
Chalmers University of Technology

GPU ACCELERATED COMPUTATIONAL METHODS
USING PYTHON AND CUDA

Computational Fluid Dynamics

Author:
Bala Kumaresh Thileep Kumar
Wei Liu
Wuyang Hao

Supervisor:
Prof. Lars Davidson

February 24, 2025

1

Abstract

This report explores the implementation and evaluation of GPU-accelerated computational
methods to enhance the performance of a 2D finite volume Computational Fluid Dynam-
ics (CFD) solver, pyCALC-RANS. By leveraging CuPy and CUDA programming, the study
aims to optimize critical components of the solver, including iterative linear algebra opera-
tions and sparse matrix computations. The profiling of the existing code identified major
bottlenecks, which were subsequently targeted for GPU acceleration using solvers such as
GMRES, Conjugate Gradient (CG), and PyAMGX. Comparative analysis highlights sig-
nificant computational speedups, particularly for high-resolution mesh grids, demonstrating
the advantages of GPU-based parallel processing in reducing execution time for large-scale
turbulence modeling. Specifically, at intermediate mesh sizes, GPU acceleration achieved a
speedup of up to 14.84× for GMRES and 14.36× for CG. However, as mesh sizes increase,
GPU performance starts to degrade due to memory latency and bandwidth saturation.

2

Contents

1 Introduction 4

1.1 Computational Fluid Dynamics . 4

1.2 Why GPU Computing . 4

1.3 CUDA Programming Model . 5

1.4 CuPy . 5

2 Methodology 5

2.1 Codebase Utilized in This Report . 6

2.2 Identifying Bottlenecks with cProfile . 6

2.3 Measuring Speedup Using cProfile Results 7

2.4 Implementation of GPU Acceleration using GMRES Solver 7

2.5 Implementation of GPU Acceleration using CG Solver 8

2.6 Tests and Benchmarking . 8

3 Results 9

3.1 Performance Gains with GMRES and CG 9

3.2 Scalability Analysis: From 960×960 to 3840×3840 Mesh Resolutions 10

4 Conclusion 11

5 Future Work 12

A Appendix 14

A.1 Profiling Code . 14

3

1 Introduction

General-purpose Graphics Processing Units (GPUs) have become increasingly popular for
their efficiency in handling massively parallel computations, outperforming Central Process-
ing Units (CPUs) in tasks like scientific computing, machine learning, and CFD. Their paral-
lelized architecture is well-suited for large-scale workloads. While programming GPUs often
requires custom kernels, libraries such as CuPy simplify access to GPU acceleration through
high-level functions. By leveraging these capabilities, this report focuses on extending the
pyCALC-RANS CFD code [4] with GPU acceleration to significantly enhance performance
and scalability, enabling faster and more efficient solutions for large-scale CFD problems.

1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that utilizes numerical
methods and algorithms to analyze and solve problems involving fluid flows. It has become
an essential tool in engineering and scientific research, enabling the simulation of complex
physical phenomena such as turbulence, heat transfer, and multiphase flows. CFD appli-
cations span various industries, including aerospace, automotive, energy, and environmental
sciences. The foundation of CFD lies in the discretization of the governing equations of fluid
motion, namely the Navier-Stokes equations. These equations describe the conservation of
mass, momentum, and energy within a fluid system. By discretizing these equations using
finite volume method, CFD solvers compute approximate solutions for fluid flow problems
on a computational grid. The pyCALC-RANS code, which forms the basis of this project, is
a 2D finite volume CFD solver that employs the SIMPLEC algorithm for pressure-velocity
coupling. It incorporates turbulence modeling using the standard k-omega model and has
recently been extended to include an Explicit Algebraic Reynolds Stress Model (EARSM)
improved with a Neural Network. By leveraging GPU acceleration, the goal is to enhance the
computational efficiency of this solver, particularly for cases involving high grid resolutions
and complex turbulence modeling.

