
Chalmers University of Technology

GPU-accelerated Computational
Methods using Python and CUDA

Lattice Boltzmann Method

Author:

Roni Celiker

Haozhe Sun

Fengming Tong

Adam Persson

Supervisor:

Magnus Carlsson

February 13, 2025



1 Abstract

This report presents the optimization of a Lattice-Boltzmann-based Computational Fluid
Dynamics (CFD) solver by transitioning from CPU to GPU acceleration. The solver, based
on Emil Ellenius’s master’s thesis, was extended with GPU support, a key improvement
identified in his work. The project was supervised by Magnus Carlsson from Saab.

Initially, replacing NumPy with CuPy provided notable performance gains. Further accel-
eration was achieved by implementing CUDA instead of Numba, resulting in exponential
improvements, especially for large simulations.

The Lattice-Boltzmann method (LBM) offers a microscopic approach to fluid dynamics that
captures microscopic characteristics as node counts increase. By using CUDA on A40 GPUs,
the solver showed significant scalability, with larger simulations benefiting most from GPU
parallelization. Performance comparisons confirmed that CUDA’s advantages grow with
problem size.

While CuPy and CUDA were tested separately, future work could explore their combined use.
This project highlights how adapting open-source solvers to modern GPUs can transform
CFD simulations.

1



2 Introduction

In recent years, the usage of graphical processing units (GPU) in programming has increased.
This is because of its high performance increase in comparison to traditional central process-
ing units (CPU) when the workload is paralizable. As the performance is substantionally
increased, this entails that industry and research save time when running code. One of the
more popular paralization platforms is CUDA, which utilizes NVIDIA based graphics cards,
and has seen a sharp rise in popularity for its robustness and easy implementation. One
of the areas that has benefited the most from paralized workloads is computational fluid
dynamics (CFD), and aspecially the Lattice Boltzmann method (LBM), which this project
will focus on.

2.1 Computational fluid dynamics

In mechanical engineering, computational fluid dynamics (CFD) are a branch of fluid me-
chanics that uses numerical analysis and algorithms to solve and analyze problems involving
fluid flows with surfaces defined by boundary conditions. It is commonly used in engineering
to simulate fluid behaviors in complex systems, such as in aerodynamics, weather patters or
industrial processes.

As CFD methods handle fluids, they are based on solving the Navier-stokes equations, as
these equations govern the motion of fluid flows under various conditions. This entails
that the goal of a CFD method is to numerically solve these equations, which is often in
simplified or approximated form to reduce computational calculation. It should be noted
that the majority of CFD methods is based on and handle continuum mechanics. This
entails that the molecular nature of the fluids is not accounted for, and the Navier-Stokes
partial differential equations are solved directly to obtain the macroscopic properties of the
fluid (e.g velocity, pressure etc) for simulation.

CFD methods usually solve the previously mentioned equations iteratively over a domain
divided into elements. As the operations performed at each element are repetetive across
the domain, this entails that the workload is well suited for paralization.

2.2 The Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a specific type of CFD method that, unlike tradi-
tional CFD methods, models fluid behavior from a mesoscopic perspective by simulating the
movement and collision of a particle distribution function fi(x, t) and a probability density
function feq. The principle is to derive the macroscopic properties of the fluid from the
statistical mechanics applied from Boltzmann transport equation. This is done by making
the assumption that fi(x, t) is relaxed toward feq each time step, approximating the particle
density behavior and then simulating it each itteration.

2



2.2.1 LBM Algorithm Overview

The Lattice Boltzmann Method operates on a discrete lattice grid where each lattice node
(or cell) tracks discrete velocity distribution functions. The simulation advances in discrete
time steps and is typically divided into four main stages:

1. Streaming (Propagation) Step In the streaming step, the distribution functions at
each lattice node are shifted (or streamed) to neighboring nodes along the discrete velocity
directions. Mathematically, this corresponds to:

fi(x+ ci∆t, t+∆t) = fi(x, t)

where fi is the particle distribution function in the i-th discrete velocity direction, ci is
the discrete velocity vector, and ∆t is the time step. This step redistributes the particle
populations according to their velocities.

