CHALMERS

UNIVERSITY OF TECHNOLOGY

Introduction to Memory Management in C++ and OpenFOAM:

(What on earth is going on with autoPtr<> and tmp<>)

CFD with OpenSource Software Course

Chalmers University of Technology

Outline

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

* Memory allocation

* Handling raw pointers

* Memory management in classes

* Smart pointers

* Memory management in OpenFOAM

* autoPtr<> and tmp<>

Test codes and examples are found at the GitHub repository https://github.com/salehisaeed/0SCFD

CFD with OpenSource Software Memory management in C++ and OpenFOAM 2

https://github.com/salehisaeed/OSCFD

Memory Allocation

Memory

Memory: a finite sequence of fixed-size units

Each unit has an address (imagine a single-street city)

* Memory is not storage!

For all data, memory must be allocated

CFD with OpenSource Software Memory management in C++ and OpenFOAM 4

Memory management

* The process of managing computer memory

* Provide ways for programs to:

v'Request dynamic memory allocation when needed

v'Release it for reuse once it’s no longer in use

* We keep the address of the allocated memoryin a
variable, i.e., Pointer

* When do we know the size to allocate?

v'Compile time: Static allocation (on Stack)

v'Run-time: Dynamic allocation (on Heap)

CFD with OpenSource Software

L 00 N o UL W N

Memory management in C++ and OpenFOAM

Heap allocation

* Heap Allocation: Memory is allocated on the heap at runtime.
* new Operator: Used to allocate memory dynamically.

* Manual Control: The developer controls memory size and lifetime.

00_SimpleAllocation.cpp

#tinclude <iostream>
int main()
{

int var = 42;

int* ptr = new int;
*ptr = 42;
return 0;

* Is there any problem with this code?

CFD with OpenSource Software Memory management in C++ and OpenFOAM 6

Memory leak

#include <iostream>
int main()
{
int var = 42;
int* ptr = new int;
*ptr = 42;
return 0;

$ g++ -g 00 _SimpleAllocation.cpp -o 00 _SimpleAllocation

$ valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes \
./00_SimpleAllocation &> log.00 SimpleAllocation

(...)

=2505926== by ©x10915F: main (9@ MemoryleakSimple.cpp:4)

==2505926==
==2505926== LEAK SUMMARY:

==2505926== definitely lost:
==2505926== indirectly lost:
==2505926== possibly lost:
==2505926== still reachable:
==2505926== suppressed:

CFD with OpenSource Software

bytes
vytes
bytes
bytes
bytes

blocks
blocks
blocks
blocks
blocks

Memory management in C++ and OpenFOAM

Static and dynamic allocation

Memory allocation

Static Dynamic

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

The size is known at compile time The size is determined at run-time

Static memory allocation: Stack

Dynamic memory allocation: Heap

#include <iostream>
int main()

{

#include <iostream>
int main()

{

int n;

std::cin >> n;

int arr[5] = {1, 2, 3, 4, 5};
return 0;

int* arr =(new)int[n];

for (int i = @; 1 < 5; i++)
arr[i] = i + 1;

delete[]Varr;

return 0;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 8

Memory layout

¢ Stack and Heap: Two key areas where memory is allocated. Memory

« Stack: Stores local variables, function calls. Stack Heap
* Heap: Stores dynamically allocated memory.

#tinclude <iostream>
int main()

{

int n;

cin >> n;

int* arr = new int[n];

for (int 1 = @; i < 5; i++)
arr[i] = 1 + 1;

delete[] arr;

return 0;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 9

Stack vs. Heap

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

Feature Stack Heap

Allocation Automatic (function calls) Manual (new / delete)
Access Speed Fast Slower

Memory Size Limited (small, fixed size) Large (limited by system)
Lifetime Automatic (end of scope) Manual (until delete called)
Common Uses Local variables, function calls Dynamic data structures

* What about OpenFOAM? When do we need heap (dynamic) allocation?

CFD with OpenSource Software Memory management in C++ and OpenFOAM 10

Deallocation

Some programming languages (such as Python, Java)
automatically deallocate (free) heap allocated memory

Itis usually called garbage collection (GC)
GC adds some overhead

C++ prioritizes performance and control over automatic
management

In C++, every single heap allocated memory should be
freed manually

In other words, every new operator in C++ should be
followed by a corresponding delete

Write a
Program

26%

Memory

26%

Memory

534.2 MB

Fix the
memory
leak

26%

Memory

| 1,476.8MB

CFD with OpenSource Software Memory management in C++ and OpenFOAM

11

Why not rely on the OS?