1.2 Why GPU Computing

The increasing complexity of modern simulations, particularly in Computational Fluid Dy-
namics (CFD), demands significant computational resources for accurate and timely results.
Traditionally run on CPUs, these simulations increasingly leverage GPUs due to their parallel
architecture, which is optimized for tasks decomposable into smaller, independent sub-tasks.
Unlike CPUs designed for serial processing, GPUs perform many computations simultane-
ously, delivering substantial performance gains for CFD applications involving large datasets
and intensive calculations [1]. GPU computing enhances CFD solvers by accelerating time-
consuming operations like matrix computations, finite difference calculations, and memory
transfers, with advances in GPU hardware, such as increased core counts and higher memory
bandwidth, further improving their suitability for solving complex partial differential equa-
tions (PDEs) on large grids [2]. High-level libraries and frameworks like CuPy, PyCUDA,

4

and CUDA simplify GPU utilization by abstracting parallel programming complexities, en-
abling efficient implementation of GPU-accelerated functions in Python and other languages,
achieving substantial speedups with minimal codebase modifications [3]. For the pyCALC-
RANS code, GPU acceleration offers significant performance improvements, particularly for
large-scale simulations with fine mesh resolutions, allowing for efficient handling of higher
detail levels, faster predictions, and reduced turnaround times in practical engineering appli-
cations.

1.3 CUDA Programming Model

CUDA (Compute Unified Device Architecture) by NVIDIA is a platform and programming
model enabling GPUs to handle computationally intensive tasks. It uses a heterogeneous
computing model where the CPU (host) manages program flow, data transfers, and kernel
launches, while the GPU (device) executes parallel kernels. CUDA employs a thread hierarchy
of threads, blocks, and grids to scale parallelism effectively. The GPU memory hierarchy
includes global memory (large but slow), shared memory (faster and shared within blocks),
and local memory (private to threads). Optimizing performance requires minimizing the
significant overhead of host-device data transfers and maximizing the use of faster shared
memory, which can be up to 100 times faster than global memory. NVIDIA also provides
optimized libraries like cuBLAS, cuFFT, and cuDNN, reducing the need for low-level coding
in common algorithm implementations.

1.4 CuPy

CuPy is an open-source, GPU-accelerated library designed as a NumPy equivalent, offering
a Python API that wraps various CUDA library functions for high-performance computing
on NVIDIA GPUs. Most NumPy operations are supported in CuPy, allowing developers to
easily convert CPU-based programs to GPU-accelerated ones with minimal code changes.
Built on CUDA, CuPy provides efficient implementations of operations like array manipula-
tions, linear algebra, Fourier transforms, and sparse matrix solvers via the cupyx.scipy.sparse
module, making it particularly suited for computationally intensive tasks like CFD. Its com-
patibility with CUDA libraries such as cuBLAS, cuFFT, and cuDNN further enhances per-
formance and usability, enabling seamless integration into Python workflows.

2 Methodology

This section outlines the systematic approach adopted to optimize and evaluate the perfor-
mance of the codebase. It begins with an overview of the codebase, followed by profiling
techniques to identify computational bottlenecks using cProfile. The identified bottlenecks
are analyzed to measure speedup, and GPU acceleration is implemented to enhance perfor-
mance. Finally, the optimized code is tested with varying mesh sizes to evaluate its scalability
and computational efficiency.

5

2.1 Codebase Utilized in This Report

This report focuses on accelerating the simulation of a fully-developed channel flow at
Reτ = 5200 using pyCALC-RANS. The optimization will be performed using CuPy, in
particular its sparse functionality of cupyx.scipy.sparse. The emphasis is on benchmark-
ing the performance of various solvers across different hardware configurations to evaluate
the effectiveness of GPU acceleration in improving computational efficiency.

2.2 Identifying Bottlenecks with cProfile

To optimize the performance of the pyCALC-RANS code, cProfile, a built-in Python library,
was utilized (A.1) to identify computational bottlenecks. By profiling specific functions,
cProfile provides detailed insights into execution times, helping pinpoint the most time-
consuming sections of the code. The profiling highlighted three functions as the primary
contributors to the computational overhead:

• solve_2d: This function is responsible for solving discretized linear algebraic equations,
either using direct solvers or iterative methods. It is computationally demanding due
to the manipulation of large sparse matrices and the need for multiple solver iterations
to achieve convergence. The majority of its runtime is consumed by sparse matrix oper-
ations and the solver backend, particularly for large computational grids. The runtime
of solve_2d scales significantly with the grid size and the number of iterations required
to achieve convergence, making it the most computationally intensive component of the
code.

• conv: Responsible for computing convection terms based on velocity and pressure fields
(with Rhie and Chow interpolation), this function incurs a high computational cost due
to numerical flux calculations performed at each cell face. Its frequent invocation during
each iteration significantly impacts runtime.

