
GPU Accelerated Poisson solver

A comparison of PyTorch, Cupy and multi-GPU
(Cupy) for solving the Poisson equation

Sebastian Miles, Bingzhou Xie

Supervisor:
Lars Davidson

Chalmers University of Technology

February 16, 2025

1 Abstract

The purpose of this project is to accelerate a CPU Poisson equation solver
with a GPU. The basis of our code is the vectorized Poisson Solver by Lars
Davidson [1]. This report documents the steps taken to convert the existing
CPU Poisson solver to run efficiently on a GPU. We try two different libraries
for this: PyTorch and Cupy and compare their differences and conclude the one
that works the best for this particular problem. Finally we also try comparing
with multiple GPUs for a single problem. Comparing CPU and PyTorch, there
was roughly a 6x speedup with PyTorch. Between PyTorch and Cupy there was
a better time complexity with Cupy, where Cupy had support for efficient CSR
format. In our test with a 1000 × 1000 grid, Cupy was running 9x faster than
PyTorch.

1.1 Contributions

• Sebastian Miles: Sections 2-5 & 7

• Bingzhou Xie: Sections 6 & 8

2 Solver

When solving the Poisson equation, our main interest is finding an appropriate
method for solving the linear matrix equation

Ax = b (1)

where A is a sparse, symmetric and positive-definite matrix.

From the initial code by lada, we implemented our own solvers. We started with
the Conjugate Gradient (CG) method. After noticing a very slow convergence
rate for large grid sizes, we decided to try preconditioned CG. In particular a Ja-
cobi preconditioner, which is done by extracting only the diagonal of the matrix
and leaving everything else to zero. With a tolerance of 10−10 on a 100 × 100
grid the original CG converged after 1173 iterations, while the preconditinoed
CG converged after 18 iterations.

2.1 Conjugate Gradient (CG)

Suppose that

P = {p1, . . . ,pn}

is a set of n vectors such that pT
i Apj = 0 for all i ̸= j, where A is the same as

in equation 1. Then P forms a basis on Rn. This means that we can express a

1

https://www.tfd.chalmers.se/~lada/pyPoisson.html

solution x = x̂ of Ax = b as

x̂ =

n∑
i

cipi.

Left multiplying by A and then by pT
k yields

Ax̂ =

n∑
i

ciApi =⇒ pT
kAx̂ =

n∑
i

cip
T
kApi = ckp

T
kApk.

This means that

ck =
pT
kAx̂

pT
kApk

.

The last equality holds because pT
i Apj = 0 for all i ̸= j as part of our premise.

This gives us a brief idea for solving equation 1: Find the set of vectors P , then
compute the coefficients ck and then rebuild x̂ from the linear combination.

Consider the quadratic function

f : Rn → R

f(x) =
1

2
xTAx− xTb.

We note that the gradient is equal to

∇f(x) = Ax− b

and that x̂ is in fact a minimizer to this function, since that the hessian matrix
is positive definite

H(f(x)) = A.

By the Gradient descent method, f decreases the fastest in the direction of the
negative gradient −∇f(x). Thus, starting with an initial value of x0 we set the
first vector to the negative gradient p0 = b−Ax0. Let rk be the residue at the
k-th step:

rk = b−Axk

To enforce the conjugation constraint on pk we set it to

pk = rk −
∑
i<k

pT
i Ark

pT
i Api

pk.

Continuing along, the next iterations are

xk+1 = xk + αkpk

where αk is some scalar. Let g(αk) = f(xk + αkpk). We can construct a
heuristically good scalar with g′(αk) → 0 as k → ∞.

