
Cite as: Khosravifar, P.: Implementation of Solidification Phase Change in a Multiphase Solver. In

Proceedings of CFD with OpenSource Software, 2024, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2024

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementation of Solidification Phase
Change in a Multiphase Solver

Developed for OpenFOAM-v2312

Author:
Paria Khosravifar
Lule̊a University of Technology
paria.khosravifar@ltu.se

Peer reviewed by:
Assoc. Prof. Anna-Lena Ljung

Dr. Saeed Salehi

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make
sure that it works, that it is possible to follow, and to some extent correct the writing. The

reviewer has no responsibility for the contents.

January 28, 2025

http://dx.doi.org/10.17196/OS_CFD#YEAR_2024

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use the interFoam solver.

The theory of it:

• The theory of enthalpy-porosity solidification model.

• The theory of multiphase simulation.

How it is implemented:

• How the interface of two-phase is tracked using the VOF method.

How to modify it:

• How to implement phase-change into interFoam solver.

• How to couple the enthalpy-porosity method with the VOF method.

1

Prerequisites

• Fundamentals of multiphase flow

• Fundamentals of solid-liquid phase-change

• Basic usage of OpenFOAM

• C++ language and Object-Oriented Programming (OOP)

2

Contents

1 Introduction 5

2 Theory 6
2.1 Multiphase Simulation . 6
2.2 Solidification Model . 6

2.2.1 Governing Equations . 7

3 solidificationInterFoam 9
3.1 Existing Implementations . 9

3.1.1 interFoam Solver . 9
3.2 Extending Thermodynamic Properties . 10
3.3 Modifying Governing Equations . 10

4 Test Case 13
4.1 Two-phase Stefan problem . 13
4.2 Three-phase Stefan problem . 14
4.3 Conclusion . 15

A Developed codes 19
A.1 Libraries . 19
A.2 solidificationInterFoam solver . 21

3

Nomenclature

Acronyms
erf Error Function
Ste Stefan number
VOF Volume of Fluid

English symbols
Amush Mushy zone constant. .kg/m3 · s
Cp Specific Heat . J/kg ·K
H Enthalpy . J/kg
h Sensible Enthalpy . J/kg
k Thermal conductivity . W/(m ·K)
L Latent heat of fusion . J/kg
p Pressure . Pa
T Temperature . K
t Time . s
T0 Surface temperature . K
u Velocity. .m/s
ur Relative velocity . m/s

Greek symbols
α Volume Fraction of liquid in two-phase fluid
∆TF phase change temperature range . K
γ Volume Fraction of liquid in solidification
κ curvature of the interface
ν Fluid kinematic viscosity .m2/s
ρ Fluid density . kg/m3

σ surface tension coefficient. .N/m

Subscripts
p pressure
g Gas
l Liquid
liq Liquidus
melt Melting
ref reference
s Solid
sol Solidus
st surface tension

4

Chapter 1

Introduction

Modeling phase-change phenomena, such as solidification, is important for understanding var-
ious natural and industrial systems. The main challenge in the simulation of multiphase systems
is accurately tracking the interphase between phases, especially when phase-change processes are
involved. Several methods have been introduced to track the freezing front in solidification phase
change simulations [1], with the enthalpy-porosity method being one of the most widely used ap-
proaches. Additionally, in cases involving free surfaces or interactions with other fluids, it becomes
essential to consider multiple phases within the simulation framework. For instance, in the freezing
of an impinging droplet on a surface, the liquid-gas interface must be tracked accurately, along with
the liquid-solid interface during solidification.

This report presents the modification and implementation of existing interFoam solver in OpenF-
OAM to include solidification phase-change. interFoam is a solver for two incompressible fluids that
utilities the volume of fluid (VOF) method for tracking interface between two phases. However,
it does not originally support the phase-change phenomena. To address this limitation, the en-
ergy equation and the enthalpy-porosity method have been introduced into the interFoam solver.
The enthalpy-porosity method is applied by adding source terms to the governing equations. As
a result, the modified solver becomes capable of simulating three phases—fluid 1, fluid 2, and
solid—simultaneously, making it suitable for cases involving complex multiphase systems.

The extended solver has been validated using the Stefan problem [2]. First, a two-phase Stefan
problem was simulated to check the solver’s capability in simulating phase transitions from liquid to
solid. Next, a three-phase Stefan problem was defined to simulate the solidification of a liquid with
a free surface in contact with air.

5

Chapter 2

Theory

In this chapter, the theory of multiphase flow simulation with solidification phase change is
discussed. The focus is on simulating the solidification of a liquid phase with a free surface by
coupling the volume of fluid (VOF) method with the enthalpy-porosity model. In other words, the
interaction between two liquid and gas phases will be achieved using the VOF method, while the
enthalpy-porosity method will be utilized to simulate the solidification process of the liquid phase.

2.1 Multiphase Simulation

The volume of fluid (VOF) model has been discussed in several previous reports in this PhD
course [3, 4, 5]. Therefore, only the aspects relevant to implementation of the solver in this project
are mentioned in this section. The VOF model is a numerical technique for capturing the interface
between two phases. It employs a scalar function, known as the volume fraction (α), which is the
ratio of the volume of one phase to the volume of the computational cell. The volume fraction
function is commonly defined as follows

α =

0 fluid 2,

0 < α < 1 interface,

1 fluid 1 .

