CHALMERS UNIVERSITY OF TECHNOLOGY

GPU Accelerated Computations
Using Python and CUDA

ACCELERATING LATTICE BOLTZMANN METHOD (LBM)
BAasep oN CUDA

Author:

Chaoyu Zheng Supervisor:
Haojie Li Magnus Carlsson
Raj Gopalakrishna Subramani Venkatachalam

Yuan Wei

January 23, 2025

CHALMERS

UNIVERSITY OF TECHNOLOGY



Contents

1

2

Introduction

Lattice Boltzmann Method: Theoretical Overview

2.1 Basic Concept . . . . . . . . .
2.2 Equations and Macroscopic Quantities . . . . . . . .. ... ... ... ..
23 CPUwvs. GPU . . . . .
Development Tools Introduction:

3.1 Numba: . . . . . e
3.2 CUpy: . . .o
3.3 Scalene: . . . ...

Implementing CUDA-Based GPU Acceleration
4.1 Code Profiling . . . . . . . . . .
4.2 Code Implementation . . . . . . . . . . ...

Results:
Discussions:

Conclusion:

S O ot Ot [S1 NG, QTSN =~

[



Abstract:

Traditional computational fluid dynamics (CFD) methods solve the Navier-Stokes equations
using finite difference or finite volume approaches, which are computationally expensive and
challenging to parallelize due to the use of implicit solvers and complex data dependencies.
The Lattice Boltzmann Method (LBM) offers an alternative by simulating fluid dynamics
through particle-based equations. Since grid points update independently, LBM is inher-
ently well-suited for parallel computing. This project implements LBM for simple fluid flow
simulations, leveraging Numpy for numerical efficiency with pre-computed streaming maps.
While the use of Python classes simplifies the implementation, it results in slower perfor-
mance. To address this, the project integrates CUDA and Numba libraries for GPU-based
parallelization. GPU computations demonstrate a significant performance improvement,
achieving a speedup of 3 times compared to CPU-based calculations. This highlights the
effectiveness of LBM for massively parallel applications.



1 Introduction

In Computational Fluid Dynamics (CFD), the Lattice Boltzmann Method (LBM) has
emerged as an efficient and highly parallelizable numerical method. Compared to traditional
finite volume and finite difference methods, LBM uses a mesoscopic approach based on
distribution functions (f;) to track fluid evolution, making it particularly suitable for
complex boundaries and parallel computing.

This project develops a Python-based LBM framework from scratch, featuring a basic
lid-driven cavity (2D flow in a square cavity) example. The framework utilizes classes and
numba for CPU parallel acceleration and can be further modified to use CUDA to offload
critical computations to the GPU. This allows for better performance on large grids. This
report introduces:

e Theoretical fundamentals of the Lattice Boltzmann Method,

e Comparison between GPU (CUDA) and CPU and the advantages of GPUs in LBM,
and

e Implementation of GPU acceleration using CUDA in the project and potential modi-
fications.

2 Lattice Boltzmann Method: Theoretical Overview

2.1 Basic Concept

The Lattice Boltzmann Method (LBM) is a simplified, discretized algorithm derived from
the Boltzmann equation to solve the Navier-Stokes equations for fluid mechanics. Its core
components include:

1. Discrete velocity set (c;): The continuous velocity space is discretized into @ di-
rections (e.g., D2Q9, D3Q19).

2. Distribution functions (f;): At each lattice point, @) distribution functions f; are
stored, representing the amount of particles moving in each discrete direction.

3. Collision and streaming steps:

e (Collision: Using the BGK (Bhatnagar—Gross—Krook) or MRT /TRT operators, f;
relaxes towards its equilibrium state f;.

e Streaming: Each distribution function streams along its corresponding c; direction
to adjacent lattice nodes.

LBM decouples fluid dynamics into a ”collision + streaming” two-step process, enabling
high parallelism since each lattice point only needs data from a small number of neighbors.



2.2 Equations and Macroscopic Quantities

In the DdQq framework, each lattice point stores fi(x)(i = 1,...,Q). The macroscopic

quantities are computed as:
p:ZfM puzzcifiu
i i

where p and u are density and velocity, respectively. The equilibrium distribution function
for the BGK model is:

e u-cC; ll'CZ'2 u-u
fiq:wip[1+ 3 ples }

4 2
: 2c; 2cz

where w; are weights and c; is the speed of sound. The BGK collision operator is given by:

Q; = —%(fi — fih),

where 7 controls the viscosity.