2. Boundary Step Following the streaming step, special treatment is applied to nodes
lying on or adjacent to boundaries (e.g., walls, inlets, outlets). For example, bounce-back
boundary conditions reverse the distribution functions that stream into wall nodes to enforce
no-slip conditions. Inlets and outlets may apply prescribed velocity or pressure profiles. This
step ensures that the correct physical behavior is enforced at the domain boundaries.

3. Collision (Relaxation) Step Once the distribution functions have been streamed and
boundary conditions applied, each node undergoes a collision (or relaxation) process. The
collision step drives the distribution functions toward an equilibrium distribution feq,i, which
is often derived from the Maxwell-Boltzmann distribution under the incompressible or weakly
compressible flow assumption. A common example is the BGK (Bhatnagar–Gross–Krook)
approximation:

fi(x, t+∆t) = f ∗
i (x, t) + ω

[
feq,i(ρ,u)− f ∗

i (x, t)
]

where f ∗
i (x, t) are the post-streaming distributions, ω is the relaxation parameter (inversely

related to viscosity), ρ is the fluid density, and u is the local velocity.

4. Macroscopic Calculation Step After collision, macroscopic flow quantities such as
density ρ, velocity u, and pressure p are computed at each lattice node by taking moments
of the distribution functions:

ρ =
∑
i

fi, ρu =
∑
i

fici, p ≈ ρc2s

where cs is the speed of sound in the lattice model. These macroscopic values can then be
used for output, boundary conditions, or other post-processing steps.

2.2.2 Parallel Advantage of LBM

A notable strength of the LBM lies in its locality. Collision operations occur independently
at each lattice node, while streaming only involves immediate neighbor updates. This highly

3



localized data dependency makes the LBM naturally parallelizable: thousands (or millions)
of lattice nodes can be updated in parallel with minimal communication overhead. When
implemented on modern GPUs (e.g., via CUDA), LBM benefits from the massive parallel
processing capability, achieving significant speedups compared to CPU-based implementa-
tions. This is especially advantageous in large-scale or real-time fluid simulations.

Overall, by combining mesoscopic modeling with discrete velocity sets and localized update
rules, the LBM provides a flexible and efficient framework for simulating fluid flow and
related transport phenomena.

2.3 Parallelization with CUDA

The Lattice Boltzmann Method (LBM) involves repetitive calculations on a large number
of small grid points, where computations at each point are largely independent. This makes
LBM highly suitable for parallel processing on GPUs, which can significantly improve com-
putational efficiency.

CUDA Implementation Strategy for LBM

• Mapping Grid to CUDA Threads: The physical lattice grid is mapped onto
CUDA’s thread structure, where each thread handles computations for one or more
grid points.

• Thread Organization: Threads are grouped into Blocks, and multiple Blocks form
a Grid. NVIDIA GPUs contain multiple Streaming Multiprocessors (SMs), each with
32 threads per processor core.

• Memory Optimization: Efficient data access is ensured using shared memory to
minimize global memory latency.

• Thread Synchronization: Proper synchronization mechanisms ensure calculation
accuracy.

To optimize performance, the computational domain is divided into spatially contiguous
blocks along one axis. Multiple copies of the same program run concurrently, each processing
its own block of data. At the end of each iteration, data at the boundaries between blocks
is exchanged to ensure consistency before proceeding to the next iteration.

4



3 Method

In this section, 2 methods of parallization for the lbm method are implemented. The first
implementation is CuPy, a high level GPU-accelerated library, as a means to optimize com-
putational performance in Python. The second implementation is CUDA, A low level parallel
computing platfrom that gives more fine-grain controll over parallization parameters.

3.1 Numpy to Cupy

CuPy is designed to mimic NumPy’s API, enabling a straightforward transition from CPU-
bound operations to GPU-based computation. The focus of the method was to evaluate
how CuPy handles various computational tasks, highlighting both its advantages and limi-
tations.

To implement CuPy, we replaced NumPy operations with their CuPy equivalents, allowing
CuPy to handle data transfers between the CPU and GPU automatically. CuPy arrays
reside on the GPU rather than the CPU, and memory allocation is managed through CUDA.
Unlike native CUDA, which requires explicit thread and block management, CuPy abstracts
this complexity by relying on its own optimized CUDA kernels for efficient execution. In our
implementation, we exclusively used CuPy’s built-in functionality without manually defining
CUDA kernels or mixing native CUDA with CuPy.

