
CFD with OpenSource Software Memory management in C++ and OpenFOAM 1

Introduction to Memory Management in C++ and OpenFOAM:

(What on earth is going on with autoPtr<> and tmp<>)

CFD with OpenSource Software Course

Chalmers University of Technology

CFD with OpenSource Software Memory management in C++ and OpenFOAM 2

Outline

• Memory allocation

• Handling raw pointers

• Memory management in classes

• Smart pointers

• Memory management in OpenFOAM

• autoPtr<> and tmp<>

Test codes and examples are found at the GitHub repository https://github.com/salehisaeed/OSCFD

https://github.com/salehisaeed/OSCFD

CFD with OpenSource Software Memory management in C++ and OpenFOAM 3

Memory Allocation

CFD with OpenSource Software Memory management in C++ and OpenFOAM 4

Memory

• Memory: a finite sequence of fixed-size units

• Each unit has an address (imagine a single-street city)

• Memory is not storage!

• For all data, memory must be allocated …

CFD with OpenSource Software Memory management in C++ and OpenFOAM 5

Memory management

• The process of managing computer memory

• Provide ways for programs to:

✓Request dynamic memory allocation when needed

✓Release it for reuse once it’s no longer in use

• We keep the address of the allocated memory in a
variable, i.e., Pointer

• When do we know the size to allocate?

✓Compile time: Static allocation (on Stack)

✓Run-time: Dynamic allocation (on Heap)

int* ptr = new int;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 6

Heap allocation

• Heap Allocation: Memory is allocated on the heap at runtime.

• new Operator: Used to allocate memory dynamically.

• Manual Control: The developer controls memory size and lifetime.

#include <iostream>
int main()
{
 int var = 42; // creates an integer on the stack
 int* ptr = new int; // Allocates memory for an integer on the heap
 *ptr = 42; // Assigns a value to the allocated memory
 return 0;
}

• Is there any problem with this code?

00_SimpleAllocation.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 7

Memory leak

$ g++ -g 00_SimpleAllocation.cpp -o 00_SimpleAllocation

$ valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes \
./00_SimpleAllocation &> log.00_SimpleAllocation

(...)
==2505926== by 0x10915E: main (00_MemoryLeakSimple.cpp:4)
==2505926==
==2505926== LEAK SUMMARY:
==2505926== definitely lost: 4 bytes in 1 blocks
==2505926== indirectly lost: 0 bytes in 0 blocks
==2505926== possibly lost: 0 bytes in 0 blocks
==2505926== still reachable: 0 bytes in 0 blocks
==2505926== suppressed: 0 bytes in 0 blocks

#include <iostream>
int main()
{
 int var = 42; // creates an integer on the stack
 int* ptr = new int; // Allocates memory for an integer
 *ptr = 42; // Assigns a value to the allocated memory
 return 0;

}

CFD with OpenSource Software Memory management in C++ and OpenFOAM 8

Static and dynamic allocation
Memory allocation

Static
The size is known at compile time

Static memory allocation: Stack

Dynamic
The size is determined at run-time

Dynamic memory allocation: Heap

#include <iostream>
int main()
{
 // Fixed-size array allocated statically
 int arr[5] = {1, 2, 3, 4, 5};
 return 0;

}

#include <iostream>
int main()
{
 int n;
 // Input size is determined by user
 std::cin >> n;
 // Dynamic allocation of an array
 int* arr = new int[n];
 for (int i = 0; i < 5; i++)
 arr[i] = i + 1;

 delete[] arr;
 return 0;

}

CFD with OpenSource Software Memory management in C++ and OpenFOAM 9

Memory

Stack

main()

n

arr

i

Heap

Memory layout

• Stack and Heap: Two key areas where memory is allocated.

• Stack: Stores local variables, function calls.

• Heap: Stores dynamically allocated memory.

#include <iostream>
int main()
{
 int n;
 // Input size is determined by user
 cin >> n;
 // Dynamic allocation of an array
 int* arr = new int[n];
 for (int i = 0; i < 5; i++)
 arr[i] = i + 1;
 delete[] arr;

 return 0;
}

1 2 3 4 5

CFD with OpenSource Software Memory management in C++ and OpenFOAM 10

Stack vs. Heap

• What about OpenFOAM? When do we need heap (dynamic) allocation?