2

g(αk) =
1

2
(xk + αkpk)

TA(xk + αkpk)− (xk + αkpk)
Tb

=⇒ g′(αk) =
1

2
xT
kApk +

1

2
pT
kAxk + αkp

T
kApk − pT

k b

g′(αk) → 0 ⇐⇒ αkp
T
kApk → pT

k (b−
1

2
Axk)−

1

2
xT
kApk

= pT
k (b−

1

2
Axk)−

1

2
(xk+1 − αkpk))

TA

(
xk+1 − xk

αk

)
= pT

k (b−Axk)−
xT
k+1A

2αk
(xk+1 − xk) +

pT
kA

2
(xk+1 − xk)

≈ pT
k (b−Axk) = pT

k rk

After dividing by pT
kApk on both sides, we end up with the scalar

αk =
pT
k rk

pT
kApk

.

2.2 Jacobi Preconditioned Conjugate Gradient

A preconditioning M means that we transform the matrix into M−1A which
is more suitable for numerical calculations. A metric commonly used for this is
the condition number κ(A). The metric measures how much the output of Ax
can change for a small change in x. The goal of preconditioning is reducing the
condition number, that is κ(M−1A) < κ(A). The Jacobi preconditioner is one
of the more simpler preconditions. It is defined as M = diag(A). Note that
the inverse M−1 is a diagonal matrix with the diagonal M−1

i,i = 1
Mi,i

. So the

transformation is computationally cheap.

3 Profiling

The line profiler package in python is a useful tool for profiling the code line by
line. We started by profiling on the CPU, and came to the conclusion that the
main time sink was within the CG method. In figure 2 the heaviest line is #200
which takes up 90.8% of the time. The function A mv(p) is a matrix vector
product and it would be a good idea to parallize this operation.

3

Figure 1: Line profiler on the CG function

4 PyTorch Implementation

From the CPU poisson solver by lada, we converted all of the numpy code to
PyTorch. With this implementation we could easily swap between a CPU or
CUDA device with a single boolean variable. We decided to put all of the Py-
Torch tensors on the CUDA device as there would be no time spent moving
data between the CPU and GPU.

This paralellized a lot of functions, but most importantly the matrix vector
product. At first we had a (ni, nj) = (60, 60) grid, there was no significant
speedup. We then tried a larger grid of 200x200 where we timed 59s on CPU
and 9.73s on the GPU. This is about a 6x speedup.

For larger grids CG did not converge very well, so we preconditioned it with a
Jacobi Preconditioner as in section 2.2. The convergence was much faster now,
so to accurately measure speed we simply solve the equation around 100 times.
Our results for comparing the CPU and the PyTorch is in figure 2. For small
grid sizes, the CPU dominates and then as the grid size increases the power of
the GPU is clearly visible. Note also that the plot has a logarithmic scale, we
had a speedup of 8.1x with Pytorch compared to CPU on the finest grid.

4

Figure 2: Computation time for cpu and gpu for various grid square grid sizes

A major flaw with PyTorch is that for the GPU version there is little support
for sparse matrices, in particular at the time of writing, there is only support for
Coordinate list (COO) matrix format on the GPU. Unfortunately, this format
has a slow matrix vector product as it iterates through every element in the
matrix for each element in the product. A format such as Compressed Sparse
Row (CSR) format would efficiently compute the product with a better time
complexity. Although the GPU beats the CPU there is still room for improve-
ment.

5 Cupy Implementation

Cupy was easier to implement as Cupy is very similar to Numpy and Numpy is
what the original code by Lada used. There is one major difference between the
PyTorch and Cupy implementation and that is Cupy supports the Compressed
Sparse Row format. When doing the Preconditioned CG algorithm the main
bottleneck is the matrix dot product, but now we can efficiently compute it and
we plot the PyTorch vs Cupy results in figure 3.

Cupy is performing better than PyTorch for every grid size that we tried. On
the largest grid size of 1000 × 1000 we had a 9x speedup. Most importantly
we can clearly see that Cupy has a better time complexity than the PyTorch
implementation. This is due to the different sparse matrix formats discussed
in an earlier section. This should be one polynomial degree time complexity
difference as COO iterates every element while CSR iterates only the necessary
elements.

5

Figure 3: Computation time for PyTorch and Cupy for various grid square grid
sizes

6 Multi-GPU Cupy

To achieve parallelization in the multi-GPU implementation, we employ domain
decomposition. The computational domain is divided into subdomains, each
assigned to a different GPU. This allows the solver to run concurrently on
multiple GPUs, with each GPU handling a portion of the domain.