(2.1)

In the volume of fluid method, the transport equation of the volume fraction of the liquid is solved
to track the interface between two fluid phases. This equation describes the evolution of the volume
fraction (α) of one fluid within each computational cell over time. In OpenFOAM, this equation is
defined as

∂α

∂t
+∇.(αU) +∇. [urα(1− α)] = 0, (2.2)

In this equation, the ∇. [urα(1− α)] term, is an artificial term introduced to sharpen and resist
numerical diffusion. This term is valid only at the interface, where ur is the relative velocity between
two phases. The fluid properties of the two-phase mixture in the interface are obtained from the
following relation

y = αy1 + (1− α)y2, (2.3)

where 1 and 2 represent the fluids 1 and 2, respectively. y can be any physical property of the fluid.
As mentioned previously, the VOF method is used solely to track the interface between two fluids.
The formation of the third phase (solid) will be treated by the enthalpy-porosity method.

2.2 Solidification Model

The enthalpy-porosity model is a widely used numerical approach in computational fluid dynamics
for simulating solidification/melting phase-change processes. This method, presented by Voller and

6

2.2. Solidification Model Chapter 2. Theory

Prakash [6], utilizes the enthalpy method to account for both sensible and latent heat, along with
the porosity concept to represent the transition between the solid and liquid phases. In the porosity
concept, the interface between the solid and liquid phases is treated as a porous medium, where the
liquid volume fraction represents the porosity of that medium.

In a phase-change problem with fluid flow, the conservation of mass, momentum, and energy need
to be considered. The details of the governing equations will be discussed in the next subsection.

2.2.1 Governing Equations

In the simulation of a fluid flow problem using the volume of Fluid (VOF) method, one set of
continuity, momentum, and energy equations needs to be solved for the phase mixture. The transient
energy equation in terms of enthalpy is defined as

∂ρH

∂t
+∇ · (ρUH) = ∇ · (k∇T) , (2.4)

where
H = h+∆H. (2.5)

Here, h is the sensible enthalpy and ∆H is the latent heat. The sensible enthalpy is defined as

h = href +

∫ T

Tref

CpdT, (2.6)

where href is the reference enthalpy at the reference temperature Tref, and Cp is the specific heat at
constant pressure. In solidification process, considering only the liquid and solid phases, the latent
heat is defined as

∆H = γL, (2.7)

where L is the latent heat of fusion and γ is the volume fraction of liquid in a cell; it equals 1 in the
liquid phase, 0 in the solid phase, and lies between 0 and 1 in the mushy region, defined by a linear
function. In a non-isothermal phase-change, this is described as following step function

γ =

0 T < Tsol,
T−Tsol

Tliq−Tsol
Tsol ≤ T ≤ Tliq,

1 T > Tliq,

(2.8)

where Tliq is the upper bound (liquidus temperature) and Tsol is the lower bound (solidus tempera-
ture) of the phase change temperature range (∆TF), which are defined as follows

Tsol = T −∆TF/2 , Tliq = T +∆TF/2. (2.9)

However, when considering three phases (two fluids and a solid), the latent heat cannot be used
as described in Eq.(2.7), because the existence of two different fluids must also be taken into account.
To clarify, the two fluid phases are considered to be gas and liquid (i.e., the solidification of liquid
with an interface with air). Consequently, the liquid volume fraction from the VOF model in a cell
containing both liquid and gas is defined as αl. Therefore, Eq.(2.7) is extended as the following
statement [7]

∆H = αlγL. (2.10)

In this case, the Eq. (2.10) is valid only in the liquid region of the simulation.
By substituting the definition of H from the above-mentioned relations into the Eq. (2.4), the

energy equation that includes the sensible and latent heat parts, which account for the solidification
process, is obtained as

∂(ρCpT)

∂t
+∇ · (UρCpT) + αlL

[
∂ργ

∂t
+∇ · (Uργ)

]
= ∇ · (k∇T). (2.11)

7

2.2. Solidification Model Chapter 2. Theory

Using the piecewise linear function described in the original enthalpy-porosity method [6] (Eq. (2.8))
needs a special iterative solution to couple between the liquid volume fraction and the energy equa-
tion. Rosler and Bruggemann [8] presented a continuous liquid fraction relation based on error
function (erf) for faster and more stable convergence. Therefore, the liquid fraction is defined as

γ = 0.5erf

(
4(T − Tmelt)

Tliq − Tsol

)
+ 0.5, (2.12)

where Tmelt is the melting temperature in isothermal phase change and the mean between Tliq and
Tsol in non-isothermal phase change. Applying Eq. (2.12) to Eq. (2.11) the final energy conservation
equation and its source term are given by

∂(ρCpT)

∂t
+∇ · (UρCpT) + Sh = ∇ · (k∇T), (2.13)

where

Sh = αlρL
4exp((4(T−Tmelt)

Tliq−Tsol
)2)

(Tliq − Tsol)
√
π

(
∂T

∂t
+ U · ∇T). (2.14)

This equation is no longer a function of the liquid fraction and does not require any iterative
treatment to update γ. The conservation of momentum is defined as

∂(ρU)

∂t
+∇ · (ρUU) = −∇p+∇µ

[
∇U +∇UT

]
+ ρg + Sst + Su. (2.15)

In this equation, Sst is the volumetric surface tension force on the interface of two fluids, and Su

represents the Darcy source term [6]. As the liquid solidifies, its velocity becomes zero. The Darcy
source term adds an artificial momentum source over the interface to represent this velocity sink.
The Carman-Kozeny equation is used in the definition of Darcy source term. This term is defined
as