• coeff: This function computes the coefficients for discretized equations, incorporating
convection, diffusion, and source term contributions. It is resource-intensive due to op-
erations like turbulent viscosity calculations, hybrid scheme applications and the com-
putational overhead associated with large grid sizes and complex numerical schemes.

The profiling results provide a clear roadmap for optimization efforts by targeting these func-
tions and their dependencies. In conclusion, optimizing solve_2d, coeff, and conv functions
offers significant potential to reduce computational overhead and improve the overall perfor-
mance of the pyCALC-RANS code. Future efforts can focus on streamlining sparse matrix
operations, leveraging more efficient solvers, parallelizing the coefficient computations, and
optimizing interpolation algorithms for convective terms. These insights from the profiling
process, further corroborated by findings in the referenced report [5], serve as a foundation
for targeted enhancements, ultimately enabling faster and more efficient simulations while
maintaining accuracy.

6

2.3 Measuring Speedup Using cProfile Results

The performance of the solve_2d, coeff, and conv functions was analyzed using cProfile
for the 120x120 grid. The profiling was conducted for 2000 iterations instead of the original
20000 iterations, with a convergence criterion of the residual dropping below 10−3. Various
solvers, including Direct, PyAMG, CGS, CG, GMRES, QMR, and LGMRES, were evaluated
for efficiency. Figure 1 shows the cumulative execution times (in seconds) for these functions.

• solve_2d is the most time-consuming function across all solvers, with the Direct solver
requiring 427.30 seconds compared to 30.50 seconds for CG.

• Iterative solvers like CG and CGS are more efficient than the Direct solver, making
them preferable for larger grids.

• The coeff and conv functions exhibit consistent performance across solvers, with min-
imal variations in runtime.

These results highlight the computational burden of solve_2d, particularly for direct solvers,
and underscore the advantages of iterative solvers for reducing computational time.

Figure 1: Cumulative Time Comparison for Different Solvers on a 120x120 Grid.

2.4 Implementation of GPU Acceleration using GMRES Solver

To accelerate the computational fluid dynamics (CFD) code, the entire codebase was con-
verted to CuPy, replacing all NumPy and SciPy operations with their CuPy equivalents. By
ensuring that all computations, including pre-processing, matrix assembly, solver execution,
and post-processing, are executed on the GPU, this approach eliminates the memory over-
head caused by CPU-GPU data transfers during iterations. Only the initial data transfer
from the CPU to the GPU and the final transfer back are required, making this method signif-
icantly more efficient. To achieve this, all NumPy functions were replaced with their CuPy
counterparts, such as using cp.append instead of np.insert, cupy.ndarray.max instead
of np.max(), and cupy.ndarray.flatten instead of np.matrix.flatten. Unsupported
operations were re-implemented using CuPy’s array manipulation features to maintain the

7

functionality of the original code. Additionally, the solver was replaced with CuPy’s GM-
RES solver, the only solver in CuPy suitable for CFD applications. This solver performed all
matrix and vector operations on the GPU, ensuring full utilization of GPU resources. This
approach minimizes memory overhead during iterations and fully leverages GPU resources,
resulting in significantly improved performance and scalability for large-scale turbulence mod-
eling simulations.

2.5 Implementation of GPU Acceleration using CG Solver

The Conjugate Gradient (CG) solver was employed within the GPU-accelerated CFD frame-
work for solving symmetric positive-definite systems. Using CuPy, all computational data,
including the sparse matrix A, solution vector x, and load vector b (i.e., Ax = b), were di-
rectly loaded into GPU memory, ensuring minimal CPU-GPU communication overhead. The
CG solver from cupyx.scipy.sparse.linalg was utilized to perform iterative matrix-vector
operations entirely on the GPU. While CG is computationally efficient for symmetric and
well-conditioned matrices, it was observed that the solver required a higher maximum itera-
tion limit (nmax) to achieve convergence compared to GMRES. This behavior is attributed
to the solver’s sensitivity to the condition number of the matrix, as poor eigenvalue cluster-
ing can slow convergence. To address this, preconditioning techniques can be employed to
improve the spectral properties of the matrix. Despite requiring more iterations, CG proved
effective in solving specific subsystems within the CFD code where the matrix characteristics
aligned with the solver’s strengths. For these systems, CG provided a viable alternative to
GMRES with potentially lower memory requirements, as it avoids the need to store large
Krylov subspaces. The solver parameters, including tolerances and iteration limits, were
carefully configured to balance computational efficiency and accuracy.