CFD with OpenSource Software Memory management in C++ and OpenFOAM 11

Deallocation

• Some programming languages (such as Python, Java)
automatically deallocate (free) heap allocated memory

• It is usually called garbage collection (GC)

• GC adds some overhead

• C++ prioritizes performance and control over automatic
management

• In C++, every single heap allocated memory should be
freed manually

• In other words, every new operator in C++ should be
followed by a corresponding delete

CFD with OpenSource Software Memory management in C++ and OpenFOAM 12

Why not rely on the OS?

• Most modern operating systems have garbage collection
algorithms

• Why not just rely on the OS:

✓Resource Waste

✓Performance Issues

✓Incomplete Cleanup

✓Reliability

✓Portability

✓Hardware with no OS

CFD with OpenSource Software Memory management in C++ and OpenFOAM 13

Memory Management in Classes

CFD with OpenSource Software Memory management in C++ and OpenFOAM 14

Dynamically allocated member data

• Just like other examples, any dynamically allocated
memory should be released.

• However, some other problems may also occur, if we are
not cautious.

• Let’s have a look at Example 1.

class myList
{
public:
 myList(int);
 int* elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = new int[size];

}

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 cout << "Bye" << endl;

}

01_DynamicMemory.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 15

Memory leak
Memory

Stack

main()

Heap

u

elements

size 5

Allocated memory
with no pointer

(Garbage!)

01_DynamicMemory.cpp

class myList
{
public:
 myList(int);
 int* elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = new int[size];

}

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 cout << "Bye" << endl;

}

CFD with OpenSource Software Memory management in C++ and OpenFOAM 16

Destructor
class myList
{
public:
 myList(int);
 ~myList(); // destructor
 int *elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = new int[s];

}

myList::~myList()
{
 cout << " --> destructor called <-- \n";
 delete[] elements;

}

02_Destructor.cpp

• A special member function that is automatically called
when an object goes out of scope or is explicitly deleted.

• Have a look at Example 2.

• Now the allocated memory is freed. The class does not
have any memory management problem, and everything
is fine.

• Or is it?

CFD with OpenSource Software Memory management in C++ and OpenFOAM 17

Shallow copy problem

• Problem with copying an object that contains pointers or
dynamically allocated memory,

• Instead of copying the actual data, only the pointers
(addresses) are copied.

• Let’s have a look at Example 3.

(...)

void print_list(myList v)
{
 cout << "Print the list" << endl;
 for (int i = 0; i < v.get_size(); i++)
 cout << v.elements[i] << endl;

}

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;
 print_list(u);
 cout << "Bye" << endl;

}

03_ShallowCopyProblem.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 18

Shallow copy problem
Memory

Stack

main()

Heap

1 2 3 4 5

u

elements

size 5

print_list()

v

elements

size 5 Dangling pointer
(bug)

(...)

void print_list(myList v)
{
 cout << "Print the list" << endl;
 for (int i = 0; i < v.get_size(); i++)
 cout << v.elements[i] << endl;

}

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;
 print_list(u);
 cout << "Bye" << endl;

}

03_ShallowCopyProblem.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 19

Copy constructor

• To address the shallow-copy problem and perform a deep
copy of the object, a non-default copy-constructor is
required

• The copy constructor copies all the member data as well as
the heap allocated memories

• Let’s have a look at Example 4.

class myList
{
public:
 myList(int);
 myList(const myList&); // copy constructor
 ~myList(); // destructor
 int get_size();
 int* elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = new int[size];

}

myList::myList(const myList& u)
{
 cout << " --> copy constructor called <-- \n";
 size = u.size;
 elements = new int[u.size];
 for (int i = 0; i < u.size; i++)
 elements[i] = u.elements[i];

}

04_CopyConstructor.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 20

Deep copy
Memory

Stack

main()

Heap

1 2 3 4 5

u

elements

size 5

print_list()

v

elements

size 5

1 2 3 4 5

(...)

void print_list(myList v)
{
 cout << "Print the list" << endl;
 for (int i = 0; i < v.get_size(); i++)
 cout << v.elements[i] << endl;
}

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;
 print_list(u);
 cout << "Bye" << endl;
}

CFD with OpenSource Software Memory management in C++ and OpenFOAM 21

Copy constructor class myList
{
public:
 myList(int);
 myList(const myList&); // copy constructor
 ~myList(); // destructor
 int get_size();
 int* elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = new int[size];

}

myList::myList(const myList& u)
{
 cout << " --> copy constructor called <-- \n";
 size = u.size;
 elements = new int[u.size];
 for (int i = 0; i < u.size; i++)
 elements[i] = u.elements[i];

}

04_CopyConstructor.cpp

• Now with the copy constructor, the heap allocated memory
is deeply copied, when passed by value.

