
TRA220 GPU-accelerated Computational Methods using
Python and CUDA 2024

GPU-Accelerated Computational Methods for
FEM Using Python and CUDA

Afroditi Tzanetou
Arik Ben-Shabat
Oweis Al-Karawi

Róbert F. Birkisson
Simon Riis

Supervisor:
Fredrik Larsson

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2024

Abstract
In this project, CPU- and GPU-based numerical solvers for simulating elastic de-
formable objects under forces are developed using methods based on the Finite
Element Method (FEM). The objects are discretized into a finite number of ele-
ments and the deformation is calculated, either using static methods or dynamic
methods and either run sequentially on the CPU or in parallel on the GPU. The
performance of the CPU-based implementations is then compared with the GPU-
based ones for various problem sizes and models using FEM, including static and
dynamic implementations for linear models.

Keywords: GPU, GPU-Acceleration, FEM, CUDA, CuPy

ii

Contents

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals . 1
1.3 Limitations . 1
1.4 Resources . 1

2 Theory 2
2.1 Finite Element Problem - Static . 2
2.2 Finite Element Problem - Explicit Dynamic 4
2.3 Solvers . 4

2.3.1 Conjugate Gradient Iterative Search 5
2.3.2 Conjugate Gradient Squared Iterative Search 6
2.3.3 Minimal Residual Iterative Search 6

2.4 GPU-acceleration in Python . 7

3 Method 8
3.1 GPU-accelerated static FEM . 8

3.1.1 Stiffness assembly . 8
3.1.2 Solvers . 8

3.2 Explicit Dynamics Parallelization . 9
3.2.1 GPU-accelerated Explicit Dynamics 9

4 Results & Discussion 10
4.1 Static Problem . 10
4.2 Dynamic Problem . 13

5 Conclusions 16

6 Contributions 17

References 19

iii

1 Introduction

1 Introduction

1.1 Background
In this project, the use of parallel computing capabilities of Graphics Processing
Units (GPUs) and CUDA is studied with the aim of making the Python-based Fi-
nite Element Method (FEM) programs faster and more efficient. FEM is a powerful
tool for solving engineering problems and is utilized to handle static and dynamic
scenarios. In the rapidly evolving landscape of computational methods, the inte-
gration of the advanced computing abilities of GPUs can be employed to unlock
unprecedented computational power for scientific simulations and enhance the per-
formance and speed of the FEM simulations. Therefore, the solution to complex
problems in engineering and scientific applications can be handled in a robust and
scalable manner, advancing the state-of-the-art in numerical analysis.

1.2 Goals
The main objectives of this project are:

• Introduction and formulation of one static and one dynamic structural prob-
lem and development of two FEM programs in Python for solving the two
problems, respectively.

• Acceleration of the developed FEM programs by performing parallel comput-
ing in GPU using CUDA.

• Investigation of the efficiency of the developed FEM programs in CPU and
GPU in terms of computational time.

1.3 Limitations
The study is performed under the following assumptions:

• The geometry domain is considered two-dimensional. The plane stress as-
sumption is adopted.

• The material of the domain follows linear elastic isotropic behavior.
• Linear element approximations are utilized for solving the finite element model.

1.4 Resources
The evaluation of the developed code has been performed using the following com-
puter system:

• CPU: 12 12th Gen Intel i5-12500
– Memory: 128 GB

• GPU: NVIDIA GeForce RTX 3050
– Memory: 8192 MiB

1

2 Theory

2 Theory
First, some relevant theory about the Finite Element Method (FEM) is presented
in order to help understand the problem and the applied solutions.

2.1 Finite Element Problem - Static
In this section a description of the problem being studied is given. For the retrieval
of the solution the Finite Element Method is utilized, and as an initial approach a
static load is considered. Gravitational effects are neglected.
The geometry of the problem is an axisymmetric disc of outer radius 50 mm and
inner radius 30 mm. For simplicity, one quarter of the disc is simulated as pre-
sented in Figure 2.1, applying the appropriate boundary conditions to simulate the
axisymmetric geometry.

Figure 2.1: Axisymmetric disc problem.