Su = − (1− γ)2

γ3 + q
AmushyU, (2.16)

where Amushy is the mushy zone constant and q is a small number to avoid division by zero. The
constantAmushy controls how much the flow slows down during the phase change. The continuous
surface force (CSF) is used to calculate the surface tension force which is defined as follows

Sst = σκ∇αl, (2.17)

where σ is the surface tension coefficient and κ is the curvature of the interface of two fluids and it
is computed as follows

κ = −∇ · (∇αl

|∇αl|
). (2.18)

Finally, as a single set of equations is solved for the mixture of three phases, the material
properties of the mixture, incorporating the solid phase properties into Eq. (2.3), are defined as
follows

y = αl(γyl + (1− γ)ys) + (1− αl)yg, (2.19)

where l, s, and g represent liquid, solid, and gas, respectively and y can represent any physical
property. These properties are assumed to be constant within each phase.

8

Chapter 3

solidificationInterFoam

In this chapter, the existing implementations related to this project are discussed, along with the
modifications made to the interFoam solver to simulate solidification phase-change. To enable the
simulation of solidification phase-change, the energy equation and solidification source terms have
been added to the interFoam solver, and the final solver, named solidificationInterFoam, has
been developed.

3.1 Existing Implementations

3.1.1 interFoam Solver

interFoam is a solver for two incompressible, isothermal immiscible fluids using a VOF(volume
of fluid) phase-fraction based interface capturing approach. The structure of interFoam directory
is as follows.

|-- Make

| |-- files

| `-- options

|-- UEqn.H

|-- alphaSuSp.H

|-- correctPhi.H

|-- createFields.H

|-- initCorrectPhi.H

|-- interFoam.C

|-- pEqn.H

`-- rhofs.H

interFoam.C is the main file that controls the overall workflow of the solver. It includes
the necessary header files, such as UEqn.H, pEqn.H, and alphaEqn.H, which are used to solve the
momentum, pressure, and volume fraction equations, respectively. This solver uses the transport
equation for the volume fraction of liquid, defined in the multiphase/VoF directory as alphaEqn.H.
This file is explained in detail in the report by Almeland [4]. Additionally, all fields used in the
solver, such as velocity, pressure, density, etc., are initialized and declared in the CreateFields.H

file.
The interFoam solver uses the immiscibleIncompressibleTwoPhaseMixture class to read and

calculate transport properties from the transportProperties file in the system directory. This
class combines properties for handling two immiscible, incompressible fluids. As shown in List-
ing 3.1, it inherits and combines functionality from two classes: incompressibleTwoPhaseMixture,
which manages the transport properties of the two incompressible phases (such as density and vis-
cosity), and interfaceProperties, which handles properties related to the interface between the
two phases, such as surface tension and curvature.

9

3.2. Extending Thermodynamic Properties Chapter 3. solidificationInterFoam

Listing 3.1: immiscibleIncompressibleTwoPhaseMixture inheritance

53 class immiscibleIncompressibleTwoPhaseMixture

54 :

55 public incompressibleTwoPhaseMixture,

56 public interfaceProperties

The mixture object from the immiscibleIncompressibleTwoPhaseMixture class has defined in
createFields.H file to have access to functions and properties in the class as follows.

Info<< "Reading transportProperties\n" << endl;

immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

3.2 Extending Thermodynamic Properties

The specific heat coefficient (Cp) and thermal conductivity (k) are essential thermodynamic
properties used in the energy equation. In this section the modification is made in the solver to
consider thermodynamic properties are mentioned.

In order to read these data from transportProperties dictionary, the thermoIncompressibleTw
oPhaseMixture class from $FOAM_SOLVERS/multiphase/interCondensingEvaporatingFoam/tempe

raturePhaseChangeTwoPhaseMixtures is used by changing its name to myThermoIncompressibleTw
oPhaseMixture. This class inherits from incompressibleTwoPhaseMixture class and extends its
functionality to read thermodynamic properties, such as Cp and k. In this case, the myImmiscibleInc
ompressibleTwoPhaseMixture class should be the subclass of myThermoIncompressibleTwoPhaseMi
xture. Listing 3.2 shows the inheritance of myImmiscibleIncompressibleTwoPhaseMixture. Full
files of these two libraries can be found in Appendix A.1.

Listing 3.2: myImmiscibleIncompressibleTwoPhaseMixture inheritance

55 class myImmiscibleIncompressibleTwoPhaseMixture

56 :

57 // public incompressibleTwoPhaseMixture,

58 public myThermoIncompressibleTwoPhaseMixture,

59 public interfaceProperties

Finally, to get access to mixture properties mixture object of myImmiscibleIncompressibleTwo
PhaseMixture class is defined as following in the createFields.H file. Listing 3.3 illustrates the
definition of the mixture object.

Listing 3.3: mixture object definition in createFields.H file

116 Info<< "Reading transportProperties\n" << endl;

117 myImmiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

myImmiscibleIncompressibleTwoPhaseMixture and myThermoIncompressibleTwoPhaseMixtu
re are defined as separate libraries. To use them in solidificationInterFoam solver they should be
mentioned as follows in Make/options file.