2.3 CPU vs. GPU

e CPU: General-purpose processor specialized in handling complex control flow and
diverse tasks, with a limited number of cores (usually a few to a few dozen).

e GPU: Graphics Processing Unit with hundreds or thousands of parallel threads, opti-
mized for large-scale data-parallel computations (e.g., matrix operations, fluid dynam-
ics).

LBM is highly suited for GPUs due to:

e Local access patterns: Streaming requires only nearest-neighbor data.

e Uniform operations: Each lattice node undergoes the same ”collision + streaming”
operations.

e Scalability: Larger grids (hundreds of thousands to millions of nodes) leverage GPU
parallelism effectively.

3 Development Tools Introduction:

3.1 Numba:

Numba is an open-source Python library designed to accelerate numerical computations by
using Just-In-Time (JIT) compilation, converting Python functions into optimized machine
code at runtime. It integrates seamlessly with Numpy, enabling faster execution of array
operations, and supports parallelization to utilize multi-core CPUs and GPUs. For this
project, Numba was utilized to enhance the performance of the Lattice Boltzmann Method
(LBM), particularly in the computationally demanding streaming and collision steps. By
leveraging Numba’s JIT compilation and CUDA support, the project achieved significant
speedups, particularly through GPU parallelization.

5



3.2 Cupy:

CuPy is an open-source Python library designed for GPU-accelerated numerical computing,
offering a drop-in replacement for NumPy, with the ability to leverage NVIDIA GPUs for
massive parallelism. CuPy is widely used in machine learning, scientific computing, and
deep learning tasks where high-performance computation is required.

3.3 Scalene:

Scalene is a high-precision Python profiler that provides deep insights into CPU, mem-
ory, and GPU usage with minimal runtime overhead. Unlike traditional profilers, Scalene
distinguishes between Python and native code execution, making it particularly useful for
optimizing performance-critical applications.

4 Implementing CUDA-Based GPU Acceleration

4.1 Code Profiling

Before we start parallelizing the code and optimizing computations, we need to profile the
code.When profiling the performance of Python code, we use Scalene to analyze the execution
time, memory usage, and CPU usage line by line. From this analysis, we identify the code
segments with the highest execution time and resource consumption for further analysis and
optimization. Here is a simple snippet of the code:

scalene samples/lid_driven_cavity_2d.py

N
/" SCALEN E%Q\

» Al optimization options

Time: Python | | system  Memory: Python | Memory timeline: (max: 66M, growth: 9.1%)
I

hover over bars to see breakdowns; click on coLuMn HEADERs to sort.

Figure 1: Main code profiling

TIME MEMORY MEMORY MEMORY MEMORY LINE PROFILE (click to resct ordcr)

pecak average timeline  activity /cephyr/users/chaoyuz/Vera/LBMORIGIN/samples/lid_driven_cavity 2d.py
I I 2 from 1bm.simulation import Simulation

9 ¥ def main

I 32 mesh.setup
| 8 lsttice. setup_streaming
TIME MEMORY MEMORY MEMORY MEMORY FUNCTION PROFILE (click te resct order)

peak  average timelinc activity /cephyr/users/chaoyuz /Vera/LBHORTGIN/samples/1id_driven_cavity_2d.py
[ i

Figure 2: Main code part which takes most of the time



¥ Jcephyr/users/chaoyuz Nera/ LBHORIGIN/ Lbm/mesh/mesh. py

TIME MEMORY MEMORY MEMORY  MEMORY LINE PROFILE (click to resct order)

peak average timeline  activity /cephyr/users/chaoyuz/Vera/LBMORIGIN/ 1bm/mesh/mesh . py
»

import matplotlib.pyplot as plt

» From 1bm.mesh_node import Node

def compute_cardinal_index(cardinals: np.ndarray, cell face_idx: np.ndarray

il » = normal - compute_all_cell face normals(cell face idx, cell_node_idx, node_coordinates

Figure 3: Main code part which takes most of the memory

The Figure above illustrates that to improve the speed of LBM computation, the primary
focus should be on accelerating the creation of the LBM streaming map. We need to offload
the parallelizable and vectorizable parts to the GPU for computation to achieve higher effi-
ciency.

In the original code, node initialization is primarily achieved through two methods. In the
first stage, mesh.setup is used to establish the connections between nodes, including cell
connectivityand face connectivity, as well as the addition of nodes.

The second stage involves the establishment of the streaming map, where a Python list is
used to construct and store data grid information, including boundary conditions and bulk
conditions.

