element shapes further. For example, adding more assemblers
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for the triangular elements and seeing if there is another element shape that could be incorporated, such as
hexagons or 3D elements like tetrahedrons. Creating solutions for additional shapes would mean that more
complex mesh nets, such as spheres or cylinders, could be imported.
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7 Contributions
While all major decisions along the project were made as a group the work was somewhat divided to increase
the efficiency of the group. This allowed us to research multiple problems in parallel that needed to be solved
to reach our goals. These problems included underlying math of FEM simulations, converting algorithms
to CUDA compatible counterparts, understanding the Vera cluster, and so on. Below are the individual
contributions of each member stated.

Carl: Main responsibility of looking into the theory behind the given FEM problem and based on that find
appropriate solvers to include in the benchmark. Did some very early programming in the project, where a
script was made to plot the results (which was further developed by other members). Wrote on sections 2.1,
2.2, 2.3, 2.4, 3, 4.4, and a bit on 5.2.

Sebastian: Provided the foundation of the test setup described in section 4.1 with separate solver and
assembler timers, and pre-compilation of Numba annotated methods. Wrote the new algorithms for the effi-
cient solvers and its CUDA-compatible counterpart. Created a test script to automatically test all available
algorithms to provide the test data needed for the report. Wrote most of the Method and Result & Analysis
chapters.

Erik: I was responsible for the triangular and imported mesh net implementations, which means that I
rewrote some of the code to work with different element shapes and performed all benchmark tests for them.
Early on, I also looked at 3D shapes, but we decided not to continue with that. Finally, I wrote the abstract,
introduction and everything related to the triangular and imported mesh nets.

Yanchen: I was mainly responsible for running the experiments on the Vera cluster: I investigated how
Vera works, wrote the script to run the experiments on Vera, debugged, and logged the results. I also did
preliminary investigation on the results and pointed out the anomalies in them, and they are later solved
by other group members. I wrote the introductory parts that are relevant with Vera in the report, and also
contributed in the limitations part.
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