-L$(FOAM_USER_LIBBIN) \

-lmyImmiscibleIncompressibleTwoPhaseMixture \

-lmyThermoIncompressibleTwoPhaseMixture

3.3 Modifying Governing Equations

In this section, the modifications in the governing equations to consider phase change are dis-
cussed. The energy equation introduced in the theory chapter (Eq. (2.13)) has been implemented in
the solver. Listing 3.4 shows the modified energy equation. The source term in the energy equation
is implemented in the lines 6 and 7 of this listing and added to the TEqn in the line 13. The alpha1

10

3.3. Modifying Governing Equations Chapter 3. solidificationInterFoam

variable in line 13 represents the volume fraction of liquid (αl), which is calculated using the trans-
port equation for the liquid’s volume fraction, as shown in Eq. (2.2) (VOF method). Its value is 1
in the liquid phase and 0 in the gas phase. Consequently, this ensures that the term in line 13 is
valid only in the liquid phase and becomes zero in the gas phase.

Listing 3.4: TEqn

6 volScalarField expArg = sqr(4.0 * (T - Tmelt) / (Tliq - Tsol));

7 volScalarField Sh_erf = -rho * L * ((4.0 * exp(-expArg) / ((Tliq - Tsol) * ::sqrt(Foam::constant::

mathematical::pi))) * (fvc::ddt(T) + (U & fvc::grad(T))));

8

9 fvScalarMatrix TEqn

10 (

11 fvm::ddt(rhoCp, T)

12 + fvm::div(rhoCpPhi, T)

13 + alpha1*Sh_erf

14 - fvm::Sp(fvc::ddt(rhoCp) + fvc::div(rhoCpPhi), T)

15 - fvm::laplacian(kappaEff, T)

16);

To track the liquid volume fraction during the solidification process, the volScalarField gamma

is defined in createFields.H file. The code Listing 3.5 defines this field. In line 129 the amount
of gamma is initialized by defining the Eq. 2.12. This variable will be updated after solving T in the
TEqn file, and written in the time directories during run (lines 30 to 33 in Listing 3.6), to be able
to display in post-processing.

Listing 3.5: Solidification volume fraction field (γ) defination

114 volScalarField gamma

115 (

116 IOobject

117 (

118 "gamma",

119 mesh.time().timeName(),

120 mesh,

121 IOobject::NO_READ,

122 IOobject::AUTO_WRITE

123),

124 mesh,

125 dimensionedScalar("gamma", dimless, 1)

126);

127

128 // Update gamma using the erf function

129 gamma = 0.5 * Foam::erf(4.0 * (T - Tmelt) / (Tliq - Tsol)) + 0.5;

Listing 3.6: The update of γ in TEqn.H

24 gamma = 0.5 * Foam::erf(4.0 * (T - Tmelt) / (Tliq - Tsol)) + 0.5;

25 gamma.correctBoundaryConditions();

26 Info << "min/max(gamma) = " << min(gamma).value() << ", "

27 << max(gamma).value() << endl;

28

29 // Write the field to the time directory

30 if (runTime.writeTime())

31 {

32 gamma.write();

33 }

Finally, the momentum equation is modified to consider the artificial source term as mentioned
in the theory chapter. The Listing 3.7 displays momentum equation with added source terms. In
line 3 of this code the Carman-Kozeny relation is calculated and added to the UEqn in line 8 to
include Darcy source term of Eq. (2.16). Same as the comment in TEqn, alpha1 in line 8 makes this
term to be valid only in the liquid phase.

11

3.3. Modifying Governing Equations Chapter 3. solidificationInterFoam

Listing 3.7: UEqn

3 volScalarField prosityFunc = A_mushy *sqr(1.0 - gamma)/(pow3(gamma) + q);

4

5 fvVectorMatrix UEqn

6 (

7 fvm::ddt(rho, U) + fvm::div(rhoPhi, U)

8 + alpha1 * fvm::Sp(prosityFunc, U) //Add

9 + MRF.DDt(rho, U)

10 + turbulence->divDevRhoReff(rho, U)

11 ==

12 fvOptions(rho, U)

13);

14

15 UEqn.relax();

16

17 fvOptions.constrain(UEqn);

18

19 if (pimple.momentumPredictor())

20 {

21 solve

22 (

23 UEqn

24 ==

25 fvc::reconstruct

26 (

27 (

28 mixture.surfaceTensionForce()

29 - ghf*fvc::snGrad(alpha1*rho1+alpha2*rho2)

30 - fvc::snGrad(p_rgh)

31) * mesh.magSf()

32)

33);

34

35 fvOptions.correct(U);

36 }

The properties are required in the equations of solidification phase change such as latent heat
of fusion (L), mushy zone constant (Amushy), melting temperature (Tmelt), etc will define in the
phaseChangeProperties directory in the system folder of the test case. This file is mentioned in
the createFields.H file as the Listing 3.8.

Listing 3.8: phaseChangeProperties defination

3 Info<< "Reading phaseChangeProperties" << endl; //Add

4 IOdictionary phaseChangeProperties

5 (

6 IOobject

7 (

8 "phaseChangeProperties",

9 runTime.constant(),

10 mesh,

11 IOobject::MUST_READ,

12 IOobject::NO_WRITE

13)

14);

The full script of the modified solver is represented in Appendix A.

12

Chapter 4

Test Case

In this chapter, the accuracy of the modified solidificationInterFoam solver is verified in two
sections. Firstly, the movement of the freezing front is validated by comparing the results with the
analytical solution of the two-phase Stefan problem [2]. Secondly, a three-phase Stefan problem is
simulated to check the solver’s ability to handle solidification phase-change in the presence of two
fluids.