• The class does not have any memory management
problem, and everything is fine.

• Or is it?

CFD with OpenSource Software Memory management in C++ and OpenFOAM 22

Assignment problem

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;

 myList v = u; // copy constructor called
 myList w(u); // copy constructor called

 myList x;
 x = u; // assignment

}

05_AssignmentProblem.cpp

• A copy constructor is used to initialize a previously
uninitialized object from some other object's data.

• An assignment operator is used to replace the data of a
previously initialized object with some other object's data.

myList v = s;

myList x;
x = s;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 23

Assignment problem
Memory

Stack

main()

Heap

1 2 3 4 5

u

elements

size 5

v

elements

size 5

1 2 3 4 5

x

elements

size 5

• The shallow copy problem again!

int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;

 myList v = u; // copy constructor called
 myList w(u); // copy constructor called

 myList x;
 x = u; // assignment

}

05_AssignmentProblem.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 24

Overloading assignment operator

myList& myList::operator=(const myList& u)
{
 size = u.size;
 delete[] elements;
 elements = new int[size];
 for (int i = 0; i < size; i++)
 elements[i] = u.elements[i];

 return *this;
}
(...)
int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;

 myList v = u; // copy constructor called
 myList w(u); // copy constructor called

 myList x;
 x = u; // assignment

}

06_AssignmentOverload.cpp Memory

Stack

main()

Heap

1 2 3 4 5

u

elements

size 5

v

elements

size 5

1 2 3 4 5

x

elements

size 5

1 2 3 4 5

CFD with OpenSource Software Memory management in C++ and OpenFOAM 25

Overloading assignment operator
myList& myList::operator=(const myList& u)
{
 size = u.size;
 delete[] elements;
 elements = new int[size];
 for (int i = 0; i < size; i++)
 elements[i] = u.elements[i];

 return *this;
}
(...)
int main()
{
 cout << "Hello" << endl;
 myList u(5);
 for (int i = 0; i < u.get_size(); i++)
 u.elements[i] = i;

 myList v = u; // copy constructor called
 myList w(u); // copy constructor called

 myList x;
 x = u; // assignment

}

06_AssignmentOverload.cpp

• Now with the overloading assignment operator, the heap
allocated memory is deeply copied by assignment.

• The class does not have any memory management
problem, and everything is fine.

• Or is it?

• Don’t worry, only one small issue remains!

CFD with OpenSource Software Memory management in C++ and OpenFOAM 26

Self assignment problem

myList& myList::operator=(const myList& u)
{
 size = u.size;
 delete[] elements;
 elements = new int[size];
 for (int i = 0; i < size; i++)
 elements[i] = u.elements[i];

 return *this;
}

06_AssignmentOverload.cpp
• Let’s assume the user of your class writes the following

funny code:

• The elements of the u will be deleted and then we will end
up with a pointer that points to a freed memory!

• The code should reliable enough to even handle funny
usages

u = u;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 27

Addressing the self assignment

• To address this issue, we return in case of self-assignment

• Now the class really does not have any memory
management problem, and everything is fine.

myList& myList::operator=(const myList& u)
{
 if (this == &s)
 return *this;

 size = u.size;
 delete[] elements;
 elements = new int[size];
 for (int i = 0; i < size; i++)
 elements[i] = u.elements[i];

 return *this;
}

07_AssignmentOverload.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 28

General rules

• For a class that dynamically allocates
memory on the heap, one should
explicitly define:

✓A destructor

✓A copy constructor

✓A copy assignment operator

• Let’s look at an OpenFOAM example:
fvMatrix class in OpenFOAM-v2112

Memory

Stack

main()