The disc of the problem is made of steel with Young’s modulus equal to 200 GPa
and Poisson’s ratio equal to 0.3, simulated to follow a linear elastic behavior. The
plane stress assumption is considered for a plate with thickness 2 mm.
The disc is clamped at the edge of its inner radius. A static pressure is applied to
the outer edge of the disc at an arc of 30 degrees in the static case, while in dynamic
case, initial velocity is considered at the same position.
For the problem of the axisymmetric disc of volume V, the governing equations need
to be solved as described in [1]: 

− σ · ∇ = b̄ in V (2.1)
t = t̄ on Γt̄ (2.2)
u = ū on Γū (2.3)

where b̄ and t̄ are the prescribed volume and boundary force vectors, respectively.

2

2 Theory

In order to numerically solve the problem for the displacement field u, the weak for-
mulation of the governing equations need to be performed. The displacement field
equilibrium Eq.(2.1) is integrated over the volume and multiplied with a kinemati-
cally admissible virtual displacement δu. Using the Cauchy’s stress theorem t = σn,
the Gauss divergence theorem as well as taking into account that δϵ = ∇sym δu for
the strains ϵ, the weak form of the displacement field becomes:∫

V
σ δϵ dV =

∫
V

b̄ δu dV +
∫

Γ
t̄ δu dΓ (2.4)

For the derivation of the finite element form of the equations, the weak form equation
need to be expressed in Voigt format. For a 2-dimensional problem, the displacement
and strain terms as well as their virtual components can be described as:

u(x, y) =
[
ux(x, y)
uy(x, y)

]
, δu(x, y) =

[
δux(x, y)
δuy(x, y)

]

ϵ(x, y) = ∇symu(x, y) =

ϵxx(x, y)
ϵyy(x, y)
γxy(x, y)

 , δϵ(x, y) = ∇symδu(x, y) =

δϵxx(x, y)
δϵyy(x, y)
δγxy(x, y)


The displacement field of the disc domain is discretized and computed in u nodes
using the Galerkin method such as:

u(x, y) =
n∑

k=1
Nu

k (x, y)
[
ux,k

uy,k

]
= Nu au (2.5)

where

Nu =
[
Nu

1 (x, y) 0 ... Nu
n (x, y) 0

0 Nu
1 (x, y) ... 0 Nu

n (x, y)

]
, au =



ux,1
uy,1

.

.

.
uy,k


Using the small strain definition, the strain field is expressed in terms of the dis-
placement field as:

ϵ = ∇symu = ∇symNu au = Bu au

for

Bu =


∂N1u(x,y)

∂x
0 ∂N2u(x,y)

∂x
0 ... ∂Nn

u(x,y)
∂x

0
0 ∂N1u(x,y)

∂y
0 ∂N2u(x,y)

∂y
... 0 ∂Nn

u(x,y)
∂y

∂N1u(x,y)
∂y

∂N1u(x,y)
∂x

∂N2u(x,y)
∂y

∂N2u(x,y)
∂x

... ∂Nn
u(x,y)
∂y

∂Nn
u(x,y)
∂x


The Galerkin’s method is also utilized for the virtual components of the displacement
and strain fields, which can be described as:

δu = Nuδcu (2.6)

δϵ = Buδcu (2.7)

3

2 Theory

Inserting the approximation of the displacement variable and its virtual component
into the weak form equation, the system of equations can be written in a matrix
form as following, in order to be solved in an iterative manner:

K · au = fext (2.8)

where
K =

∫
V

BuT

D Bu dV (2.9)

for the material stiffness tensor D, and:

fext =
∫

V
NuT

b̄ dV +
∫

Γ
NuT

t̄ dΓ (2.10)

It is mentioned that the gravitational forces b̄ are neglected for our study.
For the 2-dimensional problem Constant Strain Triangular (CST) linear elements
are utilized with one Gauss integration point, and the system of equations is solved
for the unknown displacements at the degrees of freedom of the nodes.