4.1 Two-phase Stefan problem

The Stefan problem is a classical model in heat transfer problems with phase change. It is
also known as a moving boundary problem. In this problem, the development of the solid-liquid
interface is determined by solving the conservation of energy. One of the analytical solutions of the
Stefan problem is known as Neumann’s solution. This solution is applied to the one-dimensional
solidification of a semi-infinite domain, in which the development of the interface position over time
is presented in the following expression [9]

x(t) = 2λ

√
tks
Csρ

, (4.1)

where t represents time, while ks, Cs, and ρs denote the thermal conductivity, heat capacity, and
density of the solid phase, respectively. The constant λ is obtained via solving the following tran-
scendental equation

λeλ
2

=
Ste√
π
, (4.2)

where Ste is Stefan’s number, defined as follows

Ste =
Cs(Tmelt − T0)

L
, (4.3)

where T0 refers to surface temperature.
To simulate isothermal solidification in Stefan problem, the computational domain is illustrated

in the Figure 4.1, which is a rectangular domain with dimensions of 100cm × 25cm. The initial
temperature inside the domain is 4°C and the melting temperature is 0°C. For the isothermal so-
lidification, phase change occurs at a constant temperature (Tmelt). To use the continuous liquid
fraction Eq. (2.12), the phase change temperature range set to small value of 0.4 K (Tliq = 273.35 K,
Tsol = 272.95 K). The properties of materials are represented in Table 4.1. The value of λ obtained
from Eq. (4.2) is equal to 0.56742. In this step of simulation, the initial phase of the entire domain
is defined as liquid. For this purpose, the setFieldsDict dictionary is defined as Listing 4.2, to
apply liquid phase to the whole domain in the initial step.

13

4.2. Three-phase Stefan problem Chapter 4. Test Case

Listing 4.1: setFieldsDict in two-phase case

17 defaultFieldValues

18 (

19 volScalarFieldValue alpha.water 0

20);

21

22 regions

23 (

24 boxToCell

25 {

26 box (0 -0.001 0) (0.025 0.001 0.100);

27 fieldValues

28 (

29 volScalarFieldValue alpha.water 1

30);

31 }

32);

Figure 4.1: Schematic of computational domain.

Movement of the solid-liquid interface during phase change, compared to the results of the
analytical results of Eq. (4.1) and is displayed Figure 4.2. To track the interface in simulation, the
isoSurface functionObject is used to obtain the location of T = 273.15 K iso-surface. Figure 4.2
shows that the simulation results agree with the analytical solution and confirms the solver’s ability
in the simulation of solidification phase change.

Table 4.1: Material’s properties

Properties Solid Liquid Gas Interface
Heat capacity (J/kg·K) 2050 2590 1

Thermal conductivity (W/m·K) 4.02 2.89 0.025
Density (kg/m3) 1000 1000 1

Melting temperature (K) 273.15
Latent heat of fusion (J/kg) 80332

4.2 Three-phase Stefan problem

In order to check the ability of the solver to simulate solidification in the presence of two fluids,
a three-phase Stefan problem has been defined. In this case, half of the computational domain is
defined as liquid and the other half as air. The only difference in setFieldsDict is in line 26,
dimensions of the box. Figure 4.3 shows the schematic of this test case. Natural convection is
neglected to have a flat liquid-gas interface.

Listing 4.2: setFieldsDict in three-phase case

14

4.3. Conclusion Chapter 4. Test Case

0 100 200 300 400 500
Time (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

x(
m

)

Numerical Data
Analytical Function

Figure 4.2: Comparison of numerical data and analytical solution of freezing front location.

26 box (0 -0.001 0) (0.025 0.001 0.050);

Figure 4.3: Schematic of computational domain

Figure 4.4 shows the evolution of the freezing front in the three-phase case. The freezing front
moves upward until it reaches the interface between air and liquid at x=0.05 m.

4.3 Conclusion

The solidificationInterFoam solver successfully simulated the solidification phase change and
effectively handled three-phase interactions during the solidification of a liquid in the presence of
another fluid.

15

4.3. Conclusion Chapter 4. Test Case

0 100 200 300 400 500
Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

x(
m

)

Numerical Data

Figure 4.4: Freezing front evolution in three-phase Stefan problem.

16

Bibliography

[1] S. Akhtar, M. Xu, M. Mohit, and A. P. Sasmito, “A comprehensive review of modeling water
solidification for droplet freezing applications,” Renewable and Sustainable Energy Reviews, vol.
188, p. 113768, 2023. [Online]. Available: https://doi.org/10.1016/j.rser.2023.113768

[2] D. W. Hahn and M. N. Özisik, Heat conduction. John Wiley & Sons, 2012.