6.1 Subdomain and Ghost Cells

Decomposition is performed along the dimension by distributing the rows of the
grid to available GPUs. For a domain of size ni×nj, distributed across n GPUs,
each GPU processes approximately (ni/n) × nj grid points. The subdomains
are represented by instances of the GPUDomain class, which encapsulates the
data and operations specific to each subdomain.

To ensure proper communication between subdomains, we introduce ghost
cells [2]. Ghost cells are additional cells surrounding each subdomain that store
a copy of the boundary data from neighboring subdomains4. These cells prompt
the exchange of boundary information and maintain consistency across the
global domain. When we initialize the subdomain of GPU, we need to allo-
cate memory space for both subdomains and ghost cells. The number of ghost
cells depends on the size of the finite difference stencil.

6

Figure 4: The subdomain(white part) and the ghost cell(orange part)

In the program, we use a 5 point stencil [3], which requires one layer of ghost
cell on some side of the subdomain.

The Poisson equation in 2D can be discretized using the following formula:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0

This formula represents the relationship between a central point ui,j and its
four neighboring points (ui+1,j), (ui−1,j), (ui,j+1), and (ui,j−1) in a uniform 2D
grid. It need ghost cells to handle boundary conditions and ensure the accuracy
of finite difference formulas near boundaries. Ghost cells are also an important
tool for implementing parallelization.

6.2 Exchange boundary data

After every iteration of the solver, the boundary data of each neighboring subdo-
main need to be exchanged to update the ghost cells. All neighboring subdomain
pairs should be traversed and the boundary data from one subdomain should be
copied to the ghost cell of its neighbor subdomain, which ensures all the ghost
cell have been synchronized with the latest data.

To optimize the inter-GPU communication, we use CuPy’s asynchronous
copy functions (cupy.cuda.runtime.memcpy async). These functions enable ef-
ficient data transfer between different GPU devices, minimizing the overhead of
boundary exchange.

In the solver ghost cells are treated as part of the subdomain. But we need
to treat the edges of the subdomain that lie on the edge of the grid differently.
The ghost cells of those subdomains are expanding beyond the original grid.
When we need to exchange boundary data, these ghost cells expanding beyond
the grid are updated according to their own boundary conditions.

By managing the ghost cells and boundary exchange process, the multi-GPU
implementation ensures seamless communication between subdomains and the
consistency of the solution across the whole grid.

7

6.3 Result and Conclusion

The performance impact of the multi-GPU implementation is significant, espe-
cially for large problem sizes. For the case with 1000 × 1000 grid and maximum
iteration count of 500 (maxit = 500), the version with one A40 GPU uses about
10.75s while the version with 2 A40 GPUs use about 6s.

The multi-GPU implementation shows the scalability of the Poisson solver
and the ability to leverage the power of multiple GPUs to solve computationally
intensive problems. By efficiently using domain decomposition, ghost cells, and
optimized inter-GPU communication, we can significantly reduce the overall
runtime and enable the solver to handle larger problem sizes in a fraction of the
time compared to a single-GPU approach.

7 Problems encountered

Initially after converting to PyTorch there was a problem that went unnoticed
for a while. The code was running and we were able to benchmark GPU versus
CPU. However, the residual term

ϵ = b−Axk

converged badly and plateaud after about 800 CG iterations with a big residue.
The fact that the residue term did not decrease led us thinking the conjugate
gradient method was not good enough. Therefore we attempted to solve this by
trying other solvers and still it would not converge. It was not until a meeting
with Lada, that we realized the issue was within the initialization of the stiff-
ness matrix A and not the actual solver. After fixing this issue, the solution
converged as expected.

However, when the grid size was large such as 1000x1000, CG was very unstable
and slow to converge. The solution to this was to implement a preconditioner.
We tried a Jacobi preconditioner and it solved the stability issue.