2.6 Tests and Benchmarking

The pyCALC-RANS code, developed for simulating fully-developed channel flow at Reτ = 5200,
spends most of its computational time in the solve_2d function, which solves finite volume
equations Aϕ = b. Profiling also identified conv and coeff as key contributors to overhead,
especially for larger grids.

GPU-accelerated solvers (GMRES, CG, PyAMGX) will be compared with CPU-based SciPy
solvers across mesh sizes of 120×120, 240×240, 480×480, and 960×960. These tests will eval-
uate scalability, speedup, and convergence, demonstrating the benefits of GPU acceleration
for high Reynolds number simulations.

8

3 Results

This section presents the outcomes of implementing GPU acceleration in the pyCALC-RANS
code and evaluates its performance across various test cases. Key metrics, such as compu-
tational speedup, solver efficiency, and scalability, are analyzed for different solvers, includ-
ing GMRES and CG, on varying mesh resolutions. The results provide insights into the
effectiveness of GPU acceleration in reducing computational overhead, with a particular fo-
cus on large-scale turbulence modeling simulations. Through comparisons with CPU-based
approaches, the benefits of GPU computing in enhancing the solver’s efficiency for high-
resolution CFD problems are demonstrated.

3.1 Performance Gains with GMRES and CG

The comparative performance analysis of GMRES and CG solvers on CPU and GPU archi-
tectures highlights significant computational advantages, particularly for GPU-accelerated
implementations. The GPU-based CG solver shows substantial reductions in computational
time across all mesh sizes compared to its CPU counterpart, as illustrated in Figures 2a and
2b. This improvement is especially evident for larger meshes (960 × 960), where the GPU
CG solver achieves up to an order-of-magnitude speedup. This performance gain stems from
the GPU’s parallel processing capabilities, optimized for iterative linear algebra operations
involving sparse matrices. The maximum global iteration count was set to 50 to ensure resid-
uals fell below the range of 10−3.

On the CPU, GMRES exhibits stable convergence but suffers from disproportionate com-
putational time growth with mesh size due to its reliance on large Krylov subspaces. This
overhead becomes particularly significant at higher resolutions, as seen in Figure 2a. In
contrast, CG demonstrates more consistent scaling across both CPU and GPU, remaining
computationally efficient for symmetric positive definite matrices. However, the GPU CG
solver occasionally triggered warnings such as: “Warning in module solve_2d: convergence
in sparse matrix solver not reached.” This indicates that the solver did not reach the spec-
ified residual tolerance within the iteration limit, potentially due to matrix conditioning,
numerical instabilities, or insufficient iterations. Despite this, the GPU CG solver leveraged
the GPU’s high memory bandwidth and parallel processing capabilities, achieving improved
runtimes even at finer grid resolutions (Figure 2b).

These results underscore the importance of solver selection for optimizing performance. The
GPU-accelerated CG solver proves advantageous for turbulence simulations involving sym-
metric, well-conditioned matrices due to its scalability and efficiency. GMRES remains ver-
satile for non-symmetric or ill-conditioned matrices but would benefit significantly from GPU
acceleration and preconditioning to reduce computational overhead.

9

(a) Different CPU vs GPU GMRES solvers. (b) Different CPU vs GPU CG solvers.

Figure 2: Comparative analysis of solver performance for various mesh resolutions.

3.2 Scalability Analysis: From 960× 960 to 3840× 3840 Mesh Resolu-
tions

The scalability of GPU acceleration in the pyCALC-RANS code was evaluated for mesh reso-
lutions ranging from 960× 960 to 3840× 3840, as depicted in Figures 3a and 3b. At smaller
resolutions (960 × 960), GPU solvers, particularly CG, significantly outperform their CPU
counterparts, benefiting from efficient parallelism and memory bandwidth. However, as mesh
sizes increase, GPU performance begins to degrade due to memory latency and bandwidth
saturation, especially for GMRES, as shown in Figure 3a. This is likely due to GMRES
requiring larger Krylov subspaces, leading to increased memory overhead and reduced com-
putational efficiency on GPUs at extreme resolutions. For the largest resolution (3840×3840),
CPU solvers exhibit competitive or superior performance, with CG maintaining scalability
due to better cache utilization and sparse matrix handling (Figure 3b). As shown in Table 1,
GPU acceleration provided a speed-up of up to 14.84× for GMRES and 14.36× for CG at
intermediate mesh sizes. However, at the largest mesh size (3840× 3840), speed-up dropped
to 0.64× for GMRES and 0.99× for CG, indicating limited GPU advantages at extreme reso-
lutions. These results highlight the need for solver-specific GPU optimizations and adaptive
load balancing strategies to ensure efficient scalability across varying mesh resolutions.