[3] S. Menon, “Coupled level-set with vof interfoam,” Proceedings of CFD with OpenSource
Software, 2015, Edited by Nilsson H., 2015. [Online]. Available: https://dx.doi.org/10.17196/
OS CFD#YEAR 2015

[4] S. Almeland, “Implementation of an air-entrainment model in interfoam,” In Proceedings
of CFD with OpenSource Software, 2018, Edited by Nilsson. H., 2018. [Online]. Available:
http://dx.doi.org/10.17196/OS CFD#YEAR 2018

[5] Y. Sun, “Description of intercondensatingevaporatingfoam and implementation of sgs term into
volume fraction equation,” In Proceedings of CFD with OpenSource Software, 2022, Edited by
Nilsson. H., 2022. [Online]. Available: http://dx.doi.org/10.17196/OSCFD#YEAR2022

[6] V. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion
mushy region phase-change problems,” International Journal of Heat and Mass Transfer, vol. 30,
no. 8, pp. 1709–1719, 1987. [Online]. Available: https://doi.org/10.1016/0017-9310(87)90317-6

[7] Y. Yao, C. Li, Z. Tao, and R. Yang, “Numerical simulation of water droplet freezing process
on cold surface,” in ASME International Mechanical Engineering Congress and Exposition, vol.
58431. American Society of Mechanical Engineers, 2017, p. V008T10A072. [Online]. Available:
https://doi.org/10.1115/IMECE2017-71175

[8] F. Rösler and D. Brüggemann, “Shell-and-tube type latent heat thermal energy storage:
numerical analysis and comparison with experiments,” Heat and mass transfer, vol. 47, no. 8,
pp. 1027–1033, 2011. [Online]. Available: https://doi.org/10.1007/s00231-011-0866-9

[9] M. J. de Lemos and A. J. Hodierne, “A fully implicit enthalpy-porosity model for
phase-change,” ASME Journal of Heat and Mass Transfer, vol. 146, no. 1, 2024. [Online].
Available: https://doi.org/10.1115/1.4063732

17

https://doi.org/10.1016/j.rser.2023.113768
https://dx.doi.org/10.17196/OS_CFD#YEAR_2015
https://dx.doi.org/10.17196/OS_CFD#YEAR_2015
http://dx.doi.org/10.17196/OS_CFD#YEAR_2018
http://dx.doi.org/10.17196/OS CFD#YEAR 2022
https://doi.org/10.1016/0017-9310(87)90317-6
https://doi.org/10.1115/IMECE2017-71175
https://doi.org/10.1007/s00231-011-0866-9
https://doi.org/10.1115/1.4063732

Study questions

1. How can the interFoam solver be modified to simulate solidification phase change?

2. How does the enthalpy-porosity method model solidification phase change?

3. How can a three-phase system be incorporated into the simulation of liquid solidification with
a free surface?

18

Appendix A

Developed codes

A.1 Libraries

myThermoIncompressibleTwoPhaseMixture.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2016-2020 OpenCFD Ltd.

---/

#include "myThermoIncompressibleTwoPhaseMixture.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

defineTypeNameAndDebug(myThermoIncompressibleTwoPhaseMixture, 0);

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::myThermoIncompressibleTwoPhaseMixture::myThermoIncompressibleTwoPhaseMixture

(

const volVectorField& U,

const surfaceScalarField& phi

)

:

incompressibleTwoPhaseMixture(U, phi),

kappa1_

(

"kappa1",

dimEnergy/dimTime/dimLength/dimTemperature,

subDict(phase1Name_),

"kappa"

),

kappa2_

(

"kappa2",

kappa1_.dimensions(),

19

A.1. Libraries Appendix A. Developed codes

subDict(phase2Name_),

"kappa"

),

Cp1_

(

"Cp1",

dimEnergy/dimTemperature/dimMass,

subDict(phase1Name_),

"Cp"

),

Cp2_

(

"Cp2",

dimEnergy/dimTemperature/dimMass,

subDict(phase2Name_),

"Cp"

)

{

}

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

bool Foam::myThermoIncompressibleTwoPhaseMixture::read()

{

if (incompressibleTwoPhaseMixture::read())

{

subDict(phase1Name_).readEntry("kappa", kappa1_);

subDict(phase2Name_).readEntry("kappa", kappa2_);

subDict(phase1Name_).readEntry("Cp", Cp1_);

subDict(phase2Name_).readEntry("Cp", Cp2_);

return true;

}

return false;

}

// *** //

myThermoIncompressibleTwoPhaseMixture.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2014-2017 OpenFOAM Foundation

---/

#include "myImmiscibleIncompressibleTwoPhaseMixture.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::myImmiscibleIncompressibleTwoPhaseMixture::

myImmiscibleIncompressibleTwoPhaseMixture

(

const volVectorField& U,

const surfaceScalarField& phi

20

A.2. solidificationInterFoam solver Appendix A. Developed codes

)

:

// incompressibleTwoPhaseMixture(U, phi),

myThermoIncompressibleTwoPhaseMixture(U, phi),

interfaceProperties(alpha1(), U, *this)

{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

bool Foam::myImmiscibleIncompressibleTwoPhaseMixture::read()

{

return

// incompressibleTwoPhaseMixture::read()

myThermoIncompressibleTwoPhaseMixture::read()

&& interfaceProperties::read();

}

// *** //

A.2 solidificationInterFoam solver

solidificationInterFoam.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2011-2017 OpenFOAM Foundation

Copyright (C) 2020 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

SolidificationInterFoam

Group

grpMultiphaseSolvers

Description

A solver for two incompressible, immiscible fluids using a Volume of Fluid

(VOF) phase-fraction-based interface capturing approach, with solidification

phase change in one of the fluids. The solidification phase change is

incorporated into the model as a momentum porosity contribution, and the

energy associated with the phase change is added as an enthalpy contribution

using the enthalpy-porosity method.