8 Implementation Improvements

Several key improvements were implemented to optimize the GPU-accelerated
solver.

8.1 Sparse Matrix Operations

We implemented efficient sparse matrix construction and operations using Py-
Torch’s sparse tensor capabilities. There are some key improvements.

• Efficient creation of sparse matrices using COO format

• Optimized matrix-vector multiplication using torch.sparse.mm

8

• Masked operations for boundary conditions to avoid unnecessary compu-
tations

8.2 Memory Management

Directly load data to GPU help us to minimize the data transfer between CPU
and GPU.

x2d = torch . z e r o s ((n i+1, nj +1) , dev i c e=dev i ce)

This code also ensure the efficient use of some in-place to reduce memory
allocation.

References

[1] L. Davidson, “pypoisson,” 2024. [Online]. Available: https://www.tfd.
chalmers.se/∼lada/pyPoisson.html

[2] Z. H. Ma, L. Qian, D. M. Causon, H. B. Gu, and C. G. Mingham,
“A cartesian ghost-cell multigrid poisson solver for incompressible
flows,” International Journal for Numerical Methods in Engineering,
vol. 85, no. 2, pp. 230–246, 2011. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nme.2967

[3] Wikipedia contributors, “Five-point stencil — Wikipedia, the free
encyclopedia,” 2025, [Online; accessed 31-January-2025]. [Online]. Available:
https://en.wikipedia.org/wiki/Five-point stencil

Code

1 import torch

2 import numpy as np

3 import time

4 import socket

5 from scipy.sparse import spdiags , eye

6 import line_profiler as lp

7
8 profile_on = False

9 gpu = True

10
11 if profile_on:

12 profile = lp.LineProfiler ()

13 else:

14 # If we are not profiling then define profile to

↪→ just passthrough

15 def profile(func):

9

https://www.tfd.chalmers.se/~lada/pyPoisson.html
https://www.tfd.chalmers.se/~lada/pyPoisson.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2967
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2967
https://en.wikipedia.org/wiki/Five-point_stencil

16 return func

17
18 if gpu and torch.cuda.is_available ():

19 device = torch.device(’cuda’)

20 elif not gpu:

21 device = torch.device(’cpu’)

22 else:

23 print("Cuda␣is␣not␣available!")

24 exit()

25
26 print(f"Using␣device:␣{device}")

27
28
29 def setup_case ():

30 global convergence_limit_u , dist , fx , fy , imon ,

↪→ jmon , maxit , \

31 ni, nj, nsweep_u , solver_u , sormax , u_bc_east ,

↪→ u_bc_east_type , u_bc_north , u_bc_north_type ,

↪→ u_bc_south , u_bc_south_type , u_bc_west , \

32 u_bc_west_type , urf_u , viscos , vol , x2d , xp2d , y2d

↪→ , yp2d , device

33
34 ########### section 4 fluid properties ###########

35 viscos = 1/10

36
37 ########### section 5 relaxation factors

↪→ ###########

38 urf_u = 0.5

39
40 ########### section 6 number of iteration and

↪→ convergence criterira ###########

41 maxit = 100

42 sormax = 1e-20

43
44 solver_u = ’cg’ # Using PyTorch ’s conjugate

↪→ gradient solver

45 nsweep_u = 50

46 convergence_limit_u = 1e-6

47
48 ########### section 7 monitoring point ###########

49 imon = ni -10

50 jmon = int(nj/2)

51
52 ########### section 10 boundary conditions

↪→ ###########

53 # Boundary conditions for u (converted to tensors)

10

54 u_bc_west = torch.zeros(nj, device=device)

55 u_bc_east = torch.zeros(nj, device=device)

56 u_bc_south = torch.zeros(ni, device=device)

57 u_bc_north = torch.ones(ni, device=device) # =1

↪→ at north boundary , y=1

58
59 u_bc_west_type = ’d’

60 u_bc_east_type = ’d’

61 u_bc_south_type = ’d’

62 u_bc_north_type = ’d’