Heap

1 2 3 4 5

u

elements

size 5

CFD with OpenSource Software Memory management in C++ and OpenFOAM 29

How OpenFOAM handles raw pointers

• Let’s look at an OpenFOAM example:
fvMatrix class in OpenFOAM-v2112

• Specifically, loo at the member data raw
pointer faceFluxCorrectionPtr_

template<class Type>
Foam::fvMatrix<Type>::fvMatrix
(
 const GeometricField<Type, fvPatchField, volMesh>& psi,
 const dimensionSet& ds
)
:
 lduMatrix(psi.mesh()),
 psi_(psi),
 useImplicit_(false),
 lduAssemblyName_(),
 nMatrix_(0),
 dimensions_(ds),
 source_(psi.size(), Zero),
 internalCoeffs_(psi.mesh().boundary().size()),
 boundaryCoeffs_(psi.mesh().boundary().size()),
 faceFluxCorrectionPtr_(nullptr)
{

fvMatrix.C in OpenFOAMv2112

CFD with OpenSource Software Memory management in C++ and OpenFOAM 30

Smart Pointers

CFD with OpenSource Software Memory management in C++ and OpenFOAM 31

Smart Pointers
• In big project, it hard to keep track of all the heap allocated memories and
delete them.

• Smart pointers automates this (that’s all what they are!).

• Some people have this style of coding that they never ever use new and
delete. Some others only use new and delete. OpenFOAM uses both!

• It recommended to use them, unless you can’t for some reason.

• According to Microsoft: “smart pointers are used to help ensure that
programs are free of memory and resource leaks and are exception-safe.”

• Types of smart pointers:

✓std::unique_ptr<>

✓std::shared_ptr<>

✓std::weak_ptr<>

CFD with OpenSource Software Memory management in C++ and OpenFOAM 32

std::unique_ptr<>

• Unique ownership of memory

• Scoped pointer: when the pointer goes out of
scope the memory is released

• It has negligible overhead

• Unique: one cannot copy them (share the
ownership of memory)

• Let’s have a look at Example 8.

• Let’s look at an OpenFOAM example:
fvMatrix class in OpenFOAM-v2406

class myList
{
public:
 myList(int);
 unique_ptr<int[]> elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = unique_ptr<int[]>(new int[size]); // with new
 // elements = make_unique<int[]>(size); // with make_unique

}

08_UniquePointer.cpp

CFD with OpenSource Software Memory management in C++ and OpenFOAM 33

std::shared_ptr<>

• Sharing ownership of a memory

• Uses reference counting to keep track of the
number of pointer that point to the same
memory

• Reference counting adds some overhead

• When all pointer die (ref. count = 0), the
memory is released.

• Let’s have a look at Example 9.

• weak_ptr<> is similar to shared_ptr<>
without increasing the ref. count.

class myList
{
public:
 myList(int);
 shared_ptr<int[]> elements;

private:
 int size;

};

myList::myList(int s)
{
 cout << " --> constructor called <-- \n";
 size = s;
 elements = shared_ptr<int[]>(new int[size]);

}

09_SharedPointer.cpp

	Slide 1: Introduction to Memory Management in C++ and OpenFOAM: (What on earth is going on with autoPtr<> and tmp<>)
	Slide 2: Outline
	Slide 3: Memory Allocation
	Slide 4: Memory
	Slide 5: Memory management
	Slide 6: Heap allocation
	Slide 7: Memory leak
	Slide 8: Static and dynamic allocation
	Slide 9: Memory layout
	Slide 10: Stack vs. Heap
	Slide 11: Deallocation
	Slide 12: Why not rely on the OS?
	Slide 13: Memory Management in Classes
	Slide 14: Dynamically allocated member data
	Slide 15: Memory leak
	Slide 16: Destructor
	Slide 17: Shallow copy problem
	Slide 18: Shallow copy problem
	Slide 19: Copy constructor
	Slide 20: Deep copy
	Slide 21: Copy constructor
	Slide 22: Assignment problem
	Slide 23: Assignment problem
	Slide 24: Overloading assignment operator
	Slide 25: Overloading assignment operator
	Slide 26: Self assignment problem
	Slide 27: Addressing the self assignment
	Slide 28: General rules
	Slide 29: How OpenFOAM handles raw pointers
	Slide 30: Smart Pointers
	Slide 31: Smart Pointers
	Slide 32: std::unique_ptr<>
	Slide 33: std::shared_ptr<>