The establishment of relationships itself does not consume much computation time. How-
ever, due to the unique design of the GPU, we cannot directly store object-based relational
data in GPU memory. This approach does not align with the GPU’s design paradigm and
cannot achieve efficient queries. As a result, during computation, frequent data exchanges
between the host and device are required to query node relationships, especially for calcula-
tions occurring in boundary regions.

After completing the code profiling, we can then dive into the underlying code to optimize
computations that consume a significant amount of execution time, assessing their potential
for parallelization and vectorization.

4.2 Code Implementation

After analyzing the code, we identified key computational methods that can be optimized,
including mesh generation and lattice relationship initialization. In the initial stages of pro-
gram execution, it is crucial to focus on initializing the required data on the GPU to minimize
the overhead of frequent data transfers. Fortunately, CuPy provides implicit data initializa-
tion methods, such as cp.asarray (), which allows direct initialization of CPU instances into
GPU memory. This simplifies many unnecessary explicit operations and improves efficiency.
In subsequent code optimization, we will refactor the code by offloading fundamental com-
putations, such as dot product calculations, equilibrium distribution function evaluations,
and weighted sums, to CUDA for improved performance.

For inter-node computations, we will leverage CuPy’s broadcasting and slicing methods to
enhance execution efficiency. Additionally, we will utilize cupyx.scipy.sparse to support
efficient matrix storage and operations.

In this computational phase, we need to carefully consider the handling of boundary con-
ditions. Since sparse matrices are already used to record the relationships between node



elements, there is no need to maintain neighborhood data on the CPU. Instead, boundary
conditions can be directly determined based on the position of elements within the matrix
itself. Here are some examples about how we optimize the code:

def density cupy(f,rho):
ff = cp.asarray(f)
rhoc = cp.asarray(rho)

rhoc[:] = cp.sum([ff, axis=0))
rho = cp.asnumpy(rhoc)

Figure 4: Code Example 1

The optimization method shows in Figure 4 involves explicitly converting NumPy arrays
into CuPy arrays, thereby offloading the computation to GPU memory. After the computa-
tion is completed, the arrays are transferred back to the host, as shown in the figure.

The advantage of this optimization is that it requires modifications only at the imple-
mentation level without altering the top-level code logic. This minimizes code changes while
improving computational performance as much as possible.

However, this approach has significant limitations. When a low-level method is frequently
invoked, data transfers can consume a large portion of the computation time. To address
this, we adopted a second transfer approach: using subclass inheritance.

attice(Lattice):
_ init_ (self, stencil: cupystencil, mesh:cCu
super().__init_ (stencil,mesh)
self. stencil = stencil
self. mesh = mesh

cp.asarray(self.f)
asarray(self.fe)
ray(self.s)
array(self.feq)
‘ray(self.u)
ray(self.g)
self.rho = cp.asarray(self.rho)

self.s_const = cp.asarray((1.0 - 1.0 / (2.0 * self.tau)) * self.stencil.w * self.stencil.inv _cs_2)
self.force_vector = cp.zeros(self.stencil.d, dtype=cp.float64)

self. bulk streaming map = cp.empty((®, @), dtyp nt32)

self. bound streaming map = cp.empty((@, ©), dtype=cp.uint32)

self. bulk cell inde cp.empty(®, dtype=cp.uint32)

self._lambda = cp.floate4(e.25)
self. tau = cp.float64(1.0)

Figure 5: Code example 2



f equilibrium cuda(feq, u, rho, q, w, c, inv cs 2, inv _cs 4):
uu = cp.sum(u**2, axis=1)

uc = cp.dot(c, u.T)

feq[:, :] = w[:, cp.newaxis] * rho * (
1+ uc * inv ¢cs 2 + ©.5 * uc2 * inv cs 4 - 0.5 * uu * inv cs 2

Figure 6: Code example 3

In this method, a subclass of the CuPy array is generated during the initialization phase.
During the subclass initialization, the parent class data is explicitly converted, reducing the
need for repeated data transfers and improving overall performance. In lower-level compu-
tation methods, we can directly operate on CuPy arrays, enabling efficient operations such
as dot products and vectorized computations.

ylLattice(Lattice):
_setup_streaming_maps_gpu(self,stencil: CupyStencil, cell range: cp.ndarray = None,

row
col

cp.asarray(grid.adjacency_matrix.row)
cp.asarray(grid.adjacency matrix.col)

c_int = stencil.c
i bulk = cp.uint32(e)
for i, cell in enumerate(cells):

cell.index
col[row == cell index]

cell_index
neighbours

streaming_map = cp.full(stencil.q, cell_index, dtype=cp.uint32)

target_cells = cell_index - c_int
neighbour mask = cp.isin(target cells, neighbours)

for iq in cp.where(~neighbour mask)[@]:
bc_faces = grid.find_face(cell index)