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

WHEN YOU RELY ON THE 0S
TO CLEAN UP YOUR MEMORY LEAKS

* Most modern operating systems have garbage collection
algorithms

* Why not just rely on the OS:

v'Resource Waste
v'Performance Issues
v'Incomplete Cleanup
v'Reliability
v'Portability

v'Hardware with no OS

CFD with OpenSource Software Memory management in C++ and OpenFOAM 12

Memory Management in Classes

Dynamically allocated member data

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

01 _DynamicMemory.cpp

class mylList

{
public:
myList(int);

* Just like other examples, any dynamically allocated int* elements:

memory should be released.
private:
int size;
* However, some other problems may also occur, if we are }s

not cautious. . . .
myList::myList(int s)

{
cout <<
* Let’s have a look at Example 1. size = s;

elements = new int[size];

--> constructor called <-- \n";

main()

cout << "Hello" << endl;
myList u(5);
cout << "Bye" << endl;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 14

Memory leak

01 _DynamicMemory.cpp

class mylList

{

public:
myList(int);
int* elements;

private:
int size;

+s

myList::myList(int s)
{

cout << " --> constructor called <-- \n";
size = s;

elements = new int[size];

main()
cout << "Hello" << endl;

myList u(5);
cout << "Bye" << endl;

CFD with OpenSource Software

main()

u

elements

size

Memory management in C++ and OpenFOAM

Allocated memory
with no pointer
(Garbage!)

Destructor

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

02 Destructor.cpp

class myList
{ .
A special member function that is automatically called public:

. . .. myList(int);
when an object goes out of scope or is explicitly deleted. L)

int *elements;

* Have a look at Example 2. private:
int size;
s
* Now the allocated memory is freed. The class does ngt myList: :myList(int s)
have any memory management problem, and everything {
is fine. cout << " --> constructor called <-- \n";

size = s;
elements = new int[s];

}

Orisit?

myList::~myList()
{

cout << --> destructor called <-- \n";
delete[] elements;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 16

Shallow copy problem

03_ShallowCopyProblem.cpp

(...)
void print_list(myList v)
{
* Problem with copying an object that contains pointers or cout << "Print the list" << endl;

dynamically allocated memory, for E;E’E i: eélim;n:c/;?i;_izggéi i++)
V. 5

* Instead of copying the actual data, only the pointers
(addresses) are copied.

main()

cout << "Hello" << endl;

myList u(5);

for (int i = @; i < u.get_size(); i++)
u.elements[i] = i;

print_list(u);

cout << "Bye" << endl;

* Let’s have a look at Example 3.

CFD with OpenSource Software Memory management in C++ and OpenFOAM 17

Shallow copy problem

Memory

03_ShallowCopyProblem.cpp

_ Stack Heap

void print_list(myList v)
{
cout << "Print the list" << endl;
for (int i = @; i < v.get_size(); i++)
cout << v.elements[i] << endl;

elements

Dangling pointer

main()

cout << "Hello" << endl;

myList u(5);

for (int 1 = @; i < u.get_size(); i++)
u.elements[i] = i;

print_list(u);

cout << "Bye" << endl;

elements

CFD with OpenSource Software Memory management in C++ and OpenFOAM 18

04 _CopyConstructor.

Copy constructor

{
public:
myList(int);
myList(const myList&);
~myList();
int get _size();
* To address the shallow-copy problem and perform a deep int* elements;
copy of the object, a non-default copy-constructor is
required private:
int size;
}s
* The copy constructor copies all the member data as well as myList::myList(int s)
the heap allocated memories {

cout <<
size = s;
elements = new int[size];

--> constructor called <-- \n";

* Let’s have a look at Example 4. }

myList::myList(const myList& u)
{

cout << --> copy constructor called <--

size = u.size;

elements = new int[u.size];

for (int 1 = @; i < u.size; i++)
elements[i] = u.elements[i];

CFD with OpenSource Software Memory management in C++ and OpenFOAM 19

Deep copy

(...)

void print_list(myList v)

{ print_list()

cout << "Print the list" << endl; v
for (int 1 = 0; 1 < v.get size(); i++)
cout << v.elements[i] << endl; elements

size

main()

cout << "Hello" << endl;

myList u(5);

for (int i = @; i < u.get_size(); i++) u
u.elements[i] = i;

print_list(u);

cout << "Bye"

main()

elements

<< endl; size

CFD with OpenSource Software Memory management in C++ and OpenFOAM

04 _CopyConstructor.