63
64 return

65
66 def init():

67 print(’hostname:␣’, socket.gethostname ())

68
69 global x2d , y2d , xp2d , yp2d , dist , fx , fy , vol ,

↪→ areaw , areas

70
71 # Distance to nearest wall

72 ywall_s = 0.5*(y2d[0:-1,0] + y2d [1: ,0])

73 dist_s = yp2d - ywall_s.unsqueeze (1)

74 ywall_n = 0.5*(y2d[0:-1,-1] + y2d[1:,-1])

75 dist_n = ywall_n.unsqueeze (1) - yp2d

76
77 dist = torch.minimum(dist_s , dist_n)

78
79 # West face coordinate

80 xw = 0.5*(x2d[0:-1,0:-1] + x2d [0: -1 ,1:])

81 yw = 0.5*(y2d[0:-1,0:-1] + y2d [0: -1 ,1:])

82
83 del1x = ((xw-xp2d)**2 + (yw-yp2d)**2) **0.5

84
85 del2x = ((xw-torch.roll(xp2d , 1, dims =0))**2 +

86 (yw-torch.roll(yp2d , 1, dims =0))**2) **0.5

87 fx = del2x /(del1x + del2x)

88
89 # South face coordinate

90 xs = 0.5*(x2d[0:-1,0:-1] + x2d [1: ,0: -1])

91 ys = 0.5*(y2d[0:-1,0:-1] + y2d [1: ,0: -1])

92
93 del1y = ((xs-xp2d)**2 + (ys-yp2d)**2) **0.5

94 del2y = ((xs-torch.roll(xp2d , 1, dims =1))**2 +

95 (ys-torch.roll(yp2d , 1, dims =1))**2) **0.5

96 fy = del2y /(del1y + del2y)

97

11

98 # Area calculations

99 areawy = torch.diff(x2d , dim =1)

100 areawx = -torch.diff(y2d , dim =1)

101 areasy = -torch.diff(x2d , dim =0)

102 areasx = torch.diff(y2d , dim =0)

103
104 areaw = torch.sqrt(areawx **2 + areawy **2)

105 areas = torch.sqrt(areasx **2 + areasy **2)

106
107 # Volume calculation

108 ax = torch.diff(x2d , dim =1)

109 ay = torch.diff(y2d , dim =1)

110 bx = torch.diff(x2d , dim =0)

111 by = torch.diff(y2d , dim =0)

112
113 areaz_1 = 0.5* torch.abs(ax[0: -1,:]*by[:,0:-1] - ay

↪→ [0:-1,:]*bx[:,0:-1])

114 areaz_2 = 0.5* torch.abs(ax[1: ,:]*by[:,1:] - ay

↪→ [1: ,:]*bx[: ,1:])

115 vol = areaz_1 + areaz_2

116
117 # Boundary coefficients

118 as_bound = areas [: ,0]**2/(0.5* vol[: ,0])

119 an_bound = areas [: , -1]**2/(0.5* vol[:,-1])

120 aw_bound = areaw [0 ,:]**2/(0.5* vol[0 ,:])

121 ae_bound = areaw [-1 ,:]**2/(0.5* vol[-1,:])

122
123 return areaw , areawx , areawy , areas , areasx ,

↪→ areasy , vol , fx , fy , aw_bound , ae_bound ,

↪→ as_bound , an_bound , dist

124
125 @profile

126 def solve_2d(phi2d , aw2d , ae2d , as2d , an2d , su2d , ap2d

↪→ , tol_conv , nmax):

127 # Convert inputs to PyTorch tensors

128 phi = torch.flatten(phi2d)

129 aw = torch.flatten(aw2d)

130 ae = torch.flatten(ae2d)

131 as1 = torch.flatten(as2d)

132 an = torch.flatten(an2d)

133 ap = torch.flatten(ap2d)

134 su = torch.flatten(su2d)

135
136 # Build sparse tensor

137 n = ni * nj

138 indices = []

12

139 values = []