_priority([face.boundary.b r face in bc_faces])
bc.setup_streaming_cupy(iq, cell, bc_faces, stencil)

bulk_streaming_map[:, i bulk] = streaming_map
bulk_cell_index[i bulk] = cell index
i bulk += cp.uint32(1)

Figure 7: Code example 4

By overriding parent class methods, we aim to implement logical code execution on the
GPU, such as leveraging GPU-supported sparse functions to construct the streaming map
for subsequent computations and queries on the GPU.



5 Results:

After optimizing the computational process, we need intuitive performance metrics for com-
parison. ”Millions of Lattice Updates per Second” (MLUPSs) and computation time are key
indicators for measuring performance improvements.We used a 8-core CPU processor as the
baseline for LBM computation speed and MLUPs update efficiency. The performance test-
ing was conducted on an A40 GPU computing node, where we compared the performance
of CuPy optimization alone with the combined optimization of CuPy and Numba.

MLUPs vs Iteration

.
o

7 —e— CPU MLUPs
—8— CuPy+Numba MLUPs
1 —@— CuPy+CPU MLUPs

= e =
=3 ~ B
. L

Milliens of lattice updates per second
@

T T T T T T
[} 1000 2000 3000 4000 5000
Iteration

Figure 8: mlups per iteration combined 3groups

Total Time vs Iteration

—&— CPU Total Time
—8— CuPy+Numba Total Time
7 —e— CuPy+CPU Total Time

Total Time (s)

T T T T T T
[} 1000 2000 3000 4000 5000
Iteration

Figure 9: totaltime per iteration combined 3groups

From Figure 8 and Figure 9, we use the number of iterations as the horizontal axis and
MLUPs along with total execution time as the vertical axis to visually compare the per-
formance of CUDA-based parallelization with CPU multithreading. It is evident that the
combined optimization using CuPy and Numba resulted in a significant improvement in
computational efficiency and a reduction in total execution time. However, the performance

10



Comparison of A40, A100, and V100 GPUs
3.18

. MLUPs 3.13 17.88 o Total Time

17.5 4

3.0

15.99 2.80

15.0 4
F2.5

12.5 4

]
o

MLUPs

=
w
Total Time (s)

7.5 1

F10
5.0 4

254 F0.5

0.0 - - 0.0

A40 A100 V100
GPU Type

Figure 10: totaltime per iteration combined 3groups

gain compared to using CuPy optimization alone was not particularly significant.

We also compared the computational performance across three GPUs—A40, A100, and
V100—resulting in the bar chart shown in Figure 10. We observed that the performance
differences were not significant. However, an interesting phenomenon emerged: despite the
theoretically superior performance of the A40 and A100, their computational efficiency did
not surpass that of the V100.

6 Discussions:

While this project demonstrates the effectiveness of GPU-accelerated Lattice Boltzmann
Method (LBM) simulations for simple fluid dynamics problems. Our experimental results
demonstrate an improvement in computational performance.lt also highlights certain lim-
itations and areas for improvement. One key limitation lies in the use of Python, despite
its accessibility and flexibility, introduces overhead compared to lower-level programming
languages like C+4 or CUDA, which could provide further performance gains.

Future work could address these limitations by extending the framework to incorporate
more sophisticated collision models, optimizing memory management to reduce data transfer
between CPU and GPU, and enabling support for multi-GPU simulations. These advance-
ments would not only improve the computational efficiency but also enhance the physical
realism of the simulations, making LBM a more versatile tool for modern computational
fluid dynamics.

We also observed noteworthy phenomena worth discussing. Despite the A100 and A40
utilizing the more advanced Ampere architecture, while the V100 is based on the previous-
generation Volta architecture, the V100 outperformed in certain numerical simulation appli-

11



cations such as LBM computations. This could be attributed to several factors:

Specialized Matrix Computation Units (Tensor Cores): The V100 is highly op-
timized for high-performance computing (HPC), which may better align with our workload.
If our code does not fully leverage the Tensor Cores or other new features of the A100, the
V100 might maintain a performance edge.

Higher Clock Frequency and core utilization: The V100 generally operates at a
higher core clock speed, making it more suitable for workloads that rely heavily on single-
precision or double-precision floating-point calculations. The V100 may have achieved a
higher core utilization under our workload, whereas the A100 and A40 might have encoun-
tered data transfer bottlenecks or underutilized compute cores, preventing them from fully
realizing their performance potential.