2.2 Finite Element Problem - Explicit Dynamic
The axisymmetric disc problem as presented in the previous section is solved by
considering the case of initial velocity at the same position the force is applied in
the static case. The assumptions and parameters set for the material of density
0.00785 kg/mm3 and boundary conditions are considered as for the static case. The
domain is discretized using CST elements as well.
For solving the finite element problem, an explicit dynamic solver is developed.
Discretizing the simulation time of 0.003 sec and a time step which varies differently
with the mesh size between ∆t = 1 · 10−4 - 1 · 10−7 sec. The displacement at the
degrees of freedom is computed explicitly at a time step n, as:

an = an−1 + ∆t · vn−1 + ∆t2M−1

2 (fext − fint) (2.11)

Where fint is computed as Kan−1, and an−1 is the displacement of a previous time
increment which is updated after each time step, and vn−1 , the initial velocity which
is updated as:

vn = 2an − an−1

∆t
− vn−1 (2.12)

2.3 Solvers
For the purposes of FEM SA there are two different and relevant solvers. These
are sparse direct solvers and iterative solvers[2]. The sparse direct solvers use the
Gaussian elimination method or an equivalent method like LU or Cholesky decom-
position to solve the system of equation for the displacement vector. It does so in
quadratic time complexity. The sparse direct solvers guarantee a converged solution
which is accurate, but is limited to an overwhelmingly serial execution due to the

4

2 Theory

dependencies in the system of equations, making it an unviable target for large scale
GPU-acceleration. Nevertheless, these solvers are still good in the context of a small
to mid scale problem due to their accuracy. The iterative solvers on the other hand
solve the system of equation utilizing that the system of equation problem can be
transformed to a quadratic formula representation

g(a) = (1/2)aT Ka − aT f (2.13)

upon which various steepest descent inspired optimization methods can be invoked
to solve for the solution displacement vector.

2.3.1 Conjugate Gradient Iterative Search

One such is the conjugate gradient[3] method which based on an initial guess a0
caluclates an initial residual vector

R0 = f − Ka0 (2.14)

and sets it as the initial search direction:

P0 = R0 (2.15)

For the iterative steps, the step size is calculated as

αk = RT
KRK

P T
k KPk

(2.16)

afterwhich the solution can be updated iteratively

aK+1 = ak + αkPk (2.17)

as well as the residual

Rk+1 = Rk − αkKPk (2.18)

The quick convergence compared to the steepest descent method comes from the
following iterative step ensuring that the new search direction is conjugate to the
previous

βk+1 = RT
K+1RK+1

RT
KRK

(2.19)

in the following search direction

Pk+1 = Rk+1 + βk+1Pk (2.20)

5

2 Theory

2.3.2 Conjugate Gradient Squared Iterative Search

The conjugate gradient squared method works in a similar manner to CG from an
initial guess a0. The difference is that it utilizes two auxillary vectors to steer the
search direction[4]. The initial search direction and residual is the same as in CG

R0 = f − Ka0 (2.21)

P0 = R0 (2.22)
In the iteration step, the step size, as well as solution and residual update are also
the same as in CG

αk = RT
KRK

P T
k KPk

(2.23)

aK+1 = ak + αkPk (2.24)

Rk+1 = Rk − αkKPk (2.25)
What’s different is that the following two residual vectors are calculated

Vk+1 = Rk+1 −
RT

k+1KPk

P T
k KPk

Vk (2.26)

Wk+1 = KT Rk+1 −
RT

k+1KPk

P T
k+1KPk

Wk (2.27)

including the now modified conjugacy scalar

βk = RT
k+1Vk+1

V T
k V k + 1 (2.28)

upon which the search direction is updated as

Pk+1 = Vk+1 + βkPk − Wk+1βk

αk

(2.29)

While the conjugate gradient method is well suited for when the K matrix is sym-
metric and positive definite, the conjugate gradient squared method is a more ap-
propriate choice when K is non-symmetric.

2.3.3 Minimal Residual Iterative Search

Lastly we have the minimal residual iterative search method which approximates
the solution uk ϵ (u0+⟨r0, Kr0, K2r0, . . . , Ak−1r0⟩), by minimizing the norm of the
residual rk = f − Kuk in the subspace to the right of the epsilon-sign[5]. This
is in fact the general approach for General Minimal Residual methods, but since
the vectors in the subspace might be linearly dependent, introducing numerical
instability in the solving procedure for large and sparse matrixes, an orthonormal
basis q0, q1, ..., qk found via the Arnoldi method is instead used which enables the
solution vector uk ϵ (u0+⟨r0, Kr0, K2r0, . . . , Ak−1r0⟩) to be obtained by uk = u0 +

6

2 Theory

Qkyk, where y is a real valued vector and Q is the matrix formed by the basis vectors.
The problem is now solved by finding yk for which the system KQk = Qk+1Hk helps
in doing so since the Hessenberg matrix H is also obtained by the Arnoldi method.
In the symmetric case, a symmetric triagonal matrix is in fact achieved, from which
the MINRES method can be invoked to minimize the residual which now looks
like the following ∥Hnyn − βe1∥. This is the equivalent of solving the least squares
problem which can be done by QR decomposition or an equivalent method such
as gaussian elimination. The GMRES method is good when the matrix K is non-
symmetric and indefinite, while the MINRES method is good for solving large and
sparse systems that are symmetric but still indefinite.

2.4 GPU-acceleration in Python
The appeal of General Purpose GPU is based on the fact that GPUs use a much
larger fraction of the silicon for computation than CPUs. Because of this they
can use far less energy per unit of computation and offer a much larger degree of
parallelism than CPUs. Therefore programs with a high level of concurrency and
simple control logic are ideal for execution on a GPU. Thanks to the large number
of threads that are spawned on the GPU, it is able to hide latencies that arise from
for example cache misses by switching to another thread. Switching threads on the
GPU is supported by hardware and is therefore very fast.
The computational model that GPUs are based on is called Single Instruction, Multi-
ple Threads (SIMT). Following this model, General Purpose GPUs are programmed
using CUDA by writing a single program that is executed by all threads. The num-
ber of threads is specified when launching the program on the GPU. Before launching
the program, the required data needs to be transferred to the GPUs memory from
the main memory. After computation the result has to be transferred back to main
memory.
Python is an interpreted language, and is therefore generally thought not to be suit-
able for high-performance computing. There are however libraries that offer just-
in-time (JIT) compilation of your code, and also pre-compiled functions. Numba is
Python library which offers JIT compilation of Python code. Among other things
it has support for CUDA, and can compile Python functions into CUDA, for accel-
eration on GPUs.
Cupy is another alternative for GPU-acceleration in Python. Cupy offers pre-
compiled functions with an interface that is highly compatible with Numpy and
Scipy. Thanks to this, it can often be used through a simple drop-in replacement
with Numpy or Scipy.

7

3 Method

3 Method
In the following section, the process of accelerating the FEM method on GPUs is
presented.

3.1 GPU-accelerated static FEM
The profiling of the static FEM code identified two main kernels contributing the
majority of the execution time. These were found to be the stifness assembly and
solver. In order to focus the development efforts to be as effective as possible, only
these two computational kernels were accelerated with the GPU.

3.1.1 Stiffness assembly

The stiffness assembly function was accelerated on the GPU by parallelizing the
loop over all elements over multiple GPU threads. This was done using Numba for
CUDA.
In order to use the matrix operations that need to be performed inside of the loop
iterations it was necessary to implement these from scratch for CUDA. The fol-
lowing matrix operations were implemented: matrix multiplication, matrix-vector
multiplication, inversion of two-by-two matrix, transposition of two-by-two matrix
and transposition and scaling of three-by-six matrix. The dimensions of the matri-
ces in all operations are known beforehand and therefore several of the functions
were hardcoded to those specific dimensions. Because the loop is what is parallel
on the GPU, the implementations of the operations that are performed inside the
loop iterations are serial.
The reason that this approach was chosen, even though it led to a lot of extra
implementation work, over simply swapping the NumPy function calls inside the
loop for the corresponding functions from CuPy, is the following. The number of
loop iterations grows proportionally to the problem size, because it iterates over
all elements. The matrix operations inside of the loop however, operate on small,
fixed-size arrays. Therefore it is more effective to parallelize the loop instead of
parallelizing the operations inside of the loop with CuPy.
Because the K matrix, which is the result of the stiffness assembly, will be very
large for big problems, it would be infeasible to store the entire matrix on the GPU.
Therefore it is represented on the GPU as a value-table where the threads store the
produced values as pairs of matrix coordinates and values. Each value is stored in
a new entry to avoid having to use synchronization to handle race conditions. The
sparse matrix constructors in SciPy are however able to handle this so it is not a
large issue, but it leads to slightly increased memory consumption on the GPU.