21

A.2. solidificationInterFoam solver Appendix A. Developed codes

---/

#include "fvCFD.H"

#include "fvMesh.H"

#include "dynamicFvMesh.H"

#include "CMULES.H"

#include "EulerDdtScheme.H"

#include "localEulerDdtScheme.H"

#include "CrankNicolsonDdtScheme.H"

#include "subCycle.H"

#include "myImmiscibleIncompressibleTwoPhaseMixture.H"

#include "incompressibleInterPhaseTransportModel.H"

#include "turbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvOptions.H"

#include "CorrectPhi.H"

#include "fvcSmooth.H"

// * //

int main(int argc, char *argv[])

{

argList::addNote

(

"A solver for two incompressible, immiscible fluids using a Volume of Fluid"

"(VOF) phase-fraction-based interface capturing approach, with solidification"

"phase change in one of the fluids. The solidification phase change is"

"incorporated into the model as a momentum porosity contribution, and the"

"energy associated with the phase change is added as an enthalpy contribution"

"using the enthalpy-porosity method."

);

#include "postProcess.H"

#include "addCheckCaseOptions.H"

#include "setRootCaseLists.H"

#include "createTime.H"

#include "createDynamicFvMesh.H"

#include "initContinuityErrs.H"

#include "createDyMControls.H"

#include "createFields.H"

#include "createAlphaFluxes.H"

#include "initCorrectPhi.H"

#include "createUfIfPresent.H"

if (!LTS)

{

#include "CourantNo.H"

#include "setInitialDeltaT.H"

}

// * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readDyMControls.H"

if (LTS)

{

#include "setRDeltaT.H"

}

else

{

#include "CourantNo.H"

#include "alphaCourantNo.H"

#include "setDeltaT.H"

}

22

A.2. solidificationInterFoam solver Appendix A. Developed codes

++runTime;

Info<< "Time = " << runTime.timeName() << nl << endl;

// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{

if (pimple.firstIter() || moveMeshOuterCorrectors)

{

mesh.update();

if (mesh.changing())

{

// Do not apply previous time-step mesh compression flux

// if the mesh topology changed

if (mesh.topoChanging())

{

talphaPhi1Corr0.clear();

}

gh = (g & mesh.C()) - ghRef;

ghf = (g & mesh.Cf()) - ghRef;

MRF.update();

if (correctPhi)

{

// Calculate absolute flux

// from the mapped surface velocity

phi = mesh.Sf() & Uf();

#include "correctPhi.H"

// Make the flux relative to the mesh motion

fvc::makeRelative(phi, U);

mixture.correct();

}

if (checkMeshCourantNo)

{

#include "meshCourantNo.H"

}

}

}

#include "alphaControls.H"

#include "alphaEqnSubCycle.H"

mixture.correct();

if (pimple.frozenFlow())

{

continue;

}

#include "UEqn.H"

#include "TEqn.H"

// --- Pressure corrector loop

while (pimple.correct())

{

#include "pEqn.H"

}

if (pimple.turbCorr())

{

23

A.2. solidificationInterFoam solver Appendix A. Developed codes

turbulence->correct();

}

}

runTime.write();

runTime.printExecutionTime(Info);

}

Info<< "End\n" << endl;

return 0;

}

// *** //

createFields.H

#include "createRDeltaT.H"

Info<< "Reading phaseChangeProperties" << endl; //Add

IOdictionary phaseChangeProperties

(

IOobject

(

"phaseChangeProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

);

dimensionedScalar Prt //prantdl

(

"Prt",

dimless,

phaseChangeProperties

);

dimensionedScalar L //latent heat

(

"L",

dimensionSet(0, 2, -2, 0, 0, 0, 0),

phaseChangeProperties

);

dimensionedScalar A_mushy //mushy zone constant

(

"A_mushy",

dimensionSet(1, -3, -1, 0, 0, 0, 0),

phaseChangeProperties

);

dimensionedScalar q //constant in Darcy term

(

"q",

dimless,

phaseChangeProperties.lookupOrDefault<scalar>("q", 0.001)

);

dimensionedScalar Tmelt //melting T

(

"Tmelt",

dimensionSet(0, 0, 0, 1, 0, 0, 0),

phaseChangeProperties

);

24

A.2. solidificationInterFoam solver Appendix A. Developed codes

dimensionedScalar Tliq //liquidus T

(

"Tliq",

dimensionSet(0, 0, 0, 1, 0, 0, 0),

phaseChangeProperties

);

dimensionedScalar Tsol //solidus T

(

"Tsol",

dimensionSet(0, 0, 0, 1, 0, 0, 0),

phaseChangeProperties

);

dimensionedScalar rhoS //solid rho

(

"rhoS",

dimDensity,

phaseChangeProperties

);

dimensionedScalar CpS //solid Cp

(

"CpS",

dimEnergy/dimTemperature/dimMass,

phaseChangeProperties

);

dimensionedScalar kappaS //solid kappa

(

"kappaS",

dimEnergy/dimTime/dimLength/dimTemperature,

phaseChangeProperties

);

Info<< "Reading field p_rgh\n" << endl;

volScalarField p_rgh

(

IOobject

(

"p_rgh",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading field T\n" << endl; //Add

volScalarField T

(

IOobject

(

"T",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

volScalarField gamma

(

IOobject

(

25

A.2. solidificationInterFoam solver Appendix A. Developed codes

"gamma",

mesh.time().timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar("gamma", dimless, 1)

);

// Update gamma using the erf function

gamma = 0.5 * Foam::erf(4.0 * (T - Tmelt) / (Tliq - Tsol)) + 0.5;