A key consideration in the implementation was the synchronization of data between the
CPU (host) and GPU (device). As data transfer is a potential bottleneck, special care
was taken to minimize unnecessary transfers, especially in workflows that required frequent
communication between the host and device.

To measure performance, a profiling tool was used to compare the execution of NumPy-
based operations with their CuPy-based counterparts. We analyzed scenarios involving
large arrays and simple mathematical functions, identifying cases where CuPy provided
substantial speedups. We also examined bottlenecks, such as memory transfer overhead and
compatibility issues with NumPy functions that lack direct CuPy equivalents.

The results and analysis provide insights into CuPy’s capabilities and its potential trade-offs
when integrating GPU acceleration into Python applications.

3.2 Numba to CUDA

As CUDA is a low-level programming framework, implementing it correctly required metic-
ulous attention to detail and a deep understanding of its intricacies to ensure an accurate
adaptation of the original code. The complexity of CUDA programming arises from the need
to analyze the parallelization potential of functions, identify necessary variable modifications,
and appropriately translate traditional CPU-based code into CUDA kernels.

To systematically convert the existing LBM implementation to CUDA, a structured method-
ology was employed to transform variables, input arguments, and functions into their corre-
sponding CUDA-optimized versions.

5



3.2.1 Profiling and Function Selection

The first step involved profiling each segment of the code directly responsible for key LBM
computations, specifically the boundary conditions, collision, equilibrium, streaming, and
macroscopic calculations. This was achieved using the existing profiler within the origi-
nal code, which provided execution time metrics for each segment per iteration during a
simulation.

The functions were then ranked based on their execution time, with the most computationally
expensive segments being prioritized for CUDA implementation to maximize performance
gains.

3.2.2 Identifying Parallelization Potential

Once a segment was selected, its constituent functions were analyzed to determine their
suitability for parallel execution. A function was considered a candidate for CUDA imple-
mentation if it exhibited both:

• Independence: The operations within the function could be executed without de-
pendencies on previous calculations.

• Repetitiveness: The function performed the same type of computation multiple
times, making it well-suited for SIMD (Single Instruction, Multiple Data) execution.

Functions that met these criteria were selected for CUDA conversion.

3.2.3 Adapting Input Arguments for CUDA

The selected functions’ input arguments were then analyzed to ensure compatibility with
CUDA, which requires data to be stored in a format optimized for efficient memory access.
Since CUDA operates best with flat, contiguous memory layouts, all input arrays were
converted to NumPy arrays, ensuring they adhered to the required format.

Once the data was properly structured, it was transferred to the GPU using CUDA’s host-
device memory management mechanisms.

3.2.4 CUDA Implementation

With the input arguments properly formatted and sent to the GPU, the selected functions
were rewritten for CUDA execution. This involved:

• Implementing host functions to manage data transfers between the CPU and GPU.

• Developing kernel functions to execute parallel computations on the GPU.

To illustrate the steps taken for rewritting code for CUDA, an example LBM function will
be explored. The function calculates the density at each lattice node, and its original code
is shown as:

6



1 @nb.njit

2 def density(f, rho):

3 rho[:] = np.sum(f, axis =0)

1. First, transfer input arguments to GPU memory:

1 self.f_device = cuda.to_device(self.f)

2 self.rho_device = cuda.to_device(self.rho)

2. Create a host function which will be called inplace, derive workload size and configure
grid and block dimension

1 def density(f_device ,rho_device):

2 n = f_device.shape [1]

3 threads_per_block = 256

4 blocks_per_grid = (n + threads_per_block - 1) //

threads_per_block)

5 density_cuda[blocks_per_grid , threads_per_block ](

f_device , rho_device ,n)

Here, threads per block is a constant value determined by the workload size and shape,
and is a interger of 32, in this example 256.

3. Create a kernel function that is launched from the host function

1 @cuda.jit

2 def density_cuda(f, rho ,n):

3 j = cuda.grid (1)

4 if j < n:

5 sum_density = 0.0

6 for i in range(f.shape [0]):

7 sum_density += f[i, j]

8 rho[j] = sum_density

Here, each thread on the GPU is allocated to one lattice node, calculating the density
by summing the 9 velocity directions in a for-loop. By deriving the workload size n
(in this case, number of lattice nodes in grid) we can ensure that the thread ID j is
within the bounds of n.