3.1.2 Solvers

The solvers are SciPy functions, and could therefore easily be accelerated using
CuPy. It was done by simply swapping the SciPy function with the corresponding
CuPy function. Additionally, the input matrices had to be converted to CuPy types,

8

3 Method

i.e. transferred to GPU. The same goes for the resulting matrix, in the opposite
direction.

3.2 Explicit Dynamics Parallelization
Since the explicit is computed every time step of every degree of freedom it means
that the whole system’s displacement is evaluated at once and the next time step is
dependent on the previous iteration, which means that the time-stepping loop cannot
be parallelized. Instead, the explicit dynamics formula 2.11 could be rewritten to be
more friendly for parallelization by evaluating the elementwise contribution of the
displacement as shown in the following formula:

an = an−1 + vn−1∆t + Anel
e=1


∆t2

2 Ee
nel
e=1(M

−1)(fext,e − KeEe
nel
e=1(a

n−1))︸ ︷︷ ︸
∆ae

 (3.1)

Where the symbol Anel
e=1 indicates that the value is assembled, and the symbol Ee

nel
e=1

indicates that the value is extracted, meaning extracting the element contribution
from a global matrix.

3.2.1 GPU-accelerated Explicit Dynamics

In a similar fashion to the static code, the efforts for the GPU-accelerated dynamics
were concentrated on the part of the code where most of the execution time was
spent. The time-stepping loop could not be parallelized, but the elementwise loop
within could be parallelized in the same fashion, i.e. using Numba, as the stiffness
assembly of the static GPU-accelerated code. Here too, the majority of the code
is run on the CPU, except for the elementwise loop, for which the required data is
transferred to the GPU and the loop is run in parallel. For this again, it was needed
to develop several array operations from scratch and the same value table sparse
matrix representation, as in the static stiffness assembly, is used.
Once the results of the elementwise loop have been produced and inserted into
the value table, the value table has to be transferred back to the CPU as the rest
of the time-stepping loop is performed on the CPU. This is a downside with this
implementation, as it incurs some overhead, for transferring data back and forth
between the CPU and GPU, each loop iteration. A possible improvement to this
would be to implement also the rest of the time loop for the GPU as to avoid the
data transfers.

9

4 Results & Discussion

4 Results & Discussion
In this section the results of the evaluation of the developed programs, along with
discussions of the results, are presented.

4.1 Static Problem
As mentioned before, there are two main parts of the static problem that each take
a significant amount of execution time and are prime for GPU acceleration. The
first and the most time-consuming part of the code in this implementation is the
assembly of the stiffness matrix and the second is the solving of the displacement
matrix. Note that the assembly could likely be optimized further and be a smaller
factor in other implementations but the solvers are highly optimized. Both of these
parts were profiled and successfully accelerated with a GPU implementation.

The stiffness assembly execution times for the CPU and GPU implementations are
shown in Figure 4.1.

Figure 4.1: Execution time in seconds of stiffness assembly for both CPU and
GPU.

Figure 4.1 illustrates the relationship between the number of degrees of freedom and
the computation time for both GPU and CPU. It’s crucial to note that the stiffness
matrix has dimensions (nDofs×nDofs), indicating that, for the largest case tested,
the matrix size corresponds to 106 × 106 cells. Also, Figure 4.2 shows the speedup
due to GPU implementation for different mesh sizes.

10

4 Results & Discussion

Figure 4.2: The speedup due to GPU implementation for different mesh sizes.
Note the dotted line, points under it mean the the GPU implementation was

slower than the CPU and vice versa.

As for the solving of the displacement matrix, four different types of solvers were
benchmarked, both on the CPU and GPU, with one of them being a direct solver
(SPSOLVE) and the other three being iterative solvers (CG, CGS and MINRES). On
the CPU, solvers from the SciPy library were used and for the GPU implementation
CuPy’s implementation of the same solvers were instead used.