(a) GMRES Solver (b) CG Solver

Figure 3: Performance comparison of CPU vs GPU across mesh resolutions.

10

Mesh Size (Millions of Cells) Speed-up GMRES Speed-up CG
0.9216 6.78 8.77
3.6864 14.84 14.36
8.2944 1.03 3.60
14.7456 0.64 0.99

Table 1: GPU speed-up over CPU for GMRES and CG across mesh sizes.

4 Conclusion

This study explored the implementation of GPU-accelerated computational methods for the
pyCALC-RANS CFD solver using Python and CUDA, with a focus on improving computational
efficiency in solving large-scale turbulence modeling problems. Profiling the code identified
key computational bottlenecks, particularly within the solve_2d, coeff, and conv functions,
which were targeted for optimization.

For the purpose of benchmarking GPU performance, the turbulence code was implemented
using the Conjugate Gradient (CG) solver. Although the turbulence equations for the ve-
locity components and turbulent quantities (u, v, k, ω) are inherently non-symmetric—and
therefore not ideally suited for the CG method-the decision to use CG was driven by its
simplicity, lower memory requirements, and potential for significant computational speedup.
The GPU-accelerated CG solver provided notable acceleration for cases where the matrices
behaved in a relatively well-conditioned manner, despite its sensitivity to eigenvalue cluster-
ing which often necessitated higher iteration limits.

Comparative assessments with GMRES indicated that while GMRES is better equipped to
handle non-symmetric systems, it suffered from higher computational overhead due to the
storage and manipulation of large Krylov subspaces. Despite its theoretical limitations for
non-symmetric problems, the use of the CG solver in this study enabled a practical evalua-
tion of GPU performance improvements over CPU-based implementations, particularly for
moderate grid sizes. For very large grids (e.g., 3840× 3840), memory bandwidth limitations
and cache inefficiencies began to impact performance, highlighting the need for further opti-
mization strategies.

In summary, while applying the CG solver to a non-ideal, non-symmetric turbulence problem
presents certain challenges, its implementation in this study provided valuable insights into
the benefits of GPU acceleration in CFD simulations. The results underscore the potential
of parallel computing to significantly reduce computation time, thereby making large-scale
turbulence simulations more feasible and efficient, and lay the groundwork for future research
into solvers more tailored to non-symmetric systems.

11

5 Future Work

To further enhance the performance of GPU-accelerated CFD solvers, several key areas should
be explored. Multi-GPU parallelization could help address memory bandwidth constraints
and improve scalability for ultra-large grids, while a hybrid CPU-GPU computing strat-
egy could optimize computational efficiency by distributing workloads based on hardware
strengths. Additionally, preconditioning techniques should be investigated to improve the
convergence behavior of the CG solver, reducing iteration counts and mitigating the ef-
fects of poor eigenvalue clustering. Exploring alternative sparse linear solvers specifically
optimized for GPU architectures, including deep learning-based iterative solvers, could fur-
ther enhance computational efficiency. By addressing these areas, the GPU-accelerated
pyCALC-RANS solver can be further optimized for handling high-resolution CFD simulations
more efficiently, enabling faster and more accurate predictions in turbulence modeling and
other complex engineering applications.

12

References

[1] Nickolls, John and Dally, William J. The GPU computing era. IEEE Micro, vol. 30, no.
2, 2010, pp. 56–69.

[2] Owens, John D., Houston, Mike, Luebke, David, Green, Simon, Stone, John E., and
Phillips, James C. GPU computing. Proceedings of the IEEE, vol. 96, no. 5, 2008, pp.
879–899.

[3] Borkar, Shekhar. Thousand core chips: a technology perspective. Proceedings of the 44th
Annual Design Automation Conference, 2007, pp. 746–749.

[4] Davidson, Lars. pyCALC-RANS: A Python Code for Two-Dimensional Turbulent
Steady Flow. 2023. URL: https://www.tfd.chalmers.se/~lada/postscript_files/
py-calc-rans.pdf.