In the example above, a 1-dimensional host and kernel function was employed, where each
thread was assigned to a single lattice node and computed the sum using a for-loop over
velocity directions. However, for other functions, a 2-dimensional approach was utilized
to further distribute the workload, assigning threads not only to lattice nodes but also
to velocity directions or other computational parameters, thereby improving performance.
This structured methodology was consistently applied throughout the project to achieve an
efficient CUDA implementation.

7



For large grid sizes (n > 106), the number of required threads exceeded CUDA’s software
limitation of 65,535 blocks per grid per dimension. This constraint arises because CUDA
employs 16-bit integers to store block indices. To address this, certain 2D implementations
were extended to 3D, utilizing the z-axis to accommodate additional blocks. Since each
additional dimension enables a multiplicative increase in available blocks, this effectively
expands the limit to 65, 5353 blocks, which is more than sufficient for the data sizes tested
in this project.

3.2.5 Shared Memory Implementation

In select functions, shared memory was employed as an optimization strategy to improve
intermediate computations and summation operations. This optimization was aimed at
minimizing global memory access within the CUDA kernel, as frequent access to global
memory can significantly degrade performance due to high latency.

The fundamental approach involves transferring input variables from global memory into a
temporary, high-speed storage area within the kernel—shared memory. By doing so, instead
of repeatedly fetching data from global memory, the kernel loads the necessary values into
shared memory once, allowing all threads within a block to access the data much more
efficiently.

Despite the potential performance benefits, shared memory optimization was applied to only
a few functions and was not a primary focus in this project’s methodology.

8



4 Results

In this section, the results and performance of the CUDA and CuPy imlementations will be
shown and compared to the CPU. The metrics used to determine performance is MLUP and
the total time.

4.1 Parameters and provided results

MLUPS (Million Lattice Updates Per Second) is a crucial metric for evaluating algorithmic
efficiency and hardware performance, particularly in parallel computing environments. A
higher MLUPS value indicates superior performance, as it represents the system’s capability
to process more lattice point updates per unit time.

For the benchmarking analysis presented, all tests were conducted using single-precision
floating-point numbers (32-bit representation). The experiments consisted of 5000 iterations,
preceded by 20 warm-up runs to ensure stable performance measurements. The simulations
where done through the lid driven cavity 2d.py file.

In the results provided, the time taken for the pre-processing (e.g building the grid, creating
and setting up streaming maps etc) were omitted from the total time taken for a single run
time. This is done because of these processes not being a part of the actual LBM.

4.2 Numpy to Cupy

The results demonstrated that CuPy significantly improves performance for computationally
intensive tasks, particularly those involving large arrays and matrix operations. By lever-
aging GPU acceleration, CuPy outperformed its CPU-bound NumPy counterpart in several
test cases.

For example, when executing a large-scale matrix multiplication in the boundary.py file, the
CuPy implementation showed a marked reduction in execution time compared to NumPy.
Profiling data revealed that the CuPy-based code executed 15,153 function calls (15,119
primitive calls) in 5.256 seconds, whereas the NumPy implementation completed only 2,001
function calls in 6.324 seconds. Despite the increase in function calls, the GPU’s parallel
processing capabilities allowed CuPy to achieve faster results overall.

However, some CuPy implementations slowed down the simulation due to function incom-
patibilities, which led to overhead from transferring data between the host and device. Hence
a complete cupy implementation was not made–meaning replacing all numpy functions with
cupy functions. To fully transition from NumPy to CuPy, certain functions in the original
code—particularly those of complexity O(iterative+recursive)—need to be adjusted, as they
are inherently difficult to parallelize.

9



4.3 Numba to CUDA

4.3.1 Benchmarking

The total time taken for running the LBM simulation is shown for A40 and A100 in Figure
1a and 1b, respetively. Data points of interest are also shown in these figures.

(a) Graph of time for A40 compared to cpu
with 10 threads

(b) Graph of time for A100 compared to cpu
with 10 threads

Figure 1: Comparison of time performance for two GPUs (A40 and A100). Data points of
interest are marked

The MLUP’s when running the LBM simulation is shown for A40 and A100 in Figure 2a
and 2b, respectively. Data points of interest are also shown here.