140
141 # Main diagonal

142 diag_idx = torch.arange(n, device=device)

143 indices.append(torch.stack([diag_idx , diag_idx]))

144 values.append(ap)

145
146 # West coefficient (aw)

147 i = torch.arange(1, n, device=device)

148 j = i - 1

149 mask = (i % nj != 0)

150 i, j = i[mask], j[mask]

151 indices.append(torch.stack([i, j]))

152 values.append(aw [1:][mask])

153
154 # East coefficient (ae)

155 i = torch.arange(0, n-1, device=device)

156 j = i + 1

157 mask = ((i+1) % nj != 0)

158 i, j = i[mask], j[mask]

159 indices.append(torch.stack([i, j]))

160 values.append(ae[:-1][mask])

161
162 # South coefficient (as)

163 i = torch.arange(nj, n, device=device)

164 j = i - nj

165 indices.append(torch.stack([i, j]))

166 values.append(as1[nj:])

167
168 # North coefficient (an)

169 i = torch.arange(0, n-nj, device=device)

170 j = i + nj

171 indices.append(torch.stack([i, j]))

172 values.append(an[:-nj])

173
174 # Concatenate all indices and values

175 indices = torch.cat(indices , dim =1)

176 values = torch.cat(values)

177
178 # Create sparse tensor

179 A = torch.sparse_coo_tensor(indices , values , (n,n)

↪→ , device=device)

180
181 # Define matrix -vector product function for

↪→ conjugate gradient

182 @profile

13

183 def mv(v):

184 return torch.sparse.mm(A, v.unsqueeze (1)).

↪→ squeeze (1)

185
186 # Conjugate gradient solver

187 @profile

188 def conjugate_gradient(A_mv , b, x0 , tol=1e-10,

↪→ max_iter =1000):

189 x = x0

190 r = b - A_mv(x)

191 p = r

192 r_norm_sq = r @ r

193
194 for _ in range(max_iter):

195 Ap = A_mv(p)

196 alpha = r_norm_sq / (p @ Ap)

197 x = x + alpha * p

198 r_new = r - alpha * Ap

199 r_norm_sq_new = r_new @ r_new

200 beta = r_norm_sq_new / r_norm_sq

201 r = r_new

202 r_norm_sq = r_norm_sq_new

203
204 if r_norm_sq < tol:

205 break

206
207 p = r + beta * p

208
209 return x

210
211 # Initial guess

212 x0 = torch.zeros_like(su)

213
214 # Solve using conjugate gradient

215 phi = conjugate_gradient(mv , su , x0 , tol=tol_conv ,

↪→ max_iter=nmax)

216
217 # Reshape solution back to 2D

218 phi2d = phi.reshape(ni, nj)

219
220 # Calculate residual

221 resid = torch.norm(mv(phi) - su)

222
223 return phi2d , resid

224
225

14

226 def save_data(u2d):

227 print(’save_data␣called ’)

228 # Convert tensor to numpy before saving

229 u_numpy = u2d.cpu().numpy()

230 np.save(’u2d_saved ’, u_numpy)

231 return

232
233 # Main execution

234 if __name__ == "__main__":

235 # Load grid data and convert to tensors

236 datax = torch.from_numpy(np.loadtxt("x2d.dat")).to

↪→ (device)

237 x = datax [0:-1]

238 ni = int(datax [-1]. item())

239
240 datay = torch.from_numpy(np.loadtxt("y2d.dat")).to

↪→ (device)

241 y = datay [0:-1]

242 nj = int(datay [-1]. item())

243
244 # Initialize tensors on GPU

245 x2d = torch.zeros((ni+1,nj+1), device=device)

246 y2d = torch.zeros((ni+1,nj+1), device=device)

247
248 x2d = x.reshape(ni+1,nj+1)

249 y2d = y.reshape(ni+1,nj+1)

250
251 # Compute cell centers

252 xp2d = 0.25*(x2d[0:-1,0:-1] + x2d [0: -1,1:] + x2d

↪→ [1:,0:-1] + x2d [1: ,1:])