Moreover, the object-oriented programming logic based on CPU multithreading accel-
eration may not be directly applicable to GPU high-performance computing. From a pro-
gramming perspective, we want to use objects to store data and capture the relationships
between them. However, simply porting this data to GPU memory for parallel computation
does not align with the GPU’s design principles.

In the process of continuing CuPy optimization, I discovered that CuPy supports instan-
tiating matrices while maintaining the relationships between nodes. As a result, unnecessary
relationships, such as using a string list to query neighboring nodes, are transformed into
sparse matrix element operations in GPU memory. This significantly reduces frequent data
transfers between the main memory and disk, improving overall performance.

7 Conclusion:

The main conclusion from this experiment is that CUDA is feasible for accelerating the Lat-
tice Boltzmann Method (LBM) computation. The combination of CuPy and Numba CUDA
can significantly improve computational efficiency and reduce execution time, especially for
dense data like 2D matrix operations, where parallel computation outperforms the baseline
computation data. However, in addressing the node relationship establishment, boundary
condition creation, and other logical structures, CUDA shows clear limitations. The GPU
is primarily designed for large-scale, dense computations, and its architecture is optimized
for data storage, making some object-oriented programming concepts difficult to implement.
We need to employ specialized techniques to store and associate indexes and data effectively.

However, this does not mean that CUDA cannot be used to solve such problems. It re-
quires a shift in our programming approach. For example, we can use matrix-vector multipli-
cation techniques like CSR (Compressed Sparse Row) or CSC (Compressed Sparse Column)
to handle sparse matrix operations that are accessed by rows or columns. These techniques
can significantly improve memory utilization and avoid unnecessary memory overhead.Due
to time constraints and the fact that the initial optimizations did not achieve the desired
improvement in computational efficiency, we were unable to complete the optimization for
this part of the computation. However, we believe that this approach is feasible and could
yield significant benefits with further refinement.

12



References

1]

T. Scherlis, ”Lattice-Boltzmann Algorithm Using GPU Acceleration,” 2017.
[Online|.  Available: https://tomscherlis.com/wp-content/uploads/2017/02/
Lattice-Boltzmann-Algorithm-Using-GPU-Acceleration.pdf

”Lettuce: GPU-Accelerated Lattice Boltzmann Simulations in Python,” [Online|. Avail-
able: https://lettuceboltzmann.readthedocs.io/en/latest/readme.html

C. Gkoudesnes and R. Deiterding, ”Verification and Validation of a Lattice Boltz-
mann Method Coupled with Complex Sub-grid Scale Turbulence Models,” 2019.
[Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/186779/
Particles_2019-46-Verification’,20and}%20validation?200f .pdf

"GPU-Accelerated Lattice Boltzmann Method for Direct Numerical Simulation of
Turbulent Flows,” [Online]. Available: https://engineering.purdue.edu/YulLab/
research/products/PublishedPapers/2014PARCFD. pdf

K. Jain, "Efficacy of the FDA Nozzle Benchmark and the Lattice Boltzmann Method
for the Analysis of Biomedical Flows in Transitional Regime,” 2020. [Online]. Available:
https://arxiv.org/abs/2005.07119

13


https://tomscherlis.com/wp-content/uploads/2017/02/Lattice-Boltzmann-Algorithm-Using-GPU-Acceleration.pdf
https://tomscherlis.com/wp-content/uploads/2017/02/Lattice-Boltzmann-Algorithm-Using-GPU-Acceleration.pdf
https://lettuceboltzmann.readthedocs.io/en/latest/readme.html
https://upcommons.upc.edu/bitstream/handle/2117/186779/Particles_2019-46-Verification%20and%20validation%20of.pdf
https://upcommons.upc.edu/bitstream/handle/2117/186779/Particles_2019-46-Verification%20and%20validation%20of.pdf
https://engineering.purdue.edu/YuLab/research/products/PublishedPapers/2014PARCFD.pdf
https://engineering.purdue.edu/YuLab/research/products/PublishedPapers/2014PARCFD.pdf
https://arxiv.org/abs/2005.07119

	Introduction
	Lattice Boltzmann Method: Theoretical Overview
	Basic Concept
	Equations and Macroscopic Quantities
	CPU vs. GPU

	Development Tools Introduction:
	Numba:
	Cupy:
	Scalene:

	Implementing CUDA-Based GPU Acceleration
	Code Profiling
	Code Implementation

	Results:
	Discussions:
	Conclusion:

