CHALMERS UNIVERSITY OF TECHNOLOGY

GPU-accelerated Computational Methods
using Python and CUDA

Accelerating a Poisson solver with CUDA

Author: Supervisor:
Jesper MOLLBRANT Prof. Rickard Bensow
Raphaél BOUCHEZ

January 2025

CHALMERS

UNIVERSITY OF TECHNOLOGY

Contents

1

Introduction

1.1 Definition of the Poisson Equation Problem

1.2 The iterative algorithm . . .
1.3 The Multigrid method
1.3.1 CPU-Based PyAMG .

1.3.2 GPU-Accelerated PyAMGX

Problem statement

Methodology
3.1 Acceleration of iterative solver
3.1.1 CPU implementation .

3.1.2 Parallelizing with numba
3.1.3 GPU-computation with CuPy
3.1.4 Optimized GPU computing with CUDA kernels.
3.2 Implementing multigrid methods

3.3 Power consumption

3.3.1 Calculating CO2e Emission

3.3.2 Comparing of GPUs .

Result

4.1 Tterative Solver Acceleration .
4.1.1 CPUsolver
4.1.2 Parralel solver
4.1.3 CuPysolver.
4.1.4 CUDA kernels solver .
4.1.5 Co2e Emission

4.2 Comparison of Multigrid solvers

4.2.1 Accuracy
4.3 GPU Performance Analysis .
43.1 Memory
4.3.2 Computation Time . .
4.3.3 Co2e Emission

Discussion

5.1 Implementation Method and Performance

5.2 Benefits of GPU Acceleration

Conclusion

10
10
10
10
11
12
13
14
14
15
16
16
16

17
17
17

17

1 Introduction

Over the past decade, graphical processing units (GPUs) have widely adopted
for high-performance computing. While central processing units (CPUs) excel
at sequential processing with their fewer and more powerful cores, GPUs of-
fer a fundamentally different approach. With hundreds or thousands of cores
working in parallel, GPUs can distribute workloads across multiple processors
simultaneously, enabling significant speedups for suitable computational tasks.

NVIDIA’s CUDA platform has played an important role in making GPU
computing accessible to developers. This parallel computing platform allows
applications to effectively leverage GPU architecture by running sequential por-
tions of code on the CPU while delegating computationally intensive tasks to
the GPU’s many cores. This hybrid approach takes advantage of each proces-
sor’s strengths: the CPU’s optimization for single-threaded performance and
the GPU’s massive parallel processing capability.

The Poisson equation, an elliptic partial differential equation, exemplifies the
type of problem that can benefit from GPU acceleration. This equation appears
frequently in physics and engineering applications, from calculating electrostatic
potentials to determining pressure fields in fluid dynamics. Given its fundamen-
tal role in many simulations and computational methods, an efficient solution
of the Poisson equation is crucial for overall application performance. This re-
port explores the acceleration of computational methods for solving the Poisson
equation.

1.1 Definition of the Poisson Equation Problem

The Poisson equation is a partial differential equation of the form:

Vp(x,y, 2) = S(x,y, 2),

where p(z,y, z) represents the scalar potential field we seek to solve, and
S(x,y, z) is the source term defining the distribution of sources and sinks within
the domain.

For our study, we defined the problem on a three-dimensional computational
domain [0,1]3, discretized using a non-uniform Cartesian grid with n;, n;, and
ny, points along the z, y, and z axes, respectively. The grid spacing in each di-
rection is derived from power-law transformations, providing variable resolution
across the domain. Specifically:

. 1.2 . 1.5 k 1.1
_ (2 _(J _
Ti=|\|—) Yi =\ —) 2k =\ —)
n; n; ng

where 4, j, and k are the grid indices.
The source term S(z,y, z) is initialized with two localized sources of equal

magnitude but opposite sign:

0, elsewhere.

Boundary conditions are defined to ensure no flux across the edges of the
domain, corresponding to g—g =0, g—’; =0, and % = 0 on all boundaries.

The goal of this problem is to determine the scalar field p(x,y, z) that satis-
fies the Poisson equation given the non-uniform grid, the specified source term

S(z,vy,z), and the imposed boundary conditions.

1.2 The iterative algorithm

The most naive way to computationally solve this problem would be to perform
continuous relaxations on the matrices of the components of the equation. Im-
plementing an iterative algorithm was the first step of our study process and
has helped us better understand the nature of the problem as well as how to
solve it. However, it is quite obvious that solving the Poisson Problem with
iterations over its components will end up quite inefficient. If we want to per-
form x iterations over 3-dimensional matrices of size (N;, N;, N), the cost in
time complexity would become O(N; x N; x Nj, X z), making the scaling quite
complex for high sizes of grids.

Nevertheless, we thought that an algorithm of this complexity was a real
opportunity to showcase the efficiency of high performance computing opti-
mization methods. This is why we still chose to present multiple versions of this
algorithm later in this report. They will be compared over different scenarios
to asses their overall performance and the benefits that GPU-computing can
leverage.

1.3 The Multigrid method

The multigrid method (MG) is a numerical technique for solving differential
equations using multiple levels of grid resolution. At its core, this method uses
a hierarchy of discretizations to efficiently solve complex problems that might
be computationally intensive on a single grid level.

Building upon the classical multigrid approach, the Algebraic Multigrid
(AMG) method offers enhanced flexibility by eliminating the need for explicit ge-
ometric information of the problem. Unlike traditional multigrid methods, AMG
constructs its hierarchy of levels directly from the system matrix, working with
subsets of unknowns without any geometric interpretation. The AMG develops
a sequence of coarser grids directly from the input matrix. This abstraction
from geometry makes AMG particularly valuable for problems discretized on
unstructured meshes and irregular grids.

1.3.1 CPU-Based PyYAMG

PyAMG provides a collection of Algebraic Multigrid solvers through a Python
interface, operating on CPU cores for traditional sequential processing.

1.3.2 GPU-Accelerated PyAMGX

PyAMGX brings multigrid acceleration to GPUs by interfacing with NVIDIA’s
AMGX library through Python. This library enables the construction of multi-
grid solvers that leverage GPU parallel processing capabilities.

2 Problem statement

The growing computational demands of simulations and numerical methods re-
quire efficient solvers for partial differential equations such as the Poisson equa-
tion. Hence, leveraging GPU acceleration requires a detailed understanding of
the trade-offs between computational speed, solution accuracy, and environmen-
tal sustainability.

This study addresses three key research questions:

1. Iterative Solver Acceleration: How do GPU acceleration methods
affect computational time, residual norm, and CO2e emission when applied to
a CPU-based iterative solver?

2. Comparison of Multigrid Methods: How do CPU-based PyAMG
and GPU-accelerated PyAMGX compare in terms of computational time, and
residual norm?

3. GPU Performance Analysis: How do various NVIDIA GPUs perform
relative to each other with respect to computational time, and CO2e emission?

By investigating these questions, this report aims to provide a comprehensive
analysis of the computational and environmental efficiency of GPU acceleration
methods and hardware in solving the Poisson equation.

3 Methodology

3.1 Acceleration of iterative solver
3.1.1 CPU implementation

For a basic CPU implementation of the iterative solver, we can use Numpy
to perform operations on multi-dimensional arrays. The Numpy package is a
standard in scientific Python programming. It provides an interface for creating
arrays and allows the programmer to efficiently perform linear algebra. The
package was utilized to create the an iterative solver using the Jacobi relaxation
method.

3.1.2 Parallelizing with numba

The very first step of optimization that we performed was to bring parallelization
to the program. By dividing the workload over multiple process, we could
reduce the time complexity of the matrix equation solving. To perform this
optimization, we used the numba library. numba is a Python accelerator library.
More than providing a loop parallelization interface, it allows to compile existing
functions to optimized machine code. Using it, we were also able to dodge the
very slow Python CAPI and approach the speeds of C or FORTRAN.

def slow_python_function ():

@numba. jit (nopython=True)
def omptimally_complied_function ():

Figure 1: Compiling function to optimized machine code with numba

Parallelizing the loops did not require much more effort than compiling the
function as numba directly provides a replacement of the classic Python loop.

from numba import njit
from numba import prange

def slow_loop-_iteration ():
for i in range(ni):
for j in range(nj):
for k in range(nk):

@njit (parallel=True)
def quick_parallel_iteration ():
for i in prange(ni):
for j in prange(nj):
for k in prange(nk):

Figure 2: Parallelizing loops with numba

3.1.3 GPU-computation with CuPy

After performing parallelization and optimized compilation, there are only so
few possibilities left if staying in a CPU solver. This is why, at this stage, we
decided to explore shifting the algebra operations to a GPU. GPUs are well

known to offer faster computation on highly parallelizable tasks. Our matrix
equation is an ideal candidate as we can divide the algebra by addressing ’cells’
of the problem’s grids.

The easiest way to transfer the matrix calculus to the GPU was to simply
replace numba bindings with CuPy bindings. The CuPy library is specially
made for this use case. It mimics functions from CuPy and GPU-accelerates
them, allowing its user to benefit from fast GPU-computing algebra without
high prior knowledge of GPU-programming.

import numpy as np
import cupy as cp

CPU

cpu_array = np.array ([1, 2, 3])
cpu_computation = np.linalg.norm(x_cpu)
GPU

gpu_array = cp.array ([1, 2, 3])
gpu_computation = cp.linalg.norm(x_gpu)

Figure 3: GPU computation with CuPy

3.1.4 Optimized GPU computing with CUDA kernels

Now at this point, if we want to perform even better than after all the previous
optimizations, we have to dive a bit deeper in technicality. The most popular
way of programming with GPU is to use Nvidia’s CUDA library to send in-
structions directly to the hardware. Thankfully, things are made a bit easier
in Python, for example with numba. numba provides its own cuda bindings,
allowing to create custom CUDA kernels for specialized computation. A CUDA
kernel is a subroutine that contains instructions for parallelized computation
with CUDA. Leveraging numba’s bindings, we gain access to a deeper control
over the behaviour of our program.

The first step of developing a GPU algorithm is to declare values for the
division of our data. GPUs have a hierarchical structure that logically divides
the workload. Multiple threads are regrouped in blocks which are themselves
regrouped in grids. GPUs contain multiple grids and send structured data to
the threads following a certain logic. This is why the first step of the process is
to come up with a division strategy by setting setting a number of threads per
block and a number of blocks per grid that fits the problem we want to solve.

Then, the next step is to send our data to the GPU so that we can access
it and manipulate it inside our kernel subroutine. A reversed transfer will be
needed for the result once the computation is done.

CPU to GPU
gpu_data = cuda.to_device (cpu-data)

GPU to CPU
cpu_data = gpu.data.copy_-to_host ()

Figure 4: CPU to GPU data transfers

Once all these steps are realized, we can start to write a kernel subroutine.
numba once again provides bindings that make writing the logic of the kernel
easier. The subroutine will be ran in parrallel in threads with different positions
in the grid structure. Therefore, we can link these positions to our 3 dimensional
grids to compute our whole matrices in parallel. This can be done using a numba
binding.

from numba import cuda

@Qcuda. jit
def kermnel ():
i, j, k = cuda.grid(3)

logic based on i, j and k

Figure 5: GPU kernel concept

3.2 Implementing multigrid methods

When studying the multigrid approach for solving the Poisson problem, we
first implemented our own solvers. But, in parrallel to this, we also discovered
some Python libraries to import for solving the Poisson problem. After trying
different approaches, since the aim of using the multigrid method was to come
up with an efficient and fast solver, we decided to use premade libraries as their
algorithms were performing a lot better than the ones we made.

For a CPU based solver, we implemented the pyAMG library which provides
a range of different multigrid solver functions. From this, we only had to set
the parameters and the scenario and send it to the library’s solver.

For a GPU version, we used the pyAMGX library. This library is a set of
bindings for the AMGX toolset developed by Nvidia. AMGX provides multigrid
solvers accelerated with CUDA by Nvidia developers and specialists. However,
the Python pyAMGX library requires setting up your own instance of AMGX
and a set of different tools and library to function corretcly. To get it to work on

the VERA cluster, we had to download and compile our own versions of AMGX
on our local sessions, adjust some tools versions to ensure cross compatibility of
components, and then, manually building a local version of the py AMGX library
to import it manually on our environment. Once this was done, similarily to
the CPU version, we just had to set some parameters and send the scenario to
the solver.

3.3 Power consumption

If GPU usage are growing over a large variety of use cases, it is also important
to point out one of the flaws of using them in large masses: carbon emissions.
As big GPU clusters use a lot of power and generate a lot of heat, their threat
to the environment is slowly becoming a serious question, especially when the
biggest economic powers in the world decide to invest hundreds of billions into
large scale Al training.

3.3.1 Calculating CO2e Emission

To assess the environmental impact of different computational methods, we
calculated their CO2 equivalent (CO2e) emissions using power consumption
data and standardized emission factors.

The power consumption and calculation time data was collected on the
VERA cluster at Chalmers University. For each implementation, we used a
fixed scenario with the same base values, no precision limits were set, the grid
sizes were set to three dimensions of 256 and the solvers were ran on various
ranges of time. Then, we extracted the Watts consumption per slice of 15
seconds and averaged it on the total solving time.

Lastly, for converting kWh to CO2e emissions, we used the Nordic electricity
mix emission factor of 90 grams CO2e per kWh, as specified by Naturvardsverket
(Swedish Environmental Protection Agency, 2023). Two key metrics were cal-
culated:

1. Average Hourly Emissions:

Average Power (W)

1000 x 90

Average Emission (gram/h) =

2. Total Emissions per Calculation:

Average Power (W) x Calculation Time (s)
3600 x 1000

Total Emission (gram) = x90

3.3.2 Comparing of GPUs

After comparing different solvers and algorithms, we also thought it could be
interesting to see how different GPUs perform and the same problems and try
to get an idea of each GPU’s perofrmance to cost ratio.

For this, we ran a set scenario on the pyAMGX solver on different GPUs,
extracted the Watts usage per slice of 15 seconds and averaged it over the total
time spent.

4 Result

4.1 TIterative Solver Acceleration
4.1.1 CPU solver

To asses the performance of this algorithm, we ran it for 1000 iterations on
different grid sizes and measured the computing time of the solving process.

As we could expect, running high dimensional linear algebra on a single-
threaded program on the CPU was not very promising. The values rise very
quickly to the hundreds of seconds and even come close to a thousand for a 3
dimensional 256 sized grid.

Compute time of 1000 iterations for different grid sizes

1000,00 +
750,00

500,00 +

Compute time (s)

250,00 +

0,00

82 16° 322 642 128° 256°

Grid Size

Figure 6: Compute time of 1000 iterations of the CPU iterative solver on dif-
ferent grid sizes

4.1.2 Parralel solver

Using numba to parallelize our algorithm and compile our functions to optimized
machine code, we were able to reduce the compute time from 1000 seconds to
approximately 70 seconds. While this number still represent a long waiting
time for our problem solver, the improvement seemed very promising. It was
even more impressive for the fact that our second solver remained completely
CPU-based at this stage.

10

Compute time of 1000 iterations for different grid sizes

250,00 —

200,00 +—

Compute time (s)

50,00 +—

150,00 ++

100,00 +

x CPU X numba

e

0,00

& 16° 32 64° 128° 256*

Grid Size

Figure 7: Compute time of 1000 iterations of the numba parallelized solver on
different grid sizes

4.1.3 CuPy solver

With CuPy functions, the total compute time of the same problem as for pre-
vious solvers was reduced to approximately 10 seconds. By adopting GPU-
computing, we were finally able to reach reasonable solving time and a drasti-
cally better scaling to large grid dimensions.

Compute time of 1000 iterations for different grid sizes

80,00

60,00

40,00 |

Compute time (s)

20,00

0,00

X CPU X numba CuPy

8 16° 32 647 1287 256°

Grid Size

Figure 8: Compute time of 1000 iterations of the CuPy solver on different grid

sizes

However, at this point, we realized one of the main critical points of pro-
gramming with GPUs: the data transfer overhead. While GPUs benefit from
very fast parallel computations, transferring data from the CPU to the GPU

11

and back is very costly and can often end up longer than actually computing
with the data. This problem especially occurs on smaller sizes of context that
propose lesser levels of problem division. This is why, on small grid sizes, CuPy
ended up spending more time than both CPU solvers, as it had to take time for
transferring data before and after its solving.

Compute time of 1000 iterations for different grid sizes
X CPU X numba CuPy

5,00 —
4,00 +
3,00 +

2,00 +

Compute time (s)

1,00 4+

8 16° 32 64° 1282 266°

Grid Size

Figure 9: Compute time of 1000 iterations of the CuPy solver on smaller grid
sizes

4.1.4 CUDA kernels solver

Implementing custom CUDA kernels allowed us to optimize the data transfers,
addressing the main problematic of our last GPU-based solver. By applying
this new method, we were able to fix our bad performance on low grid levels.

Compute time of 1000 iterations for different grid sizes

X numba % CuPy X numbaw/ CUDA
10,00
8,00 1
z
% 600
£
e
2 400+
£
Q
o
2,00 +
0,00 —
& 162 3 642 1280 2560
Grid Size

Figure 10: Compute time of 1000 iterations of the CUDA solver on smaller grid
sizes

Also, centralizing our matrix operations and fine-tuning the program to our
use case, we were able to reduce even more the total computation time to as

12

little as 4 seconds.

Compute time of 1000 iterations for different grid sizes
X numba CuPy x numbaw/CUDA
80,00

60,00 -+

40,00 1

Compute Time (s)

20,00 +

_________d)(
0,00

82 16° 322 642 128 2562

Grid Size

Figure 11: Compute time of 1000 iterations of the CUDA solver on different
grid sizes

4.1.5 Co2e Emission

The environmental impact of different acceleration methods is presented in Ta-
ble 1. The result presents two important aspects of emissions: the average
hourly rate and the total emissions for completing the calculation.

GPU-based methods generally showed higher hourly emission rates com-
pared to CPU-based approaches, due to their higher power consumption. The
CuPy implementation had the highest hourly emission rate at 22.97 grams/hour,
followed by Numba with CUDA at 13.06 grams/hour. In contrast, the basic
CPU implementation had the lowest hourly rate at just 0.47 grams/hour.

However, when considering total emissions for the complete calculation, a
different pattern emerges due to the varying computation times:

e GPU-accelerated Numba with CUDA and PyAMGX achieved the lowest
total emissions (0.0154 and 0.0104 grams respectively) despite their higher
hourly rates, thanks to their superior computational efficiency.

e The basic CPU implementation, despite its low hourly rate, resulted in
the highest total emissions (0.1291 grams) due to its significantly longer
computation time.

e CuPy presented an interesting case where its combination of high hourly
emissions and relatively slower runtime resulted in higher total emissions
(0.0624 grams) than the CPU-based Numba njit (0.0456 grams).

These results demonstrate that faster computation times can lead to a
lower overall environmental impact, even when using hardware with significantly

13

higher power consumption. This highlights the importance of considering both
power consumption and computational efficiency when evaluating the environ-

mental imp

act of different solver implementations.

Solver Average Emission (Gram/h) | Emission of Calculation Time (Gram)
Numba w/ CUDA 13.06 0.0154
CuPy 22.97 0.0624
PyAMGX 9.83 0.0104
CPU 0.47 0.1291
CPU Numba njit 2.37 0.0456

Table 1: Comparison of emissions from different solvers.

4.2 Comparison of Multigrid solvers
4.2.1 Accuracy

Comparing the multigrid solvers to its iterative counterparts is quite tricky. As
the structure of their algorithm is very different, we have to set a fair baseline
unit for them to fight in common ground. Setting a number of iteration would
not be the ideal as the mutligrid solvers rely on completely different logical
operations. This is why we simply chose to run both of them on the same
problem preset, for a set amount of time, and compare their results. This way,
we would be able to get an idea of how efficiently both of these solver types
spend their computation times.

First, we ran the iterative CPU algorithm against the CPU-based pyAMG
solver. After 1000 seconds, the results were shocking: the residual norm of the
iterative solver was 0,20 against 6,75e-09 for pyAMG. This enormous gap not
only showcased how inefficient iteratively solving a Poisson problem is, but also
how good the pyAMG library performed.

Now, if we look back at the benefits of GPU-acceleration on our past solvers,
by combining the efficiency of the multigrid method and the speed of GPU-
computing, we could be able to reach precise results in only a few seconds.

The next step was to run our pyAMGX solver on the same problem as before.
Once again, the results were very positive. After only 3,81 seconds, the solver
reached a residual norm as little as the precision of the GPU it was running on
and automatically stopped. The residual norm reached a value of approximately
8.07e-11.

14

Mem Usage (GB) residual

22.5723 7.871868e+81
22.5723 6.43878%e+00
22.5723 6.433916e-01
22.5723 7.26208%e-82
22.5723 8.814475e-83
22,5723 1.838355e-@3
22.5723 1.201393e-04
22.5723 1.547974e-85
22.5723 2.062478e-86
22.5723 3.529866e-87
22.5723 7.197652e-88
22.5723 1.9237e0e-08
22.5723 3.308770e-09
22.5723 5.111199e-10
22.5723 8.068936e-11

Total Iterations: 14

Avg Convergence Rate: 9.1403
Final Residual: B8.068936e-11
Total Reduction in Residual: 1.141120e-12
Maximum Memory Usage: 22,572 GB

Figure 12: Evolution of the residual norm with the py AMGX solver

4.3 GPU Performance Analysis

The GPU we compared in this part were 3 GPUs available on the VERA cluster
at Chalmers. They all had different specifications that could impact the per-
formance of the solving, but the one we expected to matter the most were the
memory and the bandwidth.

GPU | Memory | Memory Bandwidth
A100 80GB 1,935GB/s

A40 48GB 696GB/s

T4 16GB 300GB/s

In order to collect some data for those GPUs, we measured the computation
time of the pyAMGX solver on all of them for a set scenario. Also, to have
an idea of their power consumption for this specific use case, we ran multiple
problems in a row for a few minutes, extracted the power consumption of this
period of time, and averaged it. Since the solving of a single problem was too
quick to extract power consumption data, we projected the average consumption
on the short compute time of the solver to get an idea of how much solving one
instance of equation costs.

15

4.3.1 Memory

As expected, GPU memory had a strong influence on our solvers. At first, we
wanted to run these tests on the same presets as all the other tests we had done:
on 256-sized 3-dimensional grids. However, due to the lower memory capacity
of the T4 GPU, the solver would crash during the initialization of the problem,
indicating an OutOfMemory exception. This is why we had to downgrade the
scenario to a 128-sized 3-dimensional grid problem in order for all GPUs to be
able to run on the same conditions.