11

4 Results & Discussion

(a) CPU solvers

(b) GPU solvers

Figure 4.3: Execution times for the different solvers both on the CPU and GPU

Figure 4.3 illustrates that MINRES performed the best in both implementations,
while CGS performed the poorest, which is supported by the fact that the problem
at hand includes the K matrix of symmetric characteristic, which was well suited
for MINRES, whereas CGS was more suited to a non-symmetric matrix. Something
particularly noteworthy is MINRES’s consistent performance, only obtaining a 1.4x
acceleration when transitioned on the GPU. This could be explained by the tolerance
levels being unchanged and therefore some slight data-loss due to early stopping but
it did not seem to affect the final deformation significantly.

12

4 Results & Discussion

Figure 4.4: Speedup of whole program using MINRES as a solver.

As for the performance boost of the program on the whole, we used MINRES as
the solver for both implementations to accurately compare them. Similarly to the
assembly speedup, we see that the GPU implementation was quite slower on lower
nDofs (degrees of freedom), which was expected because of the overhead of moving
data to the GPU and back. However, with larger nDofs, the GPU performed quite
a bit better.

4.2 Dynamic Problem
In the dynamic problem, we disregard the idea of having to solve the displacement
at the end and instead use a single assembly of the masses and then an iterative
assembly of the displacement. As such, almost all of the computation time is spent
in these assemblies, which can be sped up with a GPU implementation.

13

4 Results & Discussion

Figure 4.5: Execution time in seconds of total iteration time for displacement
assembly for both CPU and GPU.

In Figure 4.5, there is a clear distinction in the performance of the CPU and GPU
implementation. This difference is logical, given that parallelization benefited the
assembly process the most in the static problem. The speedup for the assembly
process (Figure 4.6) follows a slight S-curve which dips at the end. It is unclear
why this dip appeared but it could be explained by memory limitations and cost of
transferring memory to and from the GPU. Despite this, a speedup of around 500x
was achieved in the case of 103 nDofs, which is 103 ∗ 103 = 106 cells.

Figure 4.6: The speedup due to GPU implementation for different mesh sizes.
Note the dotted line, points under it mean the the GPU implementation was

slower than the CPU and vice versa.

As can be seen, the GPU implementation generally performed worse than the CPU at
smaller number of degrees of freedom (nDoFs) and better than the CPU at larger nD-
ofs, both in the Static and Dynamic problem. This performance difference matches
the intuition that the GPU implementation is more efficient but has a larger over-

14

4 Results & Discussion

head.

However, this performance boost came at the cost of implementation time and com-
plexity, since all matrix operations had to be implemented from scratch to work
with CUDA on the GPU. Additionally, the sparse matrix data type had to be im-
plemented from scratch as well to reduce memory consumption and to allow the GPU
to write to it concurrently without race conditions. This implementation ended up
being more efficient on the CPU as well, slashing computing time in half.

15

5 Conclusions

5 Conclusions
The optimization of the GPU implementation could be generalized further to prob-
lems of a similar nature, problems with large sparse matrices that need to be assem-
bled from many small matrices, which unfortunately aren’t many outside of FEM.
Additionally, the problem size is constrained by the memory available on the GPU,
although using a more efficient sparse matrix implementation helps. Overall, it could
be difficult to adapt the project to other problems without some major rewrites and
changes. That said, this project lends itself to be extended to non-linear FEM prob-
lems, especially the dynamic implementation, which could be used in more advanced
simulations.

As seen in the report above, all goals mention in Section 1.2 were achieved. Ulti-
mately, speedups of 12.7 for the static problem and 499.0 for the dynamic problem,
were achieved. This project underlines the importance of GPU acceleration in the
realm of Computer Aided Engineering (CAE). The performance gains, especially
from the assembly, emphasize the critical role of parallelization in reducing simu-
lation times and allowing for larger, more accurate simulations. This is especially
significant for complex scenarios, like crash simulations with numerous degrees of
freedom and intricate contact dynamics, where the possibility for an accurate sim-
ulation makes vehicles safer for both drivers and pedestrians.