[5] Hasselwander, Erik, Cheng, Yuhua, and Gavras, Kyriakos. GPU-accelerated computa-
tional methods using Python and CUDA. 2025. URL: https://www.tfd.chalmers.se/
~lada/TRA220-erik-yuhua-kyriakos.pdf.

13

https://www.tfd.chalmers.se/~lada/postscript_files/py-calc-rans.pdf
https://www.tfd.chalmers.se/~lada/postscript_files/py-calc-rans.pdf
https://www.tfd.chalmers.se/~lada/TRA220-erik-yuhua-kyriakos.pdf
https://www.tfd.chalmers.se/~lada/TRA220-erik-yuhua-kyriakos.pdf

A Appendix

A.1 Profiling Code

1 ######################### Start of global iteration process
#############################↪→

2

3 # Initialize the profiler
4 profiler = cProfile.Profile()
5 profiler.enable()
6

7 for iter in range(0, maxit):
8

9 start_time_iter = time.time()
10 # coefficients for velocities
11 start_time = time.time()
12 # compute inlet fluctuations
13 if iter == 0:
14 u_bc_west, v_bc_west, k_bc_west, om_bc_west, u2d_face_w, convw =

modify_inlet()↪→

15 aw2d, ae2d, as2d, an2d, su2d, sp2d = coeff(convw, convs, vis2d, 1, scheme)
16

17 # u2d
18 # boundary conditions for u2d
19 su2d, sp2d = bc(su2d, sp2d, u_bc_west, u_bc_east, u_bc_south, u_bc_north,
20 u_bc_west_type, u_bc_east_type, u_bc_south_type,

u_bc_north_type)↪→

21 su2d, sp2d, ap2d = calcu(su2d, sp2d, p2d_face_w, p2d_face_s)
22

23 u2d, residual_u = solve_2d(u2d, aw2d, ae2d, as2d, an2d, su2d, ap2d,
convergence_limit_u, nsweep_vel, solver_vel)↪→

24 print(f"{'time u: '}{time.time()-start_time:.2e}")
25

26 start_time = time.time()
27 # v2d
28 # boundary conditions for v2d
29 su2d, sp2d = bc(su2d, sp2d, v_bc_west, v_bc_east, v_bc_south, v_bc_north,
30 v_bc_west_type, v_bc_east_type, v_bc_south_type,

v_bc_north_type)↪→

31 su2d, sp2d, ap2d, ap2d_vel = calcv(su2d, sp2d, p2d_face_w, p2d_face_s)
32 v2d, residual_v = solve_2d(v2d, aw2d, ae2d, as2d, an2d, su2d, ap2d,

convergence_limit_v, nsweep_vel, solver_vel)↪→

33 print(f"{'time v: '}{time.time()-start_time:.2e}")
34

35 start_time = time.time()
36 # pp2d

14

37 convw, convs = conv(u2d, v2d, p2d_face_w, p2d_face_s)
38 convw = modify_outlet(convw)
39 aw2d, ae2d, as2d, an2d, su2d, ap2d = calcp(pp2d, ap2d_vel)
40 pp2d = np.zeros((ni, nj))
41 pp2d, dummy = solve_2d(pp2d, aw2d, ae2d, as2d, an2d, su2d, ap2d,

convergence_limit_pp, nsweep_pp, solver_pp)↪→

42

43 # correct u, v, w, p
44 convw, convs, p2d, u2d, v2d, su2d = correct_u_v_p(u2d, v2d, p2d)
45 convw = modify_outlet(convw)
46

47 # continuity error
48 su2d = convw[0:-1, :] - np.roll(convw[0:-1, :], -1, axis=0) + convs[:, 0:-1]

- np.roll(convs[:, 0:-1], -1, axis=1)↪→

49 residual_pp = abs(np.sum(su2d))
50

51 print(f"{'time pp: '}{time.time()-start_time:.2e}")
52

53 u2d_face_w, u2d_face_s = compute_face_phi(u2d, u_bc_west, u_bc_east,
u_bc_south, u_bc_north,↪→

54 u_bc_west_type, u_bc_east_type,
u_bc_south_type,
u_bc_north_type)

↪→

↪→

55 v2d_face_w, v2d_face_s = compute_face_phi(v2d, v_bc_west, v_bc_east,
v_bc_south, v_bc_north,↪→