4.3.2 Computation Time

Now even if it is quite obvious that faster GPUs will perform better, it is inter-
esting to see if the increase in bandwidth has the same scaling as our compute
time. Here is what we observed:

GPU Bandwidth Increase | Solving Speedup
T4 (baseline) - -

A40 232% 282%

A100 645% 477%

Even if the hierarchy is respected, we can see a disparity between the growth
of bandwidth and speedup. The speedup of going from a T4 GPU to an A40
exceeds the gain of bandwidth of the exchange. However, even if switching from
an A40 to an A100 makes us gain a lot of time, the speedup of this upgrade is
significantly lower than the bandwidth increase. These observations can make us
question the possibility of GPU computing to reach a limit in its improvements
over technological advancements.

4.3.3 Co2e Emission

The environmental impact of different GPU hardware is shown in Table 2. The
result presents three NVIDIA GPUs: the A100, A40, and T4, displaying both
their hourly emission rates and total emissions for the complete calculation.
The emission patterns reveal that the newer, high-performance GPUs (A100
and A40) showed substantially higher hourly emission rates (11.40 and 12.97
grams/hour respectively) compared to the T4 (4.50 grams/hour). However,
the A100’s superior computational efficiency led to the lowest total emissions
(0.0010 grams) for the complete calculation, approximately half that of both
the A40 and T4 (0.0020 and 0.0019 grams respectively).

This inverse relationship between hourly emissions and total environmental
impact highlights that while more powerful GPUs may have a higher power
consumption, their ability to complete calculations more quickly can result in
lower overall emissions. This advantage could become even more pronounced in
more computationally intensive problems, where the performance gap between
the GPUs could be larger.

16

GPU | Emission of Calculation Time (Gram) | Average Emission (Gram/h)
A100 0.0010 11.4003
A40 0.0020 12.9744
T4 0.0019 4.5018

Table 2: Comparison of emissions for different GPUs.

5 Discussion

Our research into GPU acceleration of Poisson equation solvers revealed several
significant insights about performance, efficiency, and environmental impact.

5.1 Implementation Method and Performance

The choice and design of implementation methods proved crucial for both com-
putational efficiency and environmental impact. Our findings demonstrate that
simply utilizing GPU hardware is not sufficient; the algorithm must be well-
suited to the problem at hand.

The contrasting performance of PyAMGX and CuPy implementations par-
ticularly illustrates this point: - PyAMGX, despite its high power consumption,
achieved low overall CO2e emissions due to its algorithm’s excellent suitability
for Poisson equations, resulting in significantly reduced computation times. -
CuPy, while also GPU-accelerated, showed less favorable results for our spe-
cific problem size. Its higher power consumption was not sufficiently offset by
computational speed gains, leading to higher overall emissions. However, this
implementation might prove more efficient for larger, more complex problems.

5.2 Benefits of GPU Acceleration

Our study confirmed several key advantages of GPU acceleration when properly
implemented:

1. Computational Efficiency - Significantly reduced calculation times - Im-
proved accuracy in residual calculations

2. Environmental Impact - Lower carbon footprint for large-scale computa-
tions - Reduced total energy consumption despite higher power usage

6 Conclusion

e Impact of GPU Acceleration: GPU acceleration significantly improves
computational time, residual norm, and CO2e emissions when applied to
a CPU-based iterative solver.

e Comparison of PyAMG and PyAMGX: The GPU-based PyAMGX out-
performs the CPU-based PyAMG, achieving significantly lower computa-
tion times and residual norms.

17

e GPU Performance Differences: The choice of GPU has a notable effect on
computation time. The A100 performs best, followed by the A40, with
the T4 showing the slowest performance. While CO2e emission differences
between GPUs were less pronounced, the A100 still demonstrated the best
efficiency in terms of emissions.

This study highlights the benefits of GPU acceleration, showing that care-
fully selected hardware and methods can lead to substantial improvements in
both computational efficiency and environmental impact.

18