(a) Graph of MLUP’s for A40 compared to
cpu with 10 threads

(b) Graph of MLUP’s for A100 compared to
cpu with 10 threads

Figure 2: Comparison of MLUP’s for two GPUs (A40 and A100). Data points of interest
are marked

Both the parameters MLUPs and total time taken is shown in figure 3, where figure 3a shows
the MLUPs of both GPUs and CPU and figure 3b shows total time for both GPUs and CPU

10



at the same time.

11



(a) Graph of MLUP’s for both GPUs and CPU.

(b) Graph of MLUP’s for both GPUs and CPU.

Figure 3: Comparison of MLUP’s for both GPUs (A40 and A100) and CPU. Data points of
interest are marked.

12



Table 1: MLUPS for the 2D Lid-Driven Cavity Benchmark on Different GPUs

Number of Nodes Total time (seconds) MLUPs on GPU
A40 48GB VRAM

103 3.70 1.38
104 2.77 15.76
105 2.79 181.22
106 8.44 969.57
107 107.70 464.19

A100 40GB VRAM
103 2.76 1.86
104 2.75 18.20
105 2.78 182.13
106 2.76 1813.12
107 32.99 1515.12

A table for all datapoints is provided to Table 1, where the total time and MLUPs are shown.

13



5 Discussion

This section will discuss the results generated from the method, and also explore potential
improvements for future application.

5.1 Numpy to Cupy

Some limitations were observed. Memory transfers between the CPU and GPU posed a sig-
nificant bottleneck, especially in workflows requiring frequent host-device communication.
This was particularly evident in cases involving smaller datasets or functions incompatible
with CuPy, where the overhead of memory transfers offset potential speedups. Addition-
ally, some NumPy functions lacked direct CuPy equivalents or exhibited different behaviors,
requiring careful code adjustments. Hence a full transition from numpy to cupy was not
made.

Unlike native CUDA, CuPy abstracts thread and block allocation, automatically manag-
ing GPU resources. While this simplifies implementation, it also limits direct control over
resource allocation. For advanced customization, CuPy does allow the integration of user-
defined CUDA kernels, which we acknowledge as a potential avenue for further optimiza-
tion

In summary, the results demonstrated that CuPy provides substantial performance improve-
ments for appropriate use cases, such as large-scale array operations, while requiring careful
management of bottlenecks and compatibility issues.

5.2 Numba to CUDA

The results indicate that the CUDA implementation of the LBM significantly outperforms
the CPU-based approach for larger grid sizes, particularly when n ≥ 105. However, for
smaller grid sizes (n ≤ 104), there is no noticeable performance advantage, and in some
cases, the CPU outperforms the GPU. This outcome is expected, as the overhead associated
with transferring data between the CPU and GPU becomes more pronounced for smaller
grid sizes. The initialization time of CUDA kernels introduces latency, increasing the total
simulation time and reducing MLUPs.

Between the GPUs A40 and A100, the results demonstrate that at lower node counts, both
GPUs efficiencies are comparable, with minimal performance variations to a point of 105.
However, when the node count reaches 106, the performance of the GPUs diverge, with the
A100 achieving a remarkable 50-fold efficiency improvement. Theoretically, the A100 should
perform worse than the A40 in float32 operations. However, when the number of nodes
reaches 106, the A100 still demonstrates significantly superior computational capabilities
compared to the A40.

5.2.1 Complexity of the Original Code

Certain segments of the original code were not parallelized due to their inherent complexity,
resulting in performance bottlenecks during LBM simulations. However, these unoptimized

14



segments were primarily confined to preprocessing tasks rather than the core LBM functions,
with the most significant bottleneck being the lattice grid construction. While this did
not impact the accuracy of the results, it significantly hindered efficient testing, making
simulations of very large grid sizes (n ≥ 108) infeasible due to preprocessing times extending
to several hours per run.

To mitigate this issue, future implementations should focus on restructuring the complex
code sections for better compatibility with CUDA parallelization. A prime example is the
find neighbors function, which constructs the streaming maps grid by identifying neigh-
boring nodes. In its current form, this function employs a recursive depth-first search (DFS)
algorithm, which is inherently difficult to parallelize due to its sequential nature and de-
pendency on previous iterations. DFS is inherently linear and lacks repetitive steps that
could be parallelized efficiently. A potential solution would be to replace it with an iter-
ative breadth-first search (BFS) algorithm, which could better leverage parallel execution.
However, such a change could disrupt existing logic, introduce bugs, and necessitate further
adjustments across the codebase.