Copy constructor

{
public:

myList(int);
. myList(const myList&);
* Now with the copy constructor, the heap allocated memory ~myList();
is deeply copied, when passed by value. int get_size();
int* elements;

* The class does not have any memory management p'ﬂlv"f‘ti: ,
in Sslze;

problem, and everything is fine. };

myList::myList(int s)
{

cout <<
size = s;
elements = new int[size];

--> constructor called <-- \n";

* Orisit? }
myList::myList(const myList& u)
{

cout << --> copy constructor called <-- \n";
size = u.size;
elements = new int[u.size];
for (int 1 = @; i < u.size; i++)
elements[i] = u.elements[i];

CFD with OpenSource Software Memory management in C++ and OpenFOAM 21

Assignment problem

* A copy constructor is used to initialize a previously
uninitialized object from some other object's data.

myList v = s;

* An assignment operator is used to replace the data of a

previously initialized object with some other object's data.

myList x;
X = S;

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

05_AssignmentProblem.cpp

int main()

{

cout << "Hello" << endl;

myList u(5);

for (int i = @; 1 < u.get_size(); i++)
u.elements[i] = i;

myList v = u;
myList w(u);

myList Xx;
X = Uj;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 22

Assignment problem

Memory

05_AssignmentProblem.cpp

main()

cout << "Hello" << endl;

myList u(5);

for (int i = @; i < u.get_size(); i++)
u.elements[i] = i;

myList v = u;
myList w(u);

myList x;
X = U;

* The shallow copy problem again!

CFD with OpenSource Software Memory management in C++ and OpenFOAM 23

Overloading assighment operator

06_AssignmentOverload.cpp

myList& mylList::operator=(const myList& u)

{

size = u.size;

delete[] elements;

elements = new int[size];

for (int i = @; i < size; i++)
elements[i] = u.elements[i];

return *this;

>

main()

cout << "Hello" << endl;

myList u(5);

for (int i = @; i < u.get_size(); i++)
u.elements[i] = i;

myList v = u;
myList w(u);

myList x;
X = Uj;

CFD with OpenSource Software

main()

X

elements

size

\'%

S S

size

u

elements

size

Memory management in C++ and OpenFOAM

Overloading assighment operator

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

06_AssignmentOverload.cpp

Now with the overloading assignment operator, the heap myList& myList::operator=(const myList& u)

allocated memory is deeply copied by assignment. {))
size = u.size;

delete[] elements;
elements = new int[size];
The class does not have any memory management for (int i = @; i < size; i++)

problem, and everything is fine. elements[i] = u.elements[i];

return *this;

-)

main()

cout << "Hello" << endl;

myList u(5);

for (int i = @; i < u.get_size(); i++)
u.elements[i] = i;

myList v = u;
myList w(u);

, . o
Don’t worry, only one smallissue remains! Tle

X = U;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 25

Self assighment problem

* Let’s assume the user of your class writes the following 06_AssignmentOverload.cpp

funny code: myList& myList::operator=(const myList& u)
{
size = u.size;
u= u; delete[] elements;
elements = new int[size];

for (int 1 = @; i < size; i++)
elements[i] = u.elements[i];

* The elements of the u will be deleted and then we will end

up with a pointer that points to a freed memory! FEEAT ESE

* The code should reliable enough to even handle funny
usages

CFD with OpenSource Software Memory management in C++ and OpenFOAM 26

Addressing the self assighment

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

07_AssignmentOverload.cpp

* To address this issue, we return in case of self-assignment myList& mylList::operator=(const myList& u)
{
if (this == &s)
return *this;
* Now the class really does not have any memory

management problem, and everything is fine. size = u.size;

delete[] elements;

elements = new int[size];

for (int i = @; i < size; i++)
elements[i] = u.elements[i];

return *this;