253 yp2d = 0.25*(y2d[0:-1,0:-1] + y2d [0: -1,1:] + y2d

↪→ [1:,0:-1] + y2d [1: ,1:])

254
255 # Initialize solution variables as tensors

256 u2d = torch.ones((ni ,nj), device=device) * 1e-20

257
258 setup_case ()

259 areaw , areawx , areawy , areas , areasx , areasy , vol ,

↪→ fx, fy, aw_bound , ae_bound , as_bound ,

↪→ an_bound , dist = init()

260
261 @profile

262 def coeff():

263 """ GPU version of coefficient calculation """

264 # Initialize viscosity tensors on GPU

15

265 visw = torch.ones((ni+1,nj), device=device) *

↪→ viscos

266 viss = torch.ones((ni ,nj+1), device=device) *

↪→ viscos

267
268 # Initialize volume tensors

269 volw = torch.ones((ni+1,nj), device=device) * 1e

↪→ -10

270 vols = torch.ones((ni ,nj+1), device=device) * 1e

↪→ -10

271
272 # Calculate volumes and diffusion coefficients

273 volw [1: ,:] = 0.5 * torch.roll(vol , -1, dims =0) +

↪→ 0.5 * vol

274 diffw = visw [0:-1,:] * areaw [0: -1 ,:]**2 / volw

↪→ [0:-1,:]

275
276 vols [:,1:] = 0.5 * torch.roll(vol , -1, dims =1) +

↪→ 0.5 * vol

277 diffs = viss [:,0:-1] * areas [: ,0: -1]**2 / vols

↪→ [:,0:-1]

278
279 # Set coefficients

280 aw2d = diffw

281 ae2d = torch.roll(diffw , -1, dims =0)

282 as2d = diffs

283 an2d = torch.roll(diffs , -1, dims =1)

284
285 # Zero out boundary coefficients

286 as2d [:,0] = 0

287 an2d[:,-1] = 0

288
289 # Initialize source terms

290 su2d = torch.zeros((ni ,nj), device=device)

291 sp2d = torch.zeros((ni ,nj), device=device)

292
293 if iter == 0:

294 print(’aw[5,5],ae ,as,an’, aw2d [5 ,5]. item(),

↪→ ae2d [5,5]. item(),

295 as2d [5 ,5]. item(), an2d [5,5]. item())

296
297 return aw2d , ae2d , as2d , an2d , su2d , sp2d

298
299 @profile

300 def calcu(su2d , sp2d , aw2d , ae2d , as2d , an2d):

16

301 """ GPU version of u-momentum source terms

↪→ calculation """

302
303 # Add sources and modify source terms

304 su2d , sp2d = modify_u(su2d , sp2d)

305
306 # Calculate ap coefficient

307 ap2d = aw2d + ae2d + as2d + an2d - sp2d

308
309 # Apply under -relaxation

310 ap2d = ap2d / urf_u

311 su2d = su2d + (1-urf_u) * ap2d * u2d

312
313 return su2d , sp2d , ap2d

314
315 @profile

316 def bc(su2d ,sp2d ,phi_bc_west ,phi_bc_east ,phi_bc_south ,

↪→ phi_bc_north\

317 ,phi_bc_west_type ,phi_bc_east_type ,

↪→ phi_bc_south_type ,phi_bc_north_type):

318
319 su2d = torch.zeros((ni ,nj), device=device)

320 sp2d = torch.zeros((ni ,nj), device=device)

321
322 #south

323 if phi_bc_south_type == ’d’:

324 sp2d [:,0] = sp2d [:,0] - viscos*as_bound

325 su2d [:,0] = su2d [:,0] + viscos*as_bound*

↪→ phi_bc_south

326
327 #north

328 if phi_bc_north_type == ’d’:

329 sp2d[:,-1] = sp2d[:,-1] - viscos*an_bound

330 su2d[:,-1] = su2d[:,-1] + viscos*an_bound*

↪→ phi_bc_north

331
332 #west

333 if phi_bc_west_type == ’d’:

334 sp2d [0,:] = sp2d [0,:] - viscos*aw_bound

335 su2d [0,:] = su2d [0,:] + viscos*aw_bound*

↪→ phi_bc_west

336
337 #east

338 if phi_bc_east_type == ’d’:

339 sp2d[-1,:] = sp2d[-1,:] - viscos*ae_bound

17

340 su2d[-1,:] = su2d[-1,:] + viscos*ae_bound*

↪→ phi_bc_east

341
342 return su2d , sp2d

343
344 @profile

345 def modify_u(su2d , sp2d):

346 # Add a point source/volume of 100 at x = 1.5 and

↪→ y = 0.5

347 xx = 1.5

348
349 i1 = torch.argmin(torch.abs(xx -xp2d [:,1]))

350 yy = 0.5

351 j1 = torch.argmin(torch.abs(yy -yp2d [1,:]))

352 su2d[i1 ,j1] = su2d[i1 ,j1] + 100* vol[i1 ,j1]

353
354 return su2d , sp2d

355
356 @profile

357 def main_loop(u2d):

358 cumulative_time = 0

359 # Main iteration loop

360 for iter in range(maxit):

361 start_time_iter = time.time()

362 start_time = time.time()

363 # Compute coefficient matrices

364 aw2d , ae2d , as2d , an2d , su2d , sp2d = coeff()

365
366 # Apply boundary conditions for u2d

367 su2d , sp2d = bc(su2d , sp2d , u_bc_west ,

↪→ u_bc_east , u_bc_south , u_bc_north ,

368 u_bc_west_type , u_bc_east_type

↪→ , u_bc_south_type ,

↪→ u_bc_north_type)

369
370 # Calculate source terms for u momentum

↪→ equation

371 su2d , sp2d , ap2d = calcu(su2d , sp2d , aw2d ,

↪→ ae2d , as2d , an2d)

372
373 # Solve for u using conjugate gradient method

374 if maxit > 0:

375 u2d , residual_u = solve_2d(u2d , aw2d , ae2d

↪→ , as2d , an2d , su2d , ap2d ,

376 convergence_limit_u

↪→ , nsweep_u)

18

377
378 # Print computation time for u

379 print(f"{’time␣u:␣ ’}{time.time()-start_time :.2

↪→ e}")

380 cumulative_time += time.time()-start_time

381
382 # Monitor convergence

383 if iter % 10 == 0:

384 print(f"\n--iter:{iter:d},␣residual :{

↪→ residual_u :.2e}\n")

385 print(f"\nmonitor␣iteration :{iter:4d},␣u:{

↪→ u2d[imon ,jmon].item():␣.2e}\n")

386
387 # Calculate maximum velocity for stability

↪→ monitoring

388 umax = torch.max(u2d).item()

389 print(f"\n---iter:␣{iter:2d},␣umax:␣{umax :.2e

↪→ }\n")

390
391 # Print iteration timing

392 print(f"time␣one␣iteration:␣{time.time()-

↪→ start_time_iter :.2e}")

393
394 # Check convergence

395 if residual_u < sormax:

396 break

397 return cumulative_time

398
399 total_time = main_loop(u2d)

400
401 # Print and save profiler results

402 if profile_on:

403 profile.print_stats ()

404 with open(’profile_results.txt’, ’w’) as f:

405 profile.print_stats(stream=f)

406 # Save final results

407 save_data(u2d)

408 print(’program␣reached␣normal␣stop’)

409 print(f"{’Cumulative␣time:␣ ’}{ total_time}")

19

	Abstract
	Contributions

	Solver
	Conjugate Gradient (CG)
	Jacobi Preconditioned Conjugate Gradient

	Profiling
	PyTorch Implementation
	Cupy Implementation
	Multi-GPU Cupy
	Subdomain and Ghost Cells
	Exchange boundary data
	Result and Conclusion

	Problems encountered
	Implementation Improvements
	Sparse Matrix Operations
	Memory Management