56 v_bc_west_type, v_bc_east_type,
v_bc_south_type,
v_bc_north_type)

↪→

↪→

57 p2d_face_w, p2d_face_s = compute_face_phi(p2d, p_bc_west, p_bc_east,
p_bc_south, p_bc_north,↪→

58 p_bc_west_type, p_bc_east_type,
p_bc_south_type,
p_bc_north_type)

↪→

↪→

59

60 start_time = time.time()
61

62 if kom:
63

64 vis2d = vist_kom(vis2d, k2d, om2d)
65 # coefficients
66 start_time = time.time()
67 aw2d, ae2d, as2d, an2d, su2d, sp2d = coeff(convw, convs, vis2d, prand_k,

scheme_turb)↪→

68 # k
69 # boundary conditions for k2d
70 su2d, sp2d = bc(su2d, sp2d, k_bc_west, k_bc_east, k_bc_south, k_bc_north,
71 k_bc_west_type, k_bc_east_type, k_bc_south_type,

k_bc_north_type)↪→

15

72 su2d, sp2d, gen, ap2d = calck(su2d, sp2d, k2d, om2d, vis2d, u2d_face_w,
u2d_face_s, v2d_face_w, v2d_face_s)↪→

73

74 k2d, residual_k = solve_2d(k2d, aw2d, ae2d, as2d, an2d, su2d, ap2d,
convergence_limit_k, nsweep_kom, solver_turb)↪→

75 k2d = np.maximum(k2d, 1e-10)
76 print(f"{'time k: '}{time.time()-start_time:.2e}")
77

78 start_time = time.time()
79 # omega
80 # boundary conditions for om2d
81 aw2d, ae2d, as2d, an2d, su2d, sp2d = coeff(convw, convs, vis2d,

prand_omega, scheme_turb)↪→

82 su2d, sp2d = bc(su2d, sp2d, om_bc_west, om_bc_east, om_bc_south,
om_bc_north,↪→

83 om_bc_west_type, om_bc_east_type, om_bc_south_type,
om_bc_north_type)↪→

84 su2d, sp2d, ap2d = calcom(su2d, sp2d, om2d, gen)
85

86 aw2d, ae2d, as2d, an2d, ap2d, su2d, sp2d = fix_omega()
87

88 om2d, residual_om = solve_2d(om2d, aw2d, ae2d, as2d, an2d, su2d, ap2d,
convergence_limit_om, nsweep_kom, solver_turb)↪→

89 om2d = np.maximum(om2d, 1e-10)
90

91 print(f"{'time omega: '}{time.time()-start_time:.2e}")
92

93 # scale residuals
94 residual_u = residual_u / resnorm_vel
95 residual_v = residual_v / resnorm_vel
96 residual_p = residual_p / resnorm_p
97 residual_k = residual_k / resnorm_vel**2
98 residual_om = residual_om / resnorm_vel
99

100 resmax = np.max([residual_u, residual_v, residual_p])
101

102 print(f"\n{'--iter:'}{iter:d}, {'max residul:'}{resmax:.2e},
{'u:'}{residual_u:.2e}\↪→

103 , {'v:'}{residual_v:.2e}, {'pp:'}{residual_pp:.2e}, {'k:'}{residual_k:.2e}\
104 , {'om:'}{residual_om:.2e}\n")
105

106 if resmax < sormax:
107 break
108

109 ######################### End of global iteration process
#############################↪→

110

111 # Disable the profiler

16

112 profiler.disable()
113

114 # Print profiling results
115 ps = pstats.Stats(profiler).sort_stats('cumtime')
116

117 # Filter the results for specific functions
118 filtered_functions = ["solve_2d", "conv", "coeff"] # Add other function names if

needed↪→

119 for func in filtered_functions:
120 ps.print_stats(func)

17

	Introduction
	Computational Fluid Dynamics
	Why GPU Computing
	CUDA Programming Model
	CuPy

	Methodology
	Codebase Utilized in This Report
	Identifying Bottlenecks with cProfile
	Measuring Speedup Using cProfile Results
	Implementation of GPU Acceleration using GMRES Solver
	Implementation of GPU Acceleration using CG Solver
	Tests and Benchmarking

	Results
	Performance Gains with GMRES and CG
	Scalability Analysis: From 960 960 to 3840 3840 Mesh Resolutions

	Conclusion
	Future Work
	Appendix
	Profiling Code