CFD with OpenSource Software Memory management in C++ and OpenFOAM 27

General rules

CHALMERS

uuuuuuuuuuuuuuuuuuuuuu

Memory

Stack Heap

* For a class that dynamically allocates
memory on the heap, one should
explicitly define:

v'A destructor
v'A copy constructor

v'A copy assignment operator

* Let’s look at an OpenFOAM example: _
fvMatrix class in OpenFOAM-v2112 =
EE O

CFD with OpenSource Software Memory management in C++ and OpenFOAM 28

How OpenFOAM handles raw pointers

fvMatrix.Cin OpenFOAMv2112

template<class Type>
Foam: : fvMatrix<Type>: :fvMatrix
* Let’s look at an OpenFOAM example: ¢
fvMatrix class in OpenFOAM-v2112 const GeometricField<Type, fvPatchField, volMesh>& psi,
const dimensionSet& ds

lduMatrix(psi.mesh()),
* Specifically, loo at the member data raw psi_(psi),

pointer faceFluxCorrectionPtr_ useImplicit (false),
lduAssemblyName (),
nMatrix_ (9),
dimensions_(ds),
source_ (psi.size(), Zero),
internalCoeffs (psi.mesh().boundary().size()),
boundaryCoeffs (psi.mesh().boundary().size()),
faceFluxCorrectionPtr (nullptr)

CFD with OpenSource Software Memory management in C++ and OpenFOAM 29

Smart Pointers

Smart Pointers

In big project, it hard to keep track of all the heap allocated memories and
delete them.

* Smart pointers automates this (that’s all what they are!).

* Some people have this style of coding that they never ever use new and
delete. Some others only use new and delete. OpenFOAM uses both!

* Itrecommended to use them, unless you can’t for some reason.

* According to Microsoft: “smart pointers are used to help ensure that
programs are free of memory and resource leaks and are exception-safe.”

* Types of smart pointers:

v'std::unique_ptr<> M'
v'std: :shared_ptr<>

v'std: :weak_ptr<>

USE SMART POINTERS

imgfiip.com

CFD with OpenSource Software Memory management in C++ and OpenFOAM 31

std: :unique_ptr<>

Unique ownership of memory 08 UniquePointer.cpp
class mylList
Scoped pointer: when the pointer goes out of {

scope the memory is released public:
myList(int);
o unique_ptr<int[]> elements;
It has negligible overhead

private:
Unique: one cannot copy them (share the int size;
ownership of memory) ¥

myList::myList(int s)
Let’s have a look at Example 8. {

cout <<
size = s;
elements = unique_ptr<int[]>(new int[size]);

--> constructor called <-- \n";

Let’s look at an OpenFOAM example:
fvMatrix class in OpenFOAM-v2406

CFD with OpenSource Software Memory management in C++ and OpenFOAM 32

std: :shared ptr<>

* Sharing ownership of a memory
09_SharedPointer.c
* Uses reference counting to keep track of the = bP

number of pointer that point to the same class myList

{
memory public:
myList(int);
* Reference counting adds some overhead shared_ptr<int[]> elements;

. . . _ private:
When all pointer die (ref. count = 0), the S s

memory is released. };

myList::myList(int s)
{

* Let’s have a look at Example 9.

o cout <<
* weak_ptr<> is similarto shared_ptr<> size = s;

without increasing the ref. count. elements = shared_ptr<int[]>(new int[size]);

--> constructor called <-- \n";

CFD with OpenSource Software Memory management in C++ and OpenFOAM 33

	Slide 1: Introduction to Memory Management in C++ and OpenFOAM: (What on earth is going on with autoPtr<> and tmp<>)
	Slide 2: Outline
	Slide 3: Memory Allocation
	Slide 4: Memory
	Slide 5: Memory management
	Slide 6: Heap allocation
	Slide 7: Memory leak
	Slide 8: Static and dynamic allocation
	Slide 9: Memory layout
	Slide 10: Stack vs. Heap
	Slide 11: Deallocation
	Slide 12: Why not rely on the OS?
	Slide 13: Memory Management in Classes
	Slide 14: Dynamically allocated member data
	Slide 15: Memory leak
	Slide 16: Destructor
	Slide 17: Shallow copy problem
	Slide 18: Shallow copy problem
	Slide 19: Copy constructor
	Slide 20: Deep copy
	Slide 21: Copy constructor
	Slide 22: Assignment problem
	Slide 23: Assignment problem
	Slide 24: Overloading assignment operator
	Slide 25: Overloading assignment operator
	Slide 26: Self assignment problem
	Slide 27: Addressing the self assignment
	Slide 28: General rules
	Slide 29: How OpenFOAM handles raw pointers
	Slide 30: Smart Pointers
	Slide 31: Smart Pointers
	Slide 32: std::unique_ptr<>
	Slide 33: std::shared_ptr<>