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

#include "createPhi.H"

Info<< "Reading transportProperties\n" << endl;

myImmiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

volScalarField& alpha1(mixture.alpha1());

volScalarField& alpha2(mixture.alpha2());

const dimensionedScalar& rho1 = mixture.rho1();

const dimensionedScalar& rho2 = mixture.rho2();

// Need to store rho for ddt(rho, U)

volScalarField rho

(

IOobject

(

"rho",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT

),

alpha1* (gamma*rho1+(1-gamma)*rhoS) + alpha2*rho2

);

rho.oldTime();

// Mass flux

surfaceScalarField rhoPhi

(

IOobject

(

"rhoPhi",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

fvc::interpolate(rho)*phi

);

const dimensionedScalar& Cp1 = mixture.Cp1(); //Add

26

A.2. solidificationInterFoam solver Appendix A. Developed codes

const dimensionedScalar& Cp2 = mixture.Cp2();

volScalarField Cp //Add

(

IOobject

(

"Cp",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT

),

alpha1* (gamma*Cp1+(1-gamma)*CpS) + alpha2*Cp2

);

Cp.oldTime();

autoPtr<incompressible::turbulenceModel> turbulence

(

incompressible::turbulenceModel::New(U, phi, mixture)

);

#include "readGravitationalAcceleration.H"

#include "readhRef.H"

#include "gh.H"

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

p_rgh + rho*gh

);

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell

(

p,

p_rgh,

pimple.dict(),

pRefCell,

pRefValue

);

if (p_rgh.needReference())

{

p += dimensionedScalar

(

"p",

p.dimensions(),

pRefValue - getRefCellValue(p, pRefCell)

);

p_rgh = p - rho*gh;

}

mesh.setFluxRequired(p_rgh.name());

mesh.setFluxRequired(alpha1.name());

#include "createMRF.H"

#include "createFvOptions.H"

const dimensionedScalar& kappa1 = mixture.kappa1(); //Add

const dimensionedScalar& kappa2 = mixture.kappa2();

27

A.2. solidificationInterFoam solver Appendix A. Developed codes

volScalarField kappa //Add

(

IOobject

(

"kappa",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT

),

alpha1* (gamma*kappa1+(1-gamma)*kappaS) + alpha2*kappa2

);

kappa.oldTime();

volScalarField kappaEff //Add

(

IOobject

(

"kappaEff",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

kappa

);

// Need to store rho for ddt(rhoCp, U)

volScalarField rhoCp

(

IOobject

(

"rhoCp",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

rho*Cp

);

rhoCp.oldTime();

volScalarField deltaT

(

IOobject

(

"deltaT",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar(dimTemperature, Zero)

);

TEqn.H

{

rhoCp = rho*Cp;

kappaEff = kappa + rho*Cp*turbulence->nut()/Prt;

const surfaceScalarField rhoCpPhi = fvc::interpolate(rho * Cp) * phi;

volScalarField expArg = sqr(4.0 * (T - Tmelt) / (Tliq - Tsol));

volScalarField Sh_erf = -rho * L * ((4.0 * exp(-expArg) / ((Tliq - Tsol) * ::sqrt(Foam::constant::

mathematical::pi))) * (fvc::ddt(T) + (U & fvc::grad(T))));

fvScalarMatrix TEqn

(

28

A.2. solidificationInterFoam solver Appendix A. Developed codes

fvm::ddt(rhoCp, T)

+ fvm::div(rhoCpPhi, T)

+ alpha1*Sh_erf

- fvm::Sp(fvc::ddt(rhoCp) + fvc::div(rhoCpPhi), T)

- fvm::laplacian(kappaEff, T)

);

TEqn.relax();

TEqn.solve();

Info<< "min/max(T) = " << min(T).value() << ", "

<< max(T).value() <<endl;

gamma = 0.5 * Foam::erf(4.0 * (T - Tmelt) / (Tliq - Tsol)) + 0.5;

gamma.correctBoundaryConditions();

Info << "min/max(gamma) = " << min(gamma).value() << ", "

<< max(gamma).value() << endl;

// Write the field to the time directory

if (runTime.writeTime())

{

gamma.write();

}

}

UEqn.H

MRF.correctBoundaryVelocity(U);

volScalarField prosityFunc = A_mushy *sqr(1.0 - gamma)/(pow3(gamma) + q);

fvVectorMatrix UEqn

(

fvm::ddt(rho, U) + fvm::div(rhoPhi, U)

+ alpha1 * fvm::Sp(prosityFunc, U) //Add

+ MRF.DDt(rho, U)

+ turbulence->divDevRhoReff(rho, U)

==

fvOptions(rho, U)

);

UEqn.relax();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor())

{

solve

(

UEqn

==

fvc::reconstruct

(

(

mixture.surfaceTensionForce()

- ghf*fvc::snGrad(alpha1*rho1+alpha2*rho2)

- fvc::snGrad(p_rgh)

) * mesh.magSf()

)

);

fvOptions.correct(U);

}

29

	Introduction
	Theory
	Multiphase Simulation
	Solidification Model
	Governing Equations

	solidificationInterFoam
	Existing Implementations
	interFoam Solver

	Extending Thermodynamic Properties
	Modifying Governing Equations

	Test Case
	Two-phase Stefan problem
	Three-phase Stefan problem
	Conclusion

	Developed codes
	Libraries
	solidificationInterFoam solver