16

6 Contributions

6 Contributions
During the project, the team has been divided into two teams. One team was re-
sponsible for the implementations of the static and dynamic FEM codes and the
other team was responsible for accelerating those codes in GPU. Performed activi-
ties for each group member follows below:

Afroditi: Initially, me and Oweis were working on the static FEM code. My con-
tribution to that was mainly in the beginning, in determining and formulating the
problem to be solved (geometry, boundary conditions, applied load etc). Oweis was
handling the code and I offered my assistance in developing some of the functions,
such as the function that created the external force vector. For the dynamic problem
that followed after the static one, Oweis was the main responsible for the develop-
ment of the code. My contribution in the dynamic code was towards the end of
the process, in offering assistance in troubleshooting and debugging the code that
Oweis developed. Regarding the project report, I suggested and formulated the ba-
sic structure of it, and wrote Chapters 1 and 2.1. For the Power-Point-Presentation,
I suggested the initial format during mid-term presentation, wrote and presented
the introductory slides as well as the ones related to the FEM problem formulation
and FEM theory.

Oweis: Afroditi and I teamed up to define the FEM problem and kickstarted the
code by laying out the first steps. Specifically, we tackled the construction of the
external force function. As things progressed, I took the lead on building the rest
of the code. I was also pretty hands-on when it came to implementing any tweaks
or suggestions from the GPU team to boost CPU efficiency. On top of that, I ran
my own benchmarks for CPU performance, making sure our results matched up
with what we got on the university computers. Afroditi and then I completed the
dynamics code through to the end. Plus, I contributed to both the mid-term and
final presentations, not to mention putting in work on the final report in the theory,
methods, and results chapters.

Róbert: Over the course of the project, the GPU team has been working closely
together to develop the GPU implementations and so most of the code is attributed
to the whole team. That being said, in addition to taking part in the coding ses-
sions above, I also worked on implementing our own version of sparse matrices,
which ended up providing a significant performance boost and were the key to work
with the large matrices on the GPU. I also performed most of the benchmarking
on both CPU and GPU implementations and created all of the graphs used. In
the presentations, I wrote and presented our results and comparisons for the static
problem. Similarly, I wrote most of the "Results" and "Conclusions" chapters in the
final report. Overall, I’ve been so happy to be able to take part in such a fun project
and work with such a talented team.

Simon: During the project I have, together with Róbert and Arik, developed the
GPU accelerated versions of the FEM method programs. Between sessions I also

17

6 Contributions

did some coding and a lot of debugging on my own. In the final report, I wrote
the method sections describing how the GPU acceleration was done, as well as the
theory section on GPU-acceleration in Python. Similarly, in the presentation I made
the slides about how we accelerated the programs on GPU. I also presented it for
the static version in both the midway and final presentations.

Arik: Over the course of the project I have contributed by helping the team develop
the GPU accelerated versions of the FEM SA programs. In particular i helped
develop and debug some of the static GPU version of the code, and a larger part in
the explicit dynamic GPU version. I believe I helped myself and the team understand
the ins and outs of GPUs and why we at times had errors in our implementations
and how we could go about to solve them. In addition, i took notes of essential parts
during weekly meetings and distributed these within the group. I helped derive most
of the theoretical work on the theory on solvers for the presentation and report as
an underlying fundamental to help the team draw conclusions as to why our results
came out as they did with that as a support. I helped in structuring the slides for
the midway and final presentation, as well as taking part in them.

18

References
[1] Martin Fagerström and Magnus Ekh. Finite Element Method – Structures Lec-

ture notes. March 6, 2023.

[2] Hiroshi Okuda Serban Georgescu, Peter Chow. Gpu acceleration for fem-based
structural analysis. 20:114–115, 2013.

[3] Wikipedia. Conjugate gradient method, 2024. Accessed: January 10, 2024.

[4] A. Author. An introduction to continuous optimization : foundations and fun-
damental algorithms. Niclas Andréasson, Anton Evgrafov, Michael Patriksson,
2016.

[5] Wikipedia. Generalized minimal residual method, 2024. Accessed: January 25,
2024.

	Introduction
	Background
	Goals
	Limitations
	Resources

	Theory
	Finite Element Problem - Static
	Finite Element Problem - Explicit Dynamic
	Solvers
	Conjugate Gradient Iterative Search
	Conjugate Gradient Squared Iterative Search
	Minimal Residual Iterative Search

	GPU-acceleration in Python

	Method
	GPU-accelerated static FEM
	Stiffness assembly
	Solvers

	Explicit Dynamics Parallelization
	GPU-accelerated Explicit Dynamics

	Results & Discussion
	Static Problem
	Dynamic Problem

	Conclusions
	Contributions
	References