5.2.2 Utilization of CUDA Utility Tools

As described in the methodology, shared memory was employed in some functions to im-
prove performance by reducing the frequency of global memory accesses, which are a known
bottleneck in CUDA execution. By storing frequently accessed variables in shared memory,
retrieval times can be minimized, potentially leading to substantial performance gains for
larger grid sizes.

However, shared memory optimization was not fully implemented due to a lack of complete
understanding of its behavior and limitations, compounded by time constraints. In theory,
leveraging shared memory should yield significant performance improvements for large-scale
simulations, where frequent access to global memory can become a dominant factor in exe-
cution time.

For the sections where shared memory was implemented, only marginal performance im-
provements were observed. These gains were not substantial enough to draw definitive
conclusions about the effectiveness of the implementation. Further investigation is required
to determine whether shared memory was utilized optimally or if additional optimizations
are needed.

5.2.3 Expanding Kernel Dimensionality

Performance for larger grid sizes could be significantly enhanced by transitioning from 1D
to 2D kernels, thereby increasing parallelization. This can be illustrated by examining the
density cuda function discussed in the methodology. In its current 1D implementation,
each thread is assigned to a lattice node and iterates over all velocity directions in a loop
to compute the density. By increasing the dimensionality to 2D, threads could also be
allocated to individual velocity directions, eliminating the need for the for-loop and allowing
each thread to perform a single velocity computation in parallel. This would increase overall
parallelism and potentially improve performance.

15



Due to time constraints, this optimization was not applied to all functions, as the priority
was to establish a functionally correct parallelized version of the LBM solver. If implemented
in future iterations, special attention must be given to atomic operations, as a 2D kernel
structure introduces potential contention issues when multiple threads attempt to update
the same variable simultaneously. Furthermore, increasing the number of threads per kernel
may reduce the number of available threads per node per iteration, which could impact
overall execution efficiency. Proper optimization strategies, potentially incorporating shared
memory, would be required to achieve significant performance gains while mitigating resource
limitations.

5.2.4 Precision between FP32 and FP64

As mentioned in the results, the CUDA implementation was designed using single-precision
floating-point numbers (FP32) instead of double precision (FP64). This decision was made
to prioritize performance over numerical accuracy, as FP64 primarily benefits applications
where higher precision is critical but at the cost of reduced overall performance.

Single precision (FP32) is generally more suitable for performance-oriented applications due
to its higher computational throughput and lower memory usage. Modern GPUs, including
the NVIDIA A100 and A40, can execute FP32 operations at up to twice the speed of FP64
on standard CUDA cores. Additionally, FP32 requires half the memory bandwidth of FP64,
leading to faster memory access and improved efficiency. These advantages make FP32 the
preferred choice for applications where precision is not the primary concern, particularly in
simulations where numerical errors do not propagate significantly.

In the context of this project, where LBM assumes that parameters relax toward equilib-
rium, the impact of using FP32 regarding accuracy is minimal since small numerical errors
naturally dissipate over time. However, in future implementations, if external factors such as
turbulence, multiphase interactions (e.g., multiple fluids), or complex boundary conditions
are introduced, numerical errors may amplify exponentially due to the chaotic nature of
these phenomena. In such cases, FP64 may be necessary to ensure stability and accurately
capture small-scale dynamics.

16



6 Conclusion

This project successfully demonstrated the potential of GPU acceleration for the Lattice
Boltzmann Method (LBM) by implementing a CUDA-optimized version of an existing CPU-
bound codebase. Significant performance improvements were achieved for larger lattice grids
(n ≥ 105), highlighting the advantages of GPU parallelism.

While the implementation proved effective for large-scale simulations, smaller grids (n ≤ 104)
showed limited performance gains due to GPU data transfer overheads. Additionally, cer-
tain preprocessing steps, such as recursive algorithms, remained bottlenecks, underscoring
areas for future optimization. Shared memory and multi-dimensional kernels were par-
tially explored, presenting opportunities for further performance enhancements in subsequent
work.

Overall, this project underscores the feasibility of GPU-accelerated LBM simulations and
provides a foundation for future scalability and optimization.

17